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Abstract—We propose a feature ranking method called dual
dropout ranking (DDR) to identify the most discriminative
linguistic features for Alzheimer’s disease (AD) detection. The
proposed DDR is based on a dual-net neural architecture that
separates feature selection and recognition into two neural
networks (operator and selector), which are alternatively and
cooperatively trained to optimize the performance of both feature
selection and AD recognition. The operator is trained on the
features obtained from the selector to reduce classification loss.
The selector is optimized to predict the operator’s performance
using as few selected features as possible. DDR ranks the features
according to the probabilities that the corresponding features
should be purged (or kept). The DDR and other feature ranking
methods were evaluated on the ADReSS dataset. Results show
that the default linguistic feature set in ADReSS comprises many
redundant features and that using feature ranking methods
can improve the accuracy of AD recognition. Using the most
discriminative feature subset (9 features) discovered by DDR, we
obtain an F1 score of 88.9% on the test set of ADReSS, which
is 9.8% (absolute) higher than what the default feature set can
achieve.

I. INTRODUCTION

Alzheimer’s disease (AD) is a severe cognitive impairment
seriously affecting the health and daily lives of many older
adults.1 According to the World Alzheimer’s Report [1],
dementia prevalence in people aged 60 years and over ranges
between 4.6% to 8.7% across different regions around the
world. It is estimated in 2015 that globally 46.8 million people
are living with dementia. This number will roughly double
every 20 years, projected to reach 74.7 million in 2030 and
131.5 million in 2050. The global costs of dementia were
estimated at $818 billion in 2015, which is about 1.09% of
global GDP. This has huge quality of life impact not only
for individuals with dementia, but also their families and
caretakers.

Currently, AD is diagnosed through brain imaging [2],
identification of apolipoprotein E genotypes [3], measuring the
level of brain-derived neurotrophic factor [4], cerebrospinal
fluid exams [5], and other laboratory measures. In addition
to these measures, because AD also manifests language im-
pairment [6, 7], automatic recognition of AD through speech
and language analyses has gathered attention in the research
community. Some studies used acoustic information (e.g.,
speech/silence segments [8] and voice quality [9, 10]) from

1https://www.who.int/news-room/fact-sheets/detail/dementia

speech waveforms to discover potential AD. Some studies
utilized a combination of features, such as rhythm-inspired
features with acoustic features [11] and paralinguistic features
with linguistic fluency features [12]. Another approach is to
integrate the decisions from multiple modalities. In [13], the
modalities are based on acoustic, cognitive, and linguistic
features, and in [14, 15], they are based on acoustic and
textual features. Some other studies used deep neural networks
(DNNs) to learn high-level representations from speech tran-
scriptions automatically [16, 17].

While various type of features have been used for AD
recognition, it is still unclear which features or combination
of features are more effective. Our study investigates feature
ranking methods to identify the most discriminative linguistic
features that distinguish AD from Non-AD. We propose a
novel feature ranking method called dual dropout ranking
(DDR) to identify the most representative linguistic features.
The proposed DDR is based on a dual-net neural architecture
that separates feature selection and recognition into two neural
networks which are alternatively and cooperatively trained to
integrate feature selection and AD recognition into a coherent
process.

The remainder of this paper is organized as follows. Sec-
tion II presents related work. Section III presents the technical
details of DDR. Section IV and Section V describe experi-
mental setup and results, and concluding remarks are given in
Section VI.

II. RELATED WORK

There were studies investigating the relevance of various
features for AD recognition. For example, Weiner et al. [18]
extracted features from biographic interviews to predict the
development of AD after 5 or 12 years. They reduced the
dimensionality of the original feature set by nested forward
feature selection. It was found that feature selection can
significantly improve prediction performance. Weiner et al.
[19] also used nested forward feature selection to identify
the most commonly selected features during cross-validations
for the state screening of AD. Alhanai et al. [20] extracted
demographic, audio, and text features and used an elastic-net
based logistic regression model to identify the discriminative
features for cognitive impairment recognition. The method
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Fig. 1. The dual-net architecture of DDR. ψ and ϕ represent the network
parameters of the operator and selector, respectively. θ comprises the dropout
rates at the input layer of the selector.

ranks features according to the sparsity regularization coef-
ficients of the regression model.

There have been other feature ranking methods based on
sparsity regularization, such as LASSO (L1 penalty) [21],
group LASSO [22, 23], and L1-norm [24]. Sparsity regulariza-
tion has also been adopted in deep learning-based methods for
feature ranking. For example, in deep feature selection (Deep
FS) [25], elastic-net regularization is imposed on the weights
between the input and the first hidden layer, and in dropout
feature ranking (Dropout FR) [26], LASSO regularization is
imposed through a penalty term.

There have also been deep learning feature ranking methods
that do not have sparsity regularization. For instance, in [27],
the authors ranked the features according to their net positive
contribution to the classification tasks.

III. DUAL DROPOUT RANKING

A. Dropout for Feature Ranking

Feature ranking aims to rank the importance of individual
features according to some criteria, where the criteria typically
reflect the features’ contributions to the learning performance
[28].

In dropout [29], nodes were purged according to their
dropout rates. Therefore, the higher the dropout rate, the
lower the rank of the feature, and feature ranking amounts
to determining the dropout rates of individual input nodes. To
formulate the dropout rate of a feature, we adopt an approach
similar to Dropout FR. More specifically, given a dropout rate
vector θ = (θ1, θ2, . . . , θk, . . . , θd) and a dropout mask vector
z = (z1, z2, . . . , zk, . . . , zd), we denote the distribution of z
as q(z) =

∏d
k=1 q (zk | θk) =

∏d
k=1 Bern (zk | θk), where θk

is the dropout rate for the kth feature, and zk ∈ {0, 1} is the
corresponding dropout mask. This gives us a fully factorized
Bernoulli distribution that focuses on feature ranking. Suppose
x = (x1, x2, . . . , xk, . . . , xd) is an input feature vector. During
the forward pass, we place the dropout mask vector on the

input layer, that is x�z, where � is the element-wise product
(Hadamard product).

B. Trainable Dropout Rate

In ordinary dropout, the dropout rates are fixed hyper-
parameters. Instead of fixing the dropout rates, we treat them
as trainable parameters. To optimize the dropout rates, we
relax the binary dropout masks to soft dropout masks as
follows:

z = sigmoid

(
1

t
[log θ − log(1− θ) + logu− log(1− u)]

)
,

(1)
where u ∈ Rd follows the Uniform(0,1) distribution and
t is a normalization constant, which is set to 0.1 in our
experiments. Note that this relaxation has also been used in
Concrete Dropout [30] and Dropout FR [26]. Eq. (1) suggests
that q(z) places most of the mass to either zk = 0 or zk = 1 to
closely resemble the binary dropout mask. With the continuous
relaxation in Eq. (1), the dropout rates can be optimized
through back-propagation, and we can gradually select the
optimal features x � z along with the optimization of the
dropout rates.

C. Learning Algorithm

Suppose M = {X ,Y} is a mini-batch comprising |M|
pairs of x and y, where x ∈ X is a feature vector of
size d, and y ∈ Y is the corresponding target. By sampling
the uniform distribution in Eq. (1), we obtain several soft
dropout mask vectors z = (z1, z2, . . . , zk, . . . , zd) and form
a dropout mask subset Z of size |Z|. The learning algorithm
of DDR is defined in Eq. (2), where LO (M,Z;ψ) is the
operator’s objective, l(x � z,y;ψ) is the cross-entropy loss
for binary/multiclass classification or the mean square error
(MSE) loss for regression, and ψ is the operator’s parameters.
LS (Z;ϕ) is the selector’s objective, fS(z, ϕ) is the selector’s
output, and ϕ is the selector’s parameters. The training pro-
cedure of dual-net is depicted in Figure 1. During training,
the operator and selector are trained alternately. The alternate
training procedure is depicted in Appendix A.

1) Operator: The operator is trained on the features ob-
tained from the selector to reduce classification loss. For
each iteration, given the dropout mask subset Z from the
selector, the selected features {x� z}x∈X ,z∈Z are fed to the
operator, and the operator’s learning performance based on the
selected features is obtained. Given the selected features x�z,
1

|M|
∑

(x,y)∈M l(x � z,y;ψ) is the learning performance of
the operator on the mini-batch M. By enumerating z in Z ,
we obtain the average learning performance of the operator
on the mini-batch. Then, we update the operator’s parameters
and pass the operator’s learning performance to the selector
as a feedback indicating how well the operator performs on
the selected features. Different from the sparsity regulariza-
tion methods that also incorporate the regularization into the
network, the operator only focuses on reducing classification
loss. Given the selected features, the operator’s architecture
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Operator’s objective: LO (M,Z;ψ) = 1

|Z||M|
∑
z∈Z

∑
(x,y)∈M

l(x� z,y;ψ) (2a)

Selector’s objective: LS (Z;ϕ) =
1

|Z|
∑
z∈Z


∣∣∣∣∣∣fS(z;ϕ)− 1

|M|
∑

(x,y)∈M

l(x� z,y;ψ)

∣∣∣∣∣∣
/

d∑
k=1

(1− zk)

 (2b)

2) Selector: The selector learns to predict the operator’s
learning performance using as few selected features as pos-
sible. The mean absolute error (MAE) between fS(z, ϕ) and
1

|M|
∑

(x,y)∈M l(x�z,y;ψ) requires that the selector closely
predicts the operator’s learning performance. The constraint∑d
k=1(1− zk) on the denominator of Eq. (2b) requires that

most dropout masks in z become 0; so the selector only selects
a small number of features when predicting the operator’s
learning performance.

After training and updating the selector’s parameters and
dropout rates, we have the updated dropout rate vector θ′.
Through sampling the uniform distribution in Eq. (1), we
obtain several new soft dropout mask vectors z′ from the
updated dropout rate vector θ′ and form a new dropout mask
subset Z ′ for the next iteration. In practical implementation,
the dropout mask vector fed to the selector is z � z′, where
z ∈ Z and z′ ∈ Z ′.

IV. EXPERIMENTAL SETUP

A. Datasets

We used two datasets in the experiments. One is a synthetic
dataset and another was obtained from the AD Recognition
Through Spontaneous Speech Challenge (ADReSS) [31].

The synthetic data set was designed for evaluating the capa-
bility of classifiers and feature selection algorithms in solving a
multi-dimensional XOR problem [32]. By grouping 8 corners
of a 3-dimensional hypercube (v0, v1, v2) ∈ {−1, 1}3 into
the tuples (v0v2, v1v2), we have 4 sets of vectors and their
negations {v(c),−v(c)}4c=1, where c is the class index. For ex-
ample, the tuple (v0v1, v1v2) = (1,−1) corresponds to c = 2,
where v(2) = [1, 1,−1]T. The points in class c are generated
from the distribution 1

2 [N (v(c), 0.5I3) + N (−v(c), 0.5I3)],
where I3 is a 3×3 identity matrix. Each sample is additionally
accompanied by 7 Gaussian noise features with zero mean and
unit variance, leading to a 10-dimensional feature vector.

The ADReSS dataset comprises the speech recordings and
corresponding annotated transcriptions of 78 AD patients
and 78 healthy controls (HCs), where 108 age- and gender-
matched subjects were grouped into the training set, and the
remaining subjects were grouped into the test set. 34 linguistic
features were obtained based on the annotated transcriptions
using CLAN [33].

B. Training Procedure and Recognition

For Deep FS and Dropout FR, we directly adopted the
network architectures “34–170–170–2” and the default hyper-
parameters (e.g., batch size, learning rates, etc.) in [26]. The

most important hyper-parameters for Deep FS and Dropout
FR is the regularization coefficient. A grid search was carried
out to optimize the regularization coefficient (from 0.01 to 1)
using leave-one-subject-out (LOSO) cross-validations on the
training set of ADReSS. For DDR, we adopted the architecture
“34–60–30–20–2” for the operator network and “34–100–50–
10–1” for the selector network. We adopted the same batch
size and learning rates in [26] to train the operator network
and selector network. The most important hyper-parameter for
DDR is the initial dropout rate. A grid search was carried out
to optimize the initial dropout rate (from 0.1 to 0.9) for DDR.
All other experimental settings for Deep FS, Dropout FR and
DDR are the same except for the optimal hyper-parameters
for each method.

The goal is to determine the most discriminative linguistic
features that can effectively recognize the AD patients in the
test set. We used feature ranking methods to rank linguistic
features and identified the most discriminative features. The
identified features were then used for training a linear SVM
with a box constraint of 0.003 to recognize AD.

V. RESULTS AND ANALYSIS

In this section, we evaluate the feature ranking methods on
the synthetic and ADReSS datasets.

A. Analysis of Keep Probabilities

In this evaluation, we show that DDR is robust to different
random seeds.

1) Synthetic: We trained a DDR network (Figure 1) on the
synthetic dataset. After training, the keep probabilities (1−θ)
of the features for 20 random seeds are depicted in Figure 2.
It shows that the keep probabilities associated with the valid
features (v0, v1, v2) converge to 1, whereas the noise features
(v3 ∼ v9) have keep probabilities close to 0. This result
suggests that DDR can effectively identify the valid features.

2) ADReSS: We used the training set in ADReSS to train
another DDR network. Figure 3 depicts the keep probabilities
of the features for 20 random seeds. The results show that
DDR converges to almost the same keep probabilities for
different random seeds. The top 5 features have high keep
probabilities, while other low rank features have keep proba-
bilities close to 0, which means that DDR can select a small
number of discriminative features confidently.

B. LOSO on the Training Set

For the deep learning-based feature ranking methods (Deep
FS, Dropout FR, and DDR), we ranked all of the linguistic
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Fig. 2. The keep probabilities (1−θ) of 10 features in the synthetic dataset
for 20 random seeds. Indexes 0–3 and 4–9 correspond to the valid and invalid
features, respectively. The blue bars and the red error bars denote the means
and two times the standard deviations of 20 random seeds, respectively.
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Fig. 3. The keep probabilities (1−θ) of 34 linguistic features in the ADReSS
dataset for 20 random seeds. Refer to the caption of Figure 2 for the meaning
of the blue bars and the red error bars.

features and determined their feature relevance based on
LOSO cross-validations on the training set of ADReSS. For
each fold in the LOSO, we trained the deep neural networks on
the training partition (107 subjects) and evaluated them on the
test partition (one subject). Because each fold uses different
partitions for training, the feature relevance in different folds is
not the same. We used the following strategy to select the final
set of features. For each fold, we chose n features according
to their ranking (keep probabilities). For a K-fold LOSO, this
amounts to Kn features after running the K folds. Because
some features are more relevant than others, some features
may appear in most of the K folds and there are many repeated
features in the Kn features. By assuming that frequently
selected features are more relevant, we sorted the Kn features
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Fig. 4. F1 scores achieved by different deep learning-based feature ranking
methods based on the LOSO cross-validations on the training set of ADReSS.

in descending order of their number of occurrences and picked
the top n unique features in the sorted list.

Figure 4 shows the recognition performance of the deep
learning-based feature ranking methods. It shows that when
using the original feature set, the LOSO F1 score on the
training set was 79.2%. Figure 4 also shows that the original
feature set comprises many redundant features and that using
feature ranking methods to obtain the most discriminative
subsets can improve the accuracy of AD recognition. Deep
FS achieves its highest F1 score (84.5%) when the number
of selected feature is 7, but the F1 score becomes unstable
and fluctuating when more features were selected. When the
number of selected features is 9, DDR achieves its highest F1

score (84.0%).
We obtained the optimal feature subsets by varying the

number of selected features through LOSO cross-validations
(Figure 4). The optimal feature subset was obtained when the
highest F1 score was achieved in the LOSO cross-validations.
For Deep FS, the size of the optimal feature subset is 7, for
Dropout FR it is 10, and for DDR it is 9. In the next subsection,
we apply the optimal feature subsets to the test set of ADReSS.

C. Recognition Performance on the Test Set of ADReSS

In this subsection, we evaluate the recognition performance
on the test set of ADReSS. Table I shows the optimal feature
subsets discovered by the traditional feature ranking methods
such as LASSO [21], L1-norm [24], Univ [34], FDR [35], and
SVM-RFE [36]. Table I shows that LASSO and L1-norm are
not effective for this dataset because their performance is the
same as without feature selection. Among all traditional meth-
ods, SVM-RFE performs the best. The numbers in the brackets
are the sizes of the feature subsets. Finding the optimal number
of selected features is challenging because it depends on the
nature of the input features. For the traditional feature ranking
methods, we directly varied the number of selected features
and reported their best recognition performance on the test
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TABLE I
THE RECOGNITION PERFORMANCE BASED ON THE FEATURE SUBSETS

DISCOVERED BY TRADITIONAL FEATURE RANKING METHODS. THE
NUMBERS IN THE BRACKET ARE THE SIZES OF THE FEATURE SUBSETS.

Feature ranking methods Recognition accuracy
None 81.2% (34)
LASSO [21] 81.2% (33)
L1-norm [24] 81.2% (15)
Univ [34] 83.3% (24)
FDR [35] 83.3% (24)
SVM-RFE [36] 87.5% (24)

TABLE II
RECOGNITION PERFORMANCE OF DEEP LEARNING FEATURE RANKING

METHODS ON THE TEST SET OF ADRESS. THE NUMBERS IN THE
BRACKET ARE THE SIZES OF THE FEATURE SUBSETS.

Feature ranking methods F1 score
None 79.1% (34)
Deep FS [25] 83.7% (7)
Dropout FR [26] 83.7% (10)
DDR 88.9% (9)

set. Therefore, the performance of these traditional methods in
Table I is slightly over-estimated. Despite this over-optimism,
the performance of these traditional methods is still poorer
than that of the proposed DDR and is only comparable to
deep learning-based methods.

From the last subsection, we have obtained the optimal
feature subsets discovered by the deep learning-based feature
ranking methods (Deep FS, Dropout FR and DDR) based
on LOSO cross-validations on the training set of ADReSS.
We now apply the optimal feature subsets to the test set of
ADReSS. We show the recognition performance in Table II.
Table II shows that using the optimal feature subset discovered
by DDR, we obtain an F1 score of 88.9% on the test set,
which is 9.8% (absolute) higher than what the original feature
set can achieve. In the LOSO cross-validations, the optimal
feature subset discovered by Deep FS achieves the highest F1

score (84.5%), but the recognition performance of the feature
subset is unsatisfactory on the test set, which indicates that
the feature subset discovered by Deep FS does not generalize
well from the training set to the test set.

We finally depict the optimal feature subset discovered
by DDR in Table III. Some of the known specificities of
the selected linguistic features are also shown in Table III.
Explanations of the selected features can be found in [33].

VI. CONCLUSIONS

In this paper, a novel feature ranking method is presented.
The original feature set contains many redundant features.
Therefore, using the discriminative feature subsets discovered
by feature ranking methods can improve the accuracy of AD
detection. The highest F1 score is achieved by a feature
subset (9 features) discovered by the proposed feature ranking
method, which is 9.8% (absolute) higher than what the original
feature set can achieve. Some of the linguistic features may
have intrinsic patterns for distinguishing the AD patients from
the healthy controls. In the future, more features are expected

to be included in the feature ranking process, which can find
more representative features for AD recognition.
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VII. APPENDIX A

Algorithm 1 Alternate learning algorithm of DDR
Require: Operator network with parameters ψ and selector

network with parameters ϕ
Require: The size of dropout mask subset |Z|, size of mini-

batch |M|, and number of training iterations n
Output: Dropout rates θn

1: Initialize dropout rates as θ0
2: for i← 1 to n do
3: Obtain a dropout mask subset Z with size |Z| using

Eq. (1)
4: for j ← 1 to |Z| do
5: Compute the operator loss given z(j)i :

`
(j)
O,i =

1

|M|
∑

(x,y)∈M

l(x� z(j)i ,y;ψi)

6: end for
7: Compute the average operator loss on Z:

LO (M,Z;ψi) =
1

|Z|
∑
j=1

|Z|
`
(j)
O,i

8: Update operator network’s parameters:

ψi ← ψi − η∇ψLO (M,Z;ψi)|ψ=ψi

9: for j ← 1 to |Z| do
10: Compute the selector loss given z(j)i :

`
(j)
S,i =

∣∣∣∣fS(z(j)i ;ϕi)− `(j)O,i

∣∣∣∣
/

d∑
k=1

(1− z(j)i,k )

11: end for
12: Compute the average selector loss on Z:

LS (Z;ϕi) =
1

|Z|

|Z|∑
j=1

`
(j)
S,i;

13: Update selector network’s parameters:

ϕi ← ϕi − η∇ϕLS (Z;ϕi)|ϕ=ϕi

14: Update dropout rates:2

θi ← θi − η
|Z|∑
j=1

∇zLS (Z;ϕi)∇θz|θ=θi,z=z(j)
i

15: end for

2The gradient is based on the chain rule: ∂LS
∂θ

= ∂LS
∂z
· ∂z
∂θ

.
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TABLE III
THE OPTIMAL FEATURE SUBSET DISCOVERED BY DDR. THE PARENTHESIZED VALUES ARE THE PERCENTAGE OF THE FEATURES BEING SELECTED

DURING THE LOSO CROSS-VALIDATIONS. AD: ALZHEIMER’S DISEASE, HCs: HEALTHY CONTROLS.

Linguistic feature Known specificity
% PresP: Percentage of present participle (100%) Yuan et al. [37] reported that AD patients used relatively fewer present particles (-ing

verbs) compared with the HCs.

Words/min: Words per minute (100%) AD could be detected through the analysis of voice activity detection and speech rate
tracking [38].

FREQ types: Total word types (100%) –

% pro: Percentage of pronouns (100%) Ahmed et al. [39] reported changes in the number of pronouns, and Jarrold et al. [40]
reported an increase in the proportion of pronouns in AD patients.

% adv: Percentage of adverbs (100%) –

% Nouns: Percentage of nouns (100%) Jarrold et al. [40] reported a decrease in the proportion of nouns in AD patients.

% Word Errors: Percentage of words that are coded as errors (98.1%) –

noun/verb ratio: Total no. of nouns / total no. of verbs (81.5%) AD patients may have more difficulty naming verbs than nouns [41], and Robinson et
al. [42] found that AD patients performed worse on a picture-naming task for verbs
than nouns.

% conj: Percentage of conjunctions (75.9%) –
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