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Abstract Synthetic talking avatar has been demonstrated to be very useful in human-
computer interactions. In this paper, we discuss the problem of acoustic to articulatory
mapping and explore different kinds of models to describe the mapping function. We try
general linear model (GLM), Gaussian mixture model (GMM), artificial neural network
(ANN) and deep neural network (DNN) for the problem. Taking the advantage of neural
network that its prediction stage can be finished in a very short time (e.g. real-time), we
develop a real-time speech driven talking avatar system based on DNN. The input of the
system is acoustic speech and the output is articulatory movements (that are synchronized with
the input speech) on a three-dimensional avatar. Several experiments are conducted to compare
the performance of GLM, GMM, ANN and DNN on a well known acoustic-articulatory
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English speech corpus MNGU0. Experimental results demonstrate that the proposed acoustic
to articulatory mapping method with DNN can achieve the best performance.

Keywords Acoustic to articulatorymapping . Audio-visual mapping . Deep neural network
(DNN) . Speech driven talking avatar

1 Introduction

Human speech is bimodal in nature. While audio is the major source of speech information, visual
component is considered to be valuable supplementary in noisy environments because it remains
unaffected by acoustic noise. Synthetic talking avatar, with human-like appearance and articulator
movement synchronized with speech, has been demonstrated to be very useful in human-computer
interaction applications [2, 4, 11, 10, 16, 26, 28] such as computer agent, virtual newscaster, email
reader, information kiosk, etc. As has been discussed in many research works, a synthetic talking
face hasmuch to offer in addition to acoustic speech [1, 12], for example to help people understand
related speech in noisy environment [14], to provide an aid for the hearing-impaired where the
simulated lip movements can help the user decipher the acoustic speech.

The purpose of our work is to develop a real-time speech driven talking avatar system [32]
based on deep neural network. The input of the system is the acoustic speech and the output is
the real-time generated articulatory movement animation on a virtual talking avatar. The
generated movements of the articulators (e.g. lips, tongue, velum, etc.) are synchronized with
the input speech. In speech production, there are direct connections between the configurations
of the articulators, which are the positions and movements of the lips, tongue, velum, etc., and
the speech. In speech driven talking avatar, the most important issue is acoustic to articulatory
mapping. In another words, we expect to develop a mapping function between the acoustic
speech and the articulatory movement. The input of the mapping function is the features
representing the acoustic speech and the output is the articulatory features.

However, it is not trivial to model such mapping procedure because the relationship
between the acoustic and articulatory features is a non-linear and not a one-to-one mapping.
Furthermore, the articulator movements are always determined by not only the current
pronounced phoneme, but also the succeeding or preceding phonemes (so called the
coarticulation phenomenon). To solve this challenging problem, lots of methods and models
have been proposed and huge improvements have been achieved during the past decades.

To capture the mapping relation between acoustic and articulatory features, the simplest
method is the linear mapping, for example the general linear model (GLM) [15]. But because
the acoustic to articulatory mapping is actually non-linear, the linear model cannot achieve idea
performance. HiddenMarkovmodel (HMM) is then proposed to tackle the problem [8, 9, 30, 31].
In this method, the correspondence between the acoustic and articulatory features is described as a
linear mapping in each state of the HMM; and the phonetic information is required for training the
HMM and used as constraints to address the one-to-many mapping problem. Gaussian mixture
model (GMM) is used tomodel the joint distribution of acoustic and articulatory features based on
a parallel acoustic-articulatory speech corpus [23, 24]. This model can address the mapping
without constraints on phonetic information as in HMM. A dynamic Bayesian network based
audio-visual articulatory model was proposed in [27] to model the correlation between audio and
video features, and Baum-Welch inversion algorithm was presented to generate optimal facial
parameters from audio with the proposed model. Although the dynamic Bayesian network with
Baum-Welch inversion algorithm can achieve realistic mouth-synching, the recursive steps for
computing the optimal articulatory features has prevent the method from being used in the real-
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time applications. With the development of backpropagation method [21], multilayered neural
networks with hidden layers have attracted many research interests. The artificial neural network
(ANN) is also adopted in solving the acoustic to articulatory mapping problem [19]. Although the
training of ANN is time consuming, it takes little time to compute the output from the input for
ANN, which is an excellent property in building the real-time system for speech driven talking
avatar. Hence, ANN has demonstrated superior feature over other models. However, the training
of ANN is not trivial as different initialization of the ANNweights may leads to different training
results. Generally, the ANN should be trained with several initializations and the best ANN is
selected among these different weight sets.

In this paper, we describe our work with the effective deep neural network (DNN) [6, 7] to
model the acoustic to articulatory mapping for real-time speech driven talking avatar system.
Why we choose DNN is because it has shown many superior characteristics over traditional
ANN [3]. First, the unsupervised pre-training step of the DNN can make effective use of large
amount of unlabeled training data. Second, the pre-training step provides a good initialization
point for the neural network which can overcome the traditional ANN method where different
initialization sets should be tried. Third, the over-fitting problem of the traditional ANN can be
effectively addressed by the pre-training step. Furthermore, unlike [25] where conventional
contrastive divergence (CD) [4] has been used for the pre-training of DNN, we use the
persistent contrastive divergence (PCD) algorithm [22] which leads to performance improve-
ment for acoustic to articulatory mapping. We will conduct several experiments to explore the
performances of different models, including GLM, GMM, ANN and DNN. We also introduce
our work of building a real-time speech driven talking avatar system based on DNN.

The rest of the paper is organized as follows. Section 2 introduces the related work in this area,
including GLM, GMM and ANN. Section 3 describes our work on acoustic to articulatory
mapping (audio-visual mapping) with DNN. We will illustrate the main principle of DNN, its
advantages and the use of DNN for audio-visual mapping in real-time speech driven talking avatar.
Experiments and results are then presented in Section 4. Finally, Section 5 lays out the conclusions.

2 Related work

To explore the audio-visual mapping correlation between the acoustic speech and the articu-
latory movement, lots of researches have been devoted in the past decades and several models
have been proposed to model the relations, including general linear model (GLM), Gaussian
mixture model (GMM) and artificial neural network (ANN). We will give a brief introduction
on these models in this section.

2.1 General linear model (GLM)

General linear model (GLM) [15] is a simple way to model the mapping between the acoustic
and articulatory features. It assumes that the relation between the acoustic speech and the
articulatory movement is linear (though it is demonstrated by our experiments that it is not
appropriate to make such an assumption). The GLM can be expressed as the following:

y ¼ kxþ b; ð1Þ

where y is the vector of target value in the mapped range while x is the input vector in the
mapping domain, k and b are the parameters to be estimated. To find out the best parameters k
and b for GLM, the most general way is to apply the least square method (LSM). Assume that
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we have a series of input values x={x1,x2,…,xn} and corresponding target values
y={y1,y2,…,yn}, where n is the number of training samples. By denoting the summation of
squares as S:

S ¼ y1− kx1 þ bð Þ½ �2 þ y2− kx2 þ bð Þ½ �2 þ⋯þ yn− kxn þ bð Þ½ �2; ð2Þ

the purpose is to estimate the parameters k and b by minimizing the value of S. It is
simple to find the optimal value of k and b by taking the partial derivatives of k and
b respectively.

For the multi-dimensional input and target value, it is easy to extend k and b to multi-
dimension and the above operation in equation (1) becomes a kind of matrix transformation. In
acoustic to articulatory mapping, the input acoustic features are always multi-dimensional, e.g.
in our work, the dimension of the input acoustic feature is 451 and that of the output
articulatory feature is 36 (The meaning of each dimension will be elaborated in Section 4).

2.2 Gaussian mixture model (GMM)

Gaussian mixture model (GMM) [18] is a statistical probabilistic model with probability
density function represented as a weighted sum of several Gaussian component densities.
Since GMM can smoothly approximate density distribution in any shapes, it is widely used in
different research areas of speech processing, such as speech recognition, speaker recognition,
speech synthesis, etc.

While applying GMM for the acoustic to articulatory mapping problem, the mapping
function can be defined as:

byt ¼ X
i¼1

M

p mi xt;Θjð ÞE yt xtj ;mi;Θð Þ; ð3Þ

Where

E yt xt;m;Θjð Þ ¼ μ yð Þ
i þ

X yxð Þ
i

X xxð Þ
i

−1
xt−μ

xð Þ
i

� �
; ð4Þ

p mi xt;Θjð Þ ¼
wiN xt;μ

xð Þ
i ;

X xxð Þ
i

� �
XM

j¼1
wjN xt;μ

xð Þ
j ;

X xxð Þ
j

� �: ð5Þ

In the above equations, we tempt to model the mapping function from the acoustic feature
vector xt to the articulatory feature vector yt in frame t. byt is the estimated articulatory feature
vector, M is the total number of Gaussian mixtures (i.e. Gaussian components). Θ is the set of
parameters of the model including weights of Gaussian components, mean vectors of Gaussian
components and covariance matrices in the joint Gaussian distribution. Assume that wi is the
weight of the i-th Gaussian mixture, μi

(x) and μi
(y) are the mean vector of the i-th mixture of x

and y respectively, and denote the covariance matrix of the i-th mixture for x and the cross-
covariance matrix for the i-th mixture for x and y as Σi

(xx) and Σi
(xy). N(xt;μi

(x),Σi
(xx)) is the

normal distribution with mean vector μi
(x) and covariance matrix Σi

(xx). As shown in
the equations, the estimated articulatory feature vector byt is simply a linear mixture of
several Gaussian distributions. The parameters of the Gaussian mixtures can be figure out by
training.
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2.3 Artificial neural network (ANN)

Artificial neural network (ANN) [29] is an interconnected group of nodes that are called
artificial neurons. Between the nodes, there are arrows representing connections from the
output of one neuron to the input of another. The adaptive weights are defined as the
connection strengths between neurons, and are activated during training and prediction
process.

A simple three layers artificial neural network includes input layer, hidden layer and output
layer. The input layer consists of input neurons which send data from the input to the hidden
layer neurons, and then the hidden layer neurons send data to the output layer neurons. More
complex networks will have more hidden layers of neurons with similar working principle.
The parameters called “weights” between two neurons play a key role in manipulating the data
in the calculations.

Typically, an ANN is defined by these parameters: the network structure, the
learning process for updating the weights and the activation function that converts a
neuron’s weighted input to its output. Mathematically, a neuron’s activation function is
defined as:

o ¼
X
i¼0

n

wixi: ð6Þ

When it comes to the classification problem, we want the output to be discrete values, and
the activation function can be realized with the following function:

o ¼ 1; if
X
i¼0

n

wixi > 0

−1; otherwise

:

8><>: ð7Þ

The goal of training the ANN is to derive a set of weights wi (i=0,…,n) that can minimize
the mean square error (MSE) E(w) which measures the differences (i.e. errors) between the
output od of ANN and the target value td. Hence, the MSE can be calculated as:

E wð Þ ¼ 1

2

X
d¼1

D

td−odð Þ2; ð8Þ

where D is the dimension of the output. We minimize this error using gradient descent for the
class of neural networks, and update the weights. Let xi be the input value of the input node i,
and η be the learning rate, then the updated weights can be calculated as:

wi←wi þΔwi; ð9Þ

Δwi ¼ −η
∂E
∂wi

¼ η ti−oið Þ 1−oið Þxi: ð10Þ

3 Audio-visual mapping with deep neural network

Although ANN can achieve great performance improvement in solving the acoustic to
articulatory mapping problem, we found in our experiment, when the number of the layer of
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ANN increases, the neural network tends to get over-fitted. Deep neural network (DNN) has
shown many superior characteristics over traditional ANN. The over-fitting problem of the
traditional ANN can be effectively addressed by the unsupervised pre-training step in DNN by
making sufficient use of large amount of unlabeled training data.

3.1 Deep belief network (DBN)

It is well known that it is hard to train a deep neural network (DNN) directly, for the highly
non-convex property, gradient diffusion and pathological curvature of the training problem.
The deep belief network (DBN) was the first solution proposed to this difficult problem [7,
17]. With DBN, a DNN can be trained effectively and huge number of data can be used to train
the network leading to performance improvement.

3.1.1 Restricted boltzmann machine (RBM)

A DBN can be trained as a stack of restricted Boltzmann machines (RBMs) [5], in which each
two neighbor layers is considered as an RBM. An RBM is a probabilistic model represented
by an undirected graphical model, in which there are two layers of probabilistic units, i.e. a
hidden/latent variable layer and a visible variable layer. As Boltzmann machine (BM), every
unit in hidden layer is fully connected to the units in visible layer and vice verse. But unlike
BM, in RBM, the units in the same layer are not connected to each other. Denoting the hidden
variable layer and visible variable layer as v and h respectively, we assign each hidden and
visible layer pair (v, h) with an energy function E(v,h). The joint probability distribution of v
and h can be modeled as:

p v; hð Þ ¼ 1

Z
e−E v;hð Þ; ð11Þ

where Z=∑vhe
−E(v,h) is a normalization factor.

For different value type of v and h, the RBM has different attribute. If both v and h are
multidimensional binary variables, a Bernoulli-Bernoulli RBM will be used. In this case, the
energy function can be typically defined as:

E v; hð Þ ¼ −aTv−bTh−vTWh; ð12Þ
whereW is a matrix of weights between v and h, a and b is the bias vector of visible layer and
hidden layer respectively.

For the problems with real-valued input variable v, and h is still multidimensional binary
variable, a Gaussian-Bernoulli RBM can be used. The energy function can be typically defined
as:

E v; hð Þ ¼ −
1

2
a−vð ÞT a−vð Þ−bTh−vTWh: ð13Þ

Conventionally, the input variables to Gaussian-Bernoulli RBM are usually normalized
over the training data to have mean 0 and standard deviation 1.

3.1.2 Stacked RBM

DBN is a multi-layer generative probabilistic model. Actually, it is quite simple to acquire a
DBN using a series of trained RBMs by stacking the RBMs together one by one in series. In
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the stacked RBMs, the visible layer of the former RBM serves as the hidden layer of the later
RBM. In this way, we can get a multi-layer generative probabilistic model with one visible
layer and many hidden layers. The model is called deep belief network (DBN). Though the
method is simple, it is powerful and such greedy training fashion [17] has been proved that the
variational lower bound of the probability of visible variable can be guaranteed.

3.2 Deep neural network (DNN)

Deep neural network (DNN) is actually a feed forward neural network (also called multi-layer
perceptron, MLP) with many hidden layers. The number of the layers is conventionally
between 2 and 10. Assume that we have a DNN with K layers (excluding the input visible
layer), and denoting the weight matrix and hidden bias from bottom to up asWk and bk, where
k=1,2,…,K, and hki(x) is the output of the i-th neuron in hidden layer k, hk(x)=[hki(x), i=
1,2,…,I]T is the output vector of hidden layer k, where I is the number of neurons in hidden
layer k, then we have

hk xð Þ ¼ sigmoid uk xð Þð Þ; k ¼ 1; 2;…;K; ð14Þ
where x is the input value vector, and

uk xð Þ ¼ Wkhk−1 xð Þ þ bk ; ð15Þ

sigmoid xð Þ ¼ 1

1þ e−x
: ð16Þ

Here, h0(x) is the input variable h0(x)=x, and uK(x) is the desired output uK(x)=y. With the
DNN, suppose we can get an output ey from the input x, to train the DNN, the output value ey
of the DNN is expected to approach the given target data y as much as possible. Hence, the
learning of DNN is done by optimizing the following loss function as:

L y;ey� �
¼ y−ey��� ���2

2
: ð17Þ

3.2.1 Pre-training

The purpose of pre-training is to derive a set of weights that can be served as the initialization
of the weights for DNN for later fine-tuning. The similar structure between DBN and feed
forward DNN has made it quite natural to utilize the weights learnt in a DBN to provide new
initializing weights for DNN other than the random small Gaussian weights tradition-
ally used to train a neural network. What’s more, with such a pre-training procedure, the
network can converge faster and have better convergence results, and this makes the training of
DNN much easier.

Unlike the traditional method of using contrastive divergence (CD) [4] to train RBMs for
DBN, we use the persistent contrastive divergence (PCD) algorithm [22]. The idea of PCD
algorithm is that when sampling from the RBM, instead of re-initializing the running of
Markov chain during each epoch, the PCD algorithm initializes the Markov chain by utilizing
the state obtained from last epoch, and moves it one step forward as an approximation of the
sample from the model. Thus, the sample would be closer to the real model distribution after
each epoch and yet the amount of calculation needed is almost as same as CD.
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3.2.2 Fine-tuning with back-propagation

After pre-training, a DNN can be trained with traditional back-propagation algorithm just as an
MLP. The fine-tuning back-propagation procedure can be defined as follows:

∂L y;ey� �
∂uK xð Þ ¼ −2 y−ey� �

: ð18Þ
and for every k=K-1,…,2,1,

∂L y;ey� �
∂uki xð Þ ¼ ∂L

∂hki xð Þhki xð Þ 1−hki xð Þð Þ; ð19Þ

∂L y;ey� �
∂uK xð Þ ¼ WT

kþ1

∂L
∂ukþ1 xð Þ: ð20Þ

3.3 DNN for audio-visual mapping

In the task of acoustic to articulatory mapping (audio-visual mapping), the input of the DNN is
the real-valued acoustic features and the output is the values of the articulatory features (i.e.
articulator positions). In our work, a Gaussian-Bernoulli RBM is used for the bottom two
layers of the DNN, and each dimension of the acoustic feature input is normalized over the
training set to have mean 0 and standard variance 1. The most top layer of DNN is a linear
regression layer, in which each output unit corresponds to one articulator position to infer.

Taking the advantage of DNN for audio-visual mapping, we develop a real-time speech
driven talking avatar system based on DNN. The architecture of the proposed system is
illustrated in Fig. 1, where the audio-visual mapping function is achieved by virtue of DNN.

Acoustic

Feature

Extraction

Audio-Visual

Mapping with

Deep Neural Network

Rendering Animation

on a

3D Talking Avatar

Acoustic

Features

Articulatory

Features

Playback

Input Speech

Waveform

Audio-Visual

Bimodal

Speech Corpus

Acoustic Feature

Extraction

Pre-training and

Fine-tuning of

Deep Neural Network

Acoustic Features

Speech

Waveform

Articulatory

Features

Talking Avatar

Animation

Deep Neural

Network

Training

Prediction

Fig. 1 The architecture of the pro-
posed real-time speech driven
talking avatar system, where
acoustic to articulatory mapping is
achieved by incorporating deep
neural network
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Two stages are involved in the proposed speech driven talking avatar system: the training
stage and the prediction stage. During training stage, speech waveforms from the training
audio-visual bimodal speech corpus are fed to the acoustic feature extraction module to extract
the acoustic features for training the DNN. Articulatory features are also extracted from the
training bimodal corpus. Pre-training technology is then utilized to provide a good initializa-
tion point for the parameters of the DNN by training it as stacked RBMs. After training the
stacked RBMs, all the units and weights are treated like a traditional neural network to perform
fine-tuning to get better regression performance.

During prediction stage, the acoustic features of the input speech waveform are also
extracted by the acoustic feature extraction module. These acoustic features are served as
the input of the DNN for audio-visual mapping. The articulatory features output from the DNN
are sent to a 3D talking avatar rendering module to generate the talking avatar animation,
which is finally playback together with the input speech.

4 Experiments

To evaluate the performance of the proposed approach, we conduct a set of experiments on
acoustic to articulatory mapping with different models including GLM, GMM, ANN and
DNN. The experimental results validate that DNN can achieve the best performance in solving
the task.

4.1 Database

We have used the electromagnetic articulography (EMA) dataset of the MNGU0 corpus [20]
as the database for all the acoustic to articulatory mapping experiments with different models.
The MNGU0 corpus uses the Cartsens AG500 electromagnetic articulograph, in which 6
transmitter coils are used to track the positions of the 6 articulators in the midsagittal
plane: 3 on the tongue, one on the lower incisor and one each on the upper and lower
lips, including upper lip (UL), lower lip (LL), lower incisor (LI), tongue tip (T1), tongue blade
(T2) and tongue dorsum (T3). Fig. 2 shows the positions of 6 coils used in tracking the
articulator positions.

MNGU0 corpus consists of two parts. The first part is the articulator position data (i.e. the
visual articulatory data). When collecting the data, the x- and y-coordinates of the 6 coils in the

Fig. 2 Sample of the positions of
the articulators tracked in the
MNGU0 corpus (from [20]). Six
EMA sensor coils are used to track
the position of the articulators in-
cluding upper lip (UL), lower lip
(LL), lower incisor (LI), tongue tip
(T1), tongue blade (T2), and
tongue dorsum (T3)
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midsagittal plane are recorded and used. So, the articulatory data used for our experiments
include 12 channels of EMA data at sampling frequency of 200Hz.

The second part of MNGU0 corpus is the acoustic data. The original audio data
has been converted to frequency warped line spectral frequencies (LSFs) of order 40 plus a gain
value. The LSFs are derived from the spectral envelope estimated with STRAIGHT [13], with
5 msec frame shift to match the sampling rate of the EMA data. The initial and final silences
have been removed.

Both EMA and LSF feature vectors were z-score normalized by subtracting their respective
global mean and dividing by 4 times the standard deviation for each dimension.

The database contains 1,354 utterances and is divided into three subsets: a validation and
test set each with 63 utterances, and a training set containing the rest 1,228 utterances [20].

4.2 Experimental setup

4.2.1 Performance measurement

To measure the performance of acoustic to articulatory mapping, root mean-squared error
(RMSE) has been used as the performance measurement. It is defined as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
i

ei−tið Þ2
s

; ð21Þ

where ei is the estimated (predicted) articulatory trajectory value and ti is the actual measured
articulatory value.

We calculate RMSE in each dimension of the articulatory data respectively, and then sum
up the RMSEs of all 12 dimensions to get the final value of RMSE.

4.2.2 Experimental conditions

In our experiments, besides the 12 channels of EMA data, the first order and the
second order differences (i.e. delta and acceleration) of the EMA data are also
considered. Hence, the dimension of the final articulatory feature is 12×3=36. As
for the acoustic data, a context window of 11 continuous acoustic frames (5 left frames, 1
current frame and 5 right frames) is used. Hence, the dimension of the final acoustic feature is
41×11=451.

For GMM, different number of mixtures including 4, 8, 16, 32 and 64 has been evaluated.
Experiments indicate that the GMMwith 32 Gaussian mixtures achieves the best performance.
The experimental results reported in Section 4.3 are based on 32 mixtures.

Table 1 Configuration
of the ANN Parameter Value

Learning rate 0.2

Max epochs 1,000

Momentum 0.9

Number of units for input layer 451

Number of units for output layer 36

Number of units for each hidden layer 100
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For ANN, 3 hidden layers are used, with each hidden layer contains 100 units (i.e. neurons).
For the input layer, it contains 451 units related to the acoustic feature. For the output layer, it
contains 36 units corresponding to the articulatory data. During the training of ANN, the
learning rate has been set to be multiplied by 0.2, and the momentum is set to be 0.9. The
configuration of all the parameters of the network is listed in Table 1.

For DNN, also 3 hidden layers are used. The input layer is Gaussian-Bernoulli RBM, and
all the other layers are Bernoulli-Bernoulli RBMs. During pre-training, the configurations of
the input RBM layer and other hidden RBM layers are shown in Tables 2 and 3 respectively.
Please be noted that, for both types of layers, the learning rate will be multiplied by 0.998 after
each iteration; the momentum in the first 20 epochs increases evenly and remains at 0.9 after
the 20th epoch. As for fine-tuning, the configuration is shown in Table 4. Same as the above,
the learning rate will be multiplied by 0.998 after each iteration. However, the momentum
increases evenly in the first 10 epochs and remains at 0.99 thereafter. With the same
configuration as stated here, we conduct 5 experiments with 100, 200, 300, 400 and 500 units
for each hidden layer in the DNN architecture, and the results are shown in the following
section.

4.3 Experimental results

4.3.1 Experiment on different models

Several acoustic to articulatory mapping experiments have been conducted for different
models including GLM, GMM, ANN and DNN. For each experiment, the RMSE is calculated
and used as the performance measurement to compare different models. The results are shown
in Table 5.

Table 2 Configuration for
pre-training of the input
Gaussian-Bernoulli RBM
layer of the DNN

Parameter Value

Learning rate 0.001

Max epochs 10

Batch size 128

Momentum 0.9

Weight decay 0.001

Initial weights N(0,0.01)

Number of units for visible layer 451

Table 3 Configuration for
pre-training of the
Bernoulli-Bernoulli RBM
layers of the DNN

Parameter Value

Learning rate 0.01

Max epochs 5

Batch size 128

Momentum 0.9

Weight decay 0.0001

Initial weights N(0,0.01)

Number of units for visible layer (100,200,300,400,500)
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As can be seen, the RMSE is 1.92 mm for GLM, and 2.14 mm for GMM. While
for ANN with 100 units per hidden layer, the RMSE is 1.04 ms. And the RMSE is
0.67 ms for the model of DNN with 100 units per hidden layer. The results
demonstrate that the use of DNN for acoustic to articulatory mapping can achieve
the best performance. It should also be noted that, different from expectation, the
GMMmodel performs the worst according to the RMSE measurement. This might be because
in our experiments, we have used diagonal matrix instead of full matrix for the cross-covariance
matrices in GMM.

4.3.2 Experiment on DNN with different parameter configurations

We further conduct experiments to evaluate the performance of DNN with different parameter
configurations.

The results are shown in Fig. 3, where the x-axis indicates the number of fine-tuning
iteration epochs for the DNN training while the y-axis shows the generation error (RMSE) of
articulatory features. As can be seen, the RMSE declines along with the iteration epochs during
the entire training procedure of DNN for different number of hidden units (i.e. number of the
units for each hidden layer). It should be noted that, for the configuration of 100, 200, 300, 400
and 500 hidden units, the RMSE error declines when the number of hidden units increases
from 100 to 400. However, the RMSE error increases dramatically when the number of hidden
units increases to 500. This result indicates that increasing the number of hidden units is
helpful for performance improvement of the DNN in the task of acoustic to articulatory
mapping. However, when the number of hidden units exceeds some threshold, the perfor-
mance of DNN may degrade a lot.

It can also be seen that the RMSE value remains steady when the number of epochs is
greater than a threshold, and such threshold might vary for different number of hidden units.
The RMSE values at the threshold epoch on the test set with different number of units for
hidden layers are shown in Table 6, where the related threshold numbers of epochs are also
listed. As can be seen from Table 6 and Fig. 3, although the final performance of DNN with
200, 300 and 400 hidden units are similar, the network converges the most quickly and
achieves the best performance for the configuration of 400 units for each hidden layer.

Table 4 Configuration for fine-
tuning of the DNN Parameter Value

Learning rate 0.001

Max epochs 5,000

Batch size 128

Momentum 0.99

Weight decay 0.0002

Table 5 RMSE error on the test
set of different models for acoustic
to articulatory mapping

Model RMSE (mm)

GLM 1.92

GMM 2.14

ANN (with 100 units for each hidden layer) 1.04

DNN (with 100 units for each hidden layer) 0.67
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4.3.3 Experiment on articulatory trajectory prediction

Further experiments are conducted for the prediction of articulatory trajectory curves for different
models of GLM, GMM, ANN and DNN. The results are shown in Fig. 4, which depicts the
actually measured (red and bold curve, TEST) and the estimated articulatory trajectories for 200
frames of the tongue blade feature (T2) for all the four models to be compared.

As can be seen from the figure, the estimated articulatory trajectory generated from
DNN (black and bold curve) is the closest one to the measured curve (TEST), which
indicates that DNN achieves the best performance. It is in expectation that the GLM
performs worse than ANN and DNN, as it uses the simplest linear mapping function and
cannot capture the non-linear properties of the acoustic to articulatory mapping task very
well. The performance of GMM is not so good, which is even worse than that of GLM.
This is probably because in our experiments, we have used diagonal matrix instead of full
matrix for the covariance matrices of the Gaussian mixtures in GMM. This can also
explain why the estimated articulatory trajectory of GMM consists of lots of “horizontal
bars” in Fig. 4 for the trajectory prediction experiment.

Fig. 3 RMSE error of the estimated articulatory features as a function of epochs during DNN training on the
validation set

Table 6 RMSE error of DNN on
the test set with different number of
units for hidden layers

Number of units for hidden layers Threshold epochs RMSE(mm)

100 5,000 0.669

200 3,539 0.458

300 3,364 0.455

400 2,256 0.447

500 1,914 0.885
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We can also find from the figure that the estimated values have shown some dynamic
variances, while the actual measured curve is much smoother. This may be due to that DNN
only performs regression from a context window of acoustic features to one frame of
articulatory positions, and the continuity properties of the articulatory trajectories are not
considered.

4.3.4 Experiment on the computational costs of different models

To compare real-time performance of different models, we further conduct experiments to
measure the computational costs of predicting articulatory trajectories by different models
including GLM, GMM, ANN and DNN. 100,000 frames (with 5 msec frame shift as described
in section 4.1) of LSF features from the MNGU0 corpus are used as the input to the models.
These frames amount to 100,000*5/1,000=500 s of acoustic input. The computational time of
each model used to generate the articulatory trajectories from these acoustic parameters is

Fig. 4 Comparison between the actually measured (red and bold curve, TEST) and the estimated articulatory
trajectories for 200 frames of the tongue blade feature (T2) for GLM, GMM, ANN and DNN, where DNN (black
and bold curve) achieves the best performance

Table 7 Computational time of
different models for predicting
articulatory trajectories from 500 s
of acoustic parameters (LSFs)

Model Computational Time (s)

GLM 2

GMM 200

ANN (with 100 units for each hidden layer) 7

DNN (with 400 units for each hidden layer) 12
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illustrated in Table 7. As can be seen, due to the complexity in computing the matrices,
GMM takes the most time. For a second of input acoustic parameters, GMM will need
200/500=0.4 s to compute the trajectories. When compared to ANN, the computational
time of DNN is about 1.72 times more than that of ANN because of the reason that
more units (i.e. 400 units) per hidden layer are used in DNN while only 100 units per
hidden layer for ANN. However, DNN can still perform acoustic to articulatory
mapping in real-time; for a second of acoustic parameter input, DNN needs only 12/
500=0.024 s to get the articulatory trajectories. GLM achieves the best computational
performance because only linear transformation is needed.

5 Conclusions

In this paper, we discuss the problem of acoustic to articulatory mapping and perform several
experiments to explore the mapping function. Since the mapping between the acoustic features
and the articulatory movements is non-linear, we try four different kinds of models including
GLM, GMM, ANN and DNN to validate their ability in describing the mapping relationship. It is
in expectation that GLM performs not so well among the four types of models, since the problem
is actually non-linear. However, GMM performs even worse than GLM. This might be due to the
reason that, in principle assumption, the cross-covariance matrices of Gaussian com-
ponents in GMM is full, while in our experiment it is set to diagonal. The perfor-
mance of DNN is the best. Future work can be devoted to get smoother estimated
articulator trajectories by considering the continuity properties of the articulator trajectories. We
will also try to perform experiments on the GMMmodel with full covariancematrices and try to
optimize the computation cost.
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