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Abstract—This paper presents a two-pass framework with
discriminative acoustic modeling for mispronunciation detection
and diagnoses (MD&D). The first pass of mispronunciation detec-
tion does not require explicit phonetic error pattern modeling. The
framework instantiates a set of antiphones and a filler model to
augment the original phone model for each canonical phone. This
guarantees full coverage of all possible error patterns while max-
imally exploiting the phonetic information derived from the text
prompt. The antiphones can be used to detect substitutions. The
filler model can detect insertions, and phone skips are allowed
to detect deletions. As such, there is no prior assumption on the
possible error patterns that can occur. The second pass of mispro-
nunciation diagnosis expands the detected insertions and substitu-
tions into phone networks, and another recognition pass attempts
to reveal the phonetic identities of the detected mispronuncia-
tion errors. Discriminative training (DT) is applied respectively
to the acoustic models of the mispronunciation detection pass
and the mispronunciation diagnosis pass. DT effectively separates
the acoustic models of the canonical phones and the antiphones.
Overall, with DT in both passes of MD&D, the error rate is
reduced by 40.4% relative, compared with the maximum likeli-
hood baseline. After DT, the error rates of the respective passes
are also lower than those of a strong single-pass baseline with DT
by 1.3% and 5.1% relative which are statistically significant.

Index Terms—Computer-aided pronunciation training, mispro-
nunciation detection and diagnosis, discriminative training.

I. INTRODUCTION

S ECOND-LANGUAGE learners are eager to attain high
pronunciation proficiency of the target language. However,

learning the unfamiliar sounds and prosody of a new lan-
guage is not easy. High proficiency is attained through exten-
sive practice with guidance from language instructors. But
good (especially native) language instruction is often a scarce
resource. Automatic speech recognition (ASR) technologies
can support an online computer-aided pronunciation training
(CAPT) platform that supplements teachers’ instructions with
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round-the-clock accessibility and individualized feedback for
second-language learners. CAPT platforms integrate various
spoken language technologies, among which an essential tech-
nology is mispronunciation detection, which refers to locating a
phone that is incorrectly articulated, and involves a binary deci-
sion. To provide useful feedback for the learner, another impor-
tant technology is mispronunciation diagnosis, which identifies
the incorrect phone(s) produced in place of the canonical phone.

Predominant approaches to CAPT primarily performs mis-
pronunciation detection by extending ASR technologies, espe-
cially through post processing recognition scores (e.g., by
thresholding [1] or classification [2]). Most previous work did
not focus on mispronunciation diagnosis [3], [4]. Later on, there
has been some work on modeling error patterns in the learners’
speech using linguistic knowledge [5] or adopting a data-driven
approach [6]. Error pattern modeling enables generation of a
set of possible phonetic error patterns for a given text prompt.
A single-pass forced-alignment using the recognition network
expanded by the error patterns enables phonetic error detection
and diagnosis of erroneous phonetic production in an inte-
grated fashion. The major consideration behind such paradigm
of MD&D is to properly constrain the search space in ASR
and thus avoiding a shift towards the free-phone recognition
task (which is a more intractable problem). However, explicit
error pattern modeling is often infeasible when no prior knowl-
edge is available for a given L1-L2 (first and second) language
pair, or when it is too costly to perform error pattern derivation
with [7] or without [8] labeled non-native speech. Other risks
include insufficient error pattern coverage. Contrastively, inclu-
sion of overly redundant error patterns, which may include rare
or idiosyncratic ones, is also a risk, because it may be difficult
for the acoustic model to differentiate them. These risks hurt
the ability to detect the errors or diagnose them.

This paper presents a two-pass framework for MD&D which
attempts to break away from the reliance on explicit error pat-
tern modeling. Imposing no prior knowledge on the possible
forms of error patterns implicitly aims for full error pattern
coverage. This may lead to exponentially many variants in
the search space. Such an intractable search space presents
a challenge to MD&D, especially in terms of an acoustic
model with insufficiently strong discriminative ability. Hence,
the proposed approach aims to reduce the search space by
pairing each canonical phone (given the text prompt) with an
anti-phone which covers the complementary acoustic space. A
first-pass recognition in this network of pairs detects phonetic
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substitutions. Furthermore, this first-pass can also detect inser-
tions and deletions by introducing a filler model and designing
the network topology which allows phone skips. Once the
insertions and substitutions are detected, a second pass per-
forms free-phone recognition on the segments of detected
insertions and substitutions to identify the actual phones.
Correspondingly, we refine the two sets of HMM-based acous-
tic models by individualized discriminative training to mini-
mize the expected full-sequence phone-level errors. In sum-
mary, the two-pass framework attacks the MD&D problem
in a step-by-step manner and optimize the acoustic models
separately to suit the respective passes.

The rest of the paper is organized as follows: Section 2
reviews previous work on mispronunciation detection and diag-
nosis. Section 3 introduces the phonetically-labeled corpus used
for acoustic model training and evaluation. Section 4 explains
the two-pass framework. Section 5 details the evaluation met-
rics. Section 6 presents experimentation that demonstrate the
advantage of the two-pass framework compared to the single-
pass framework and the performance improvement of discrim-
inatively trained acoustic models over a baseline. Section 7
concludes the paper.

II. PREVIOUS WORK

The sections starts by grouping previous work on mispro-
nunciation detection according to the set of features employed.
Originally, mispronunciation detection is mostly built upon the
confidence measures derived from ASR. Later, it is extended to
other features when there is prior knowledge on which features
are prominent in differentiating correct or incorrect pronuncia-
tions. Then, the section proceeds to the single-pass framework
where mispronunciation diagnosis is first enabled by explicit
modeling of the possible error patterns.

A. Mispronunciation Detection Using Phone-Level Scores

Phone-level scores are usually measured in terms of ASR
confidence measures [10], such as the posterior probability.
It is implicitly assumed that the score is positively correlated
with the probability of correctness per speech segment [11].
Examples of phone-scoring algorithms include: the “Goodness
of Pronunciation” (GOP), introduced by Witt & Young [1],
which is an approximation to the posterior score (a rela-
tive measure which takes into consideration the likelihood of
other competing phones in addition to that of the canonical
phone) and uses either a frame-based or phone-based like-
lihood ratio; as well as a log-likelihood score [12], which
represents an absolute measure of how closely a pronunci-
ation approximates a given phone model which may vary
considerably among different phone models. There is also a
variety of modified versions of likelihood scores, posterior
scores or likelihood ratios that are pursued in follow-up papers,
e.g., [13]. Mispronunciation detection using phone-level scores
is often posed as a binary classification problem. This may
be simply achieved by thresholding where the thresholds are
pre-determined empirically from data [14], [15] to optimize
detection performance. Alternatively, an array of phone-level

confidence measures which span a “pronunciation space” [2]
can be utilized as the features for classification, e.g., the pos-
terior probability of the target phone as well as those for the
competing phones. Binary classifiers of various kinds may be
used, e.g., SVM in [2] and [9]. Still other options may include
the confidence measures that are estimated in alternative ways,
e.g., using neural nets [16] or by introducing other sources of
information, e.g., manners of articulation [17].

B. Mispronunciation Detection Using Other Features

Acoustic information other than phone-level scores can also
be incorporated as the input to classifiers. A considerable
amount of feature design and engineering has been done in the
literature according to the a priori knowledge on identifying
the set of features which is more effective in distinguish-
ing confusable phone pairs. For example, segment duration
[18], acoustic-phonetic features including log root mean-square
(RMS) energy, the first-order derivative of log RMS energy and
zero-crossing-rate [19], adaptively-warped cepstrum [20], and
low-dimensional sub-space features [21]. When the gold stan-
dard or template (i.e., reference utterance from a native speaker
for the same prompt) is available, one may also exploit fea-
tures which measure the differences between the native and
non-native speakers’ realizations [22]. In a recent “template”-
based approach [23], dynamic time warping (DTW) is carried
out between a student’s utterance and a teacher’s utterance.
Various word-level and phone-level features are extracted to
describe the degree of mis-alignment in the warping path and
the distance matrix, and are taken as the input to an SVM for
classification.

C. Single-Pass Mispronunciation Detection and Diagnosis
Using Extended Recognition Networks

Most of the previous work does not consider mispronuncia-
tion diagnosis, however, accurate identification of the pronun-
ciation error can help close the loop of CAPT by providing
a corrective feedback. The “extended recognition network”
(ERN) framework achieves mispronunciation detection and
diagnosis at the same time, by explicit incorporation of the
common phonetic error patterns in addition to the canonical
transcription per prompted word. Thus, it constrains the search
space during phone recognition of non-native prompted speech.
By running a single recognition pass through the ERN, we are
able to achieve both mispronunciation detection and diagnosis,
i.e. telling which phone is mispronounced as another phone, in
additional to pinpointing what is wrong. Prior knowledge on
the native and non-native language pair can be a useful source
of information. For instance, non-native speakers may substi-
tute a phoneme in the target language with phonemes from
their mother tongue or they may have difficulties in perceiv-
ing and/or realizing phonetic contrasts that are not distinctive
in their mother tongue. Apart from the substitutions, insertion
or deletion of phones are quite common as well. For example,
inserting vowels within consonant clusters or after syllable-final
consonants, and deleting syllable-final liquids are particularly
frequent in English by Japanese learners [24]. Such phonetic
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confusions, either context-dependent or context-independent,
may be captured in manually-authored phonological rules
[25]. When phonetically-labelled transcriptions are available,
phonological rules which describe transductions from canon-
ical phones to mispronounced phones can be automatically
derived from the transcriptions [7]. This is done by align-
ing and comparing the canonical phonetic transcription with
the manually-labelled phonetic transcriptions involving errors.
When there are only speech recordings available, rules can be
extracted directly from speech [30], [31]. Usually, the automat-
ically derived rules can reveal phonological processes that are
missing from manually-authored rules, but some rules may also
have rare occurrences that may result from incorrect transcrip-
tions, misread words, etc. Possible solutions include selectively
enabling rules using decision trees [26], pruning rules accord-
ing to their occurrences [7], introducing a cutoff probability
to the generated variants [27], and explicitly employing letter-
to-phone rules to cover errors due to orthographic interference
[28], [29].

III. THE TWO-PASS FRAMEWORK

As introduced in Section II, previous work on single-pass
MD&D relies on explicit error pattern modeling in the ERN,
thus the performance of MD&D is dependent on the qual-
ity of ERN which usually requires a trade-off. The two-pass
framework attempts to abandon explicit error pattern mod-
eling and aims for relaxation of the search space. However,
over-relaxation leads to an intractable search space. The pro-
posed approach aims to reduce the search space by pairing
each canonical phone with an anti-phone which covers the
complementary acoustic space. Therefore, the first-pass mis-
pronunciation detection tells whether a phone is mispronounced
or not. Also, insertions and deletions are taken into account by
a careful design of the recognition network. Once the insertions
and substitutions are detected, the second-pass mispronuncia-
tion diagnosis performs free-phone recognition on the segments
of detected insertions and substitutions to identify the actual
phone mispronunciations.

A. Mispronunciation Detection

A phone substitution is an acoustic deviation from the canon-
ical production, so it occupies the fraction of the non-silence
acoustic space that is complementary to that of the canon-
ical phone. Here, we model this complementary space with
anti-phones (in the form of GMM-HMMs) to detect phone sub-
stitutions. The concept is simple – in addition to fitting the
labelled data belonging to a phone, we directly construct a
model to fit data that do not belong to the phone. The recog-
nition network is augmented by pairing each canonical phone
with its anti-phone. In this way, each phone is subject to a
binary classification. In the case of phone deletions, one needs
to allow a phone to be skipped. Phone insertions can possi-
bly happen at every location of a canonical pronunciation, and
there can be multiple instances of insertions at a single loca-
tion. To capture insertions, we introduce a universal phone
model (UPM, also known as the filler model) which covers

Fig. 1. Mispronunciation detection network for the word “THE” [th ax]. ‘eps’
stands for a non-emitting skip, UPM is short for universal phone model which
is also known as filler model. The anti-phones share a ‘_’ prefix.

Fig. 2. Mispronunciation diagnosis network for the word “THE” once a
substituted [th] is detected. [th] does not appear between state 0 and 1.

all the non-silence phones. The UPM is padded between each
successive phones as an optional phone loop. The mispronun-
ciation detection network for the word “THE” is shown in
Figure 1. A recognition pass in the detection network leads to
transcriptions like: [_th ax UPM]. This refers to the alignment
between the canonical transcription and the specific recognition
transcription, that [th] is substituted (i.e., with the anti-phone
[_th]), and a phone (i.e., the UPM) is inserted at the end of the
word.

One possible pitfall of such a design of a mispronuncia-
tion detection network is that the UPM may incur unnecessary
insertions, as there is overlap between the the acoustic space
spanned by the anti-phones and that by the UPM. So the two
models may compete to gain control over a segment of frames
which is accessible to both of them. The issue shall be discussed
experimentally later.

B. Mispronunciation Diagnosis

Once anti-phones and UPMs are found in the transcrip-
tion, mispronunciation diagnosis targets revealing the phone
identities of the detected phone errors. The diagnosis network
is constructed as follows: for the detected anti-phones, it is
expanded by all the other possible canonical phones, and for the
detected UPM, it is expanded by all possible phones. Suppose
the transcription from the detection is [_th ax], the expanded
network for diagnosis is shown in Figure 2.

As can be seen, the mispronunciation diagnosis network
allows consideration of all possible phonetic error patterns,
which offers maximal relaxation over the use of ERNs as
described in Section II part C. On the other hand, it is much
more constrained than using free-phone recognition. This is
because the mispronunciation diagnosis network is built upon
the results of the first-pass of mispronunciation detection.
Mispronunciation detection has pinned down the number of
phones to consider in mispronunciation diagnosis in coarse
resolution. Mispronunciation diagnosis serves to identify the
detected errors in a higher resolution. In the worst case, should
all the phones be considered mispronounced, together with
multiple phone insertions, the complexity of mispronunciation
diagnosis is still manageable as the length of the resulting tran-
scription is known in advance. Unlike in standard free-phone
recognition, pruning is not necessary any longer and the search
can be exact.
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TABLE I
PHONETIC ALIGNMENT BETWEEN THE CONVERTED MANUAL

TRANSCRIPTION AND THE TRANSCRIPTION OUT OF

DETECTION FOR THE WORD “WRAPPED”

IV. PHONE-LEVEL PERFORMANCE METRICS

We propose to evaluate the performance of the two-pass
framework using phone error rate (PER) which is the nor-
malized aggregation of insertion, deletion and substitution.
This is derived from the alignment between the manually-
labelled transcription and the recognized transcription using
dynamic programming. It is noteworthy that, in the context of
MD&D, the notion of insertion, deletion and substitution can
also be employed to categorize the type of phone mispronunci-
ation made by the learner. This is derived from the alignment
between the canonical transcription (1st row of Table I) and the
manually-labelled transcription (2nd row of Table I). Here we
point out the difference not to confuse the reader.

Based on our design of the mispronunciation detection net-
work, the recognition transcription out of the mispronunciation
detection pass may contain anti-phones and UPMs. Therefore,
the manually-labeled transcription for evaluating the PER of
mispronunciation detection should be converted to include anti-
phones and UPMs. The conversion process aligns the canon-
ical transcription with the manually-labeled transcription and
replaces substitutions by anti-phones and insertions by UPMs.
For example, as shown in the second and third rows of Table I,
[r] is mispronounced as [w] and is indicated by the anti-phone
[_r], and there are two inserted phones [ih] and [d] which are
marked as UPMs. On the other hand, mispronunciation diagno-
sis does not require such conversion since it can be viewed as a
constrained phone recognition problem. So, hereafter, we will
be using PER1 and PER2 to denote the two metrics, used in the
context of mispronunciation detection and mispronunciation
diagnosis, respectively.

In mispronunciation detection, PER1 can be calculated by
aligning the converted manual transcription with the recogni-
tion transcription and extracting the mismatches. An example
is shown in the 3rd and 4th rows of Table I.

Furthermore, the substitution errors can be divided accord-
ing to whether the mispronounced phone (appearing as an
anti-phone in the converted transcription) is recognized as the
canonical phone (false acceptance), or the canonical phone is
recognized as an anti-phone (false rejection), leading to the two
metrics, namely: false rejection rate (FRR) and false accep-
tance rate (FAR). Where substitution errors occur, the FRR is
calculated by the number of false rejections divided by the total
number of canonical phones, while the FAR is the number of
false acceptances divided by the total number of anti-phones.

In mispronunciation diagnosis, PER2 is calculated by align-
ing the manual transcription with the recognition transcription
and extracting the mismatches. An example is shown in the 1st
and 3rd rows of part (a) of Table II. It is noted that the accuracy
of mispronunciation diagnosis is dependent on the accuracy of

TABLE II
THE MANUAL TRANSCRIPTION, TRANSCRIPTION OUT OF

MISPRONUNCIATION DETECTION AND TRANSCRIPTION OUT OF

MISPRONUNCIATION DIAGNOSIS FOR THE WORD “WRAPPED”

mispronunciation detection. Two examples of transcriptions out
of mispronunciation diagnosis are shown in Table II. In part
(a) of the table, the detection pass gives a flawed result as it
falsely accepts a [p] which is actually deleted by the learner,
and it also fails to accept the [t] which is correctly produced.
The two errors made in the detection pass are propagated to the
diagnosis pass which results in erroneous diagnosis of an non-
existent [p]. If the detection is more accurate as in part (b) of
the table, there is a better chance of accurate diagnosis.

V. CORPUS AND EXPERIMENTAL SETUP

Experiments are set up on the Chinese University - Chinese
Learners of English (CU-CHLOE) corpus - Cantonese subset
[27]. The recording device is Sennheiser PC155 headset which
consists of a noise-canceling uni-directional microphone and
built-in sound-card. Recordings are conducted from three sites:
a soundproof recording room 1 and two study rooms 2 (without
sound-proofing). Speakers are selected based on the criteria that
their mother tongue is the Cantonese dialect, they have learned
English for at least 10 years and their English pronunciation
are deemed intermediate to good by the English teachers in our
university. Each speaker is asked to verify the recording qual-
ity of their utterances through playback as well as waveform
visualization (e.g. to ensure no clipping). The corpus contains
recordings from 100 speakers (50 male, 50 female). The data
was digitized at 16-bit per sample and a sampling rate of 16
kHz. The average SNR of the recordings are 37.6dB for the
sound-proof room and 36.7dB for the study rooms. The record-
ing text prompts include: (i) “The North Wind and the Sun”, a
classic example of Aesop’s Fables; (ii) Minimal pairs, confus-
able word groups and phonemic sentences that are designed by
English teachers in the university. Recordings are phonetically
transcribed and cross-checked by three trained linguists. We use
all the TIMIT symbols for transcription except for [hv]. For the
experiments in this paper, the symbols are normalized, resulting
in 40 phones excluding short pause and silence. The normalized
phone-set is equivalent to the CMU ARPABET plus the schwa
[ax]. There are a total of 63,080 words and the lexicon size is
436 words.

The recordings in the corpus are divided into training and
test sets by speakers. Since every speaker is reading the same
prompt, there is no OOV in the test set. The 7.3-hour train-
ing data contain recordings from 25 male speakers and 24
female speakers. Correspondingly, the 7.8-hour test data con-
tains recordings from the other 25 males speakers and 26 female
speakers. There are 30,929 and 32,151 words in the training
and test data, respectively. Among them, 48.53% and 51.02%
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words are mispronounced, respectively. Since the word prompts
are known, we align the the manually-labeled phone-level tran-
scription per word token with the pronunciation extracted from
the canonical pronunciation dictionary. This yields a phone-
level pronunciation accuracy of 82.5% and 82.2% on the
training and test sets.

Standard MFCC features are extracted and cepstral mean
normalization is performed on a per-utterance basis. All the
HMM model training and recognition experiments in the paper
are conducted using HTK (http://htk.eng.cam.ac.uk/).

VI. EXPERIMENTS

We organize our experimentation as follows: First, we build
and test HMMs for the single-pass framework as a reference
point. Second, after establishing the baseline HMMs for detec-
tion and diagnosis in the two-pass framework, we illustrate the
issue of the competition between anti-phones and the UPM.
This issue is addressed by the use of a penalty. Third, error
propagation from mispronunciation detection to diagnosis is
shown by examining the gap between the two-pass pipeline that
has “perfect” detection, compared with one that has “imperfect”
detection as in real systems. Fourth, we apply discriminative
training (DT) to optimize the two sets of HMMs for detection
and diagnosis respectively. The results are also compared with
those of the discriminatively trained HMMs in the single-pass
framework. Finally, we revisit the UPM penalty and error prop-
agation problems as we compare the performance difference
before and after DT.

A. Single-Pass Framework Setup and Baseline HMM Results

The HMMs for each phone are trained using standard
Baum-Welch on all the phone segments derived from a forced-
alignment on the training set, and the number of Gaussian
mixtures per HMM state grows iteratively (through the “mix-
up” process, i.e., mixture split then re-estimation). The number
of Gaussian mixtures per state of a phone is the same across all
the states of that phone. This per-phone number is linearly pro-
portional to the occurrences of each phone in the training set,
with a minimal and maximal number of 1 and 32.

As a compact representation of the error patterns, the “cheat-
ing ERN” contains the canonical pronunciations and the error
patterns for every word in the test set (so there will not be recog-
nition errors due to missing error patterns in the ERN. In other
words, the ERN contains the error patterns already and correct
mispronunciation detection only depends on whether the acous-
tic models can guide the search to find the correct path in the
ERN). The results on the “cheating ERN” are usually among
the best compared with those of ERNs derived from other error
pattern modeling techniques1, and can thus serve as a proper
reference for the single-pass framework. A recognition pass in
the ERN yields the phonetic transcription for each utterance
from the test set. A direct comparison between the recogni-
tion transcription and the manual transcription gives a PER2

1As a benchmark, the PER of free-phone recognition of the same acous-
tic model on a bi-gram phone LM is 41.9%. This performance compares with
PER1 = 27.2% for the cheating ERNs.

TABLE III
THE RATES OF INSERTIONS, DELETIONS AND SUBSTITUTIONS, AS WELL

AS THE PER1 OF THE BASELINE DETECTION HMMS IN THE TWO-PASS

FRAMEWORK, WITHOUT AND WITH LOG-LIKELIHOOD PENALTY

ATTACHED TO THE UPMS

Fig. 3. Percentages of insertions, deletions and substitutions, as well as PER1
of the mispronunciation detection HMMs, with penalty added to UPM in the
log-likelihood.

of 31.7%. We also align the recognition transcription from the
single-pass framework with the the canonical transcription and
convert it to a form which replaces insertions with UPMs and
substitutions with anti-phones. The resulting transcription is
compared with the converted manual transcription, yielding a
PER1 of 27.2% (FRR = 14.1%, FAR = 20.0%).

B. Two-Pass Framework Setup and Baseline HMM Results

The HMMs for detection consist of canonical phones, anti-
phones and a UPM, while the HMMs for diagnosis contains the
canonical phones only. The detection HMMs for each canoni-
cal phone and the diagnosis HMMs are obtained following the
same steps as in the single-pass framework on the training set.
For each canonical phone, an anti-phone HMM is built from all
the non-silence phone segments that do not belong to the canon-
ical phone in the training set using Baum Welch and undergoes
the same “mix-up” process. Similarly, the UPM is built from all
the non-silence phone segments. The number of mixtures per
state in the anti-phones and the UPM is 64. The results includ-
ing the rates of insertions, deletions and substitutions (they are
calculated by dividing the individual counts by the total num-
ber of non-silence phones), as well as the PER1 are shown in
Table III.

According to the second row of Table III, there is an exces-
sive number of insertions of which about 92% are UPMs (an
example is shown in the 3rd and 4th rows of Table I). This is
because the acoustic space characterized by the UPM and the
anti-phones largely overlap. We solve this problem by adding
a log-likelihood penalty to the UPMs during decoding. The
results on the test set are shown in Figure 3. Attaching increas-
ing penalties to the UPMs can significantly reduce the chance of
insertions while at the same time keeps substitutions and dele-
tions below a reasonable level. We empirically select a penalty
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of 30 where the curves of insertions, deletions and substitutions
tend to stabilize (see Figure 3). The PER1 at this point is 26.1%
(FRR = 13.8%, FAR = 20.5%) as can be found in the third row
of Table III.

Based on the transcription out of the mispronunciation
detection pass with the log-likelihood UPM penalty of 30,
we generate the mispronunciation diagnosis networks for
each utterance and perform recognition using the diagnosis
HMMs. The resulting PER2 is 27.7%. An oracle experiment is
also conducted based on the transcription of “perfect” detec-
tion, which gives a PER2 of 6.9%. There is a huge gap
between the PER2 of the two experiments on diagnosis, which
also reflects the poor performance of the baseline detection
HMMs.

C. Minimum Detection Error Training and Results

To optimize the detection HMMs θdet based on minimum
phone error (MPE) training [32], we maximize the accuracy
of phone error detection according to the following objective
function:

max
θdet

R∑

r=1

∑
s̃r pκθdet(Or|s̃r)p(s̃r)A(s̃r, w̃r)∑

ũr pκθdet(Or|ũr)p(ũr)
, (1)

where Or, s̃r, pκθdet(Or|s̃r) and p(s̃r) are the speech frames,
phonetic transcription, likelihood and prior probability, all for
the rth utterance. A tilde is attached to sr to indicate that
it is from the mispronunciation detection network which may
include anti-phones and UPMs. Likewise, w̃ is the manually-
labelled transcription in its converted form. A(s̃r, w̃r) denotes
the number of matched phones between s̃r and w̃r.

We generate mispronunciation detection lattices using the
baseline detection HMMs with a UPM of 30. To control
the sizes of the lattices, a 16-best token passing algorithm
is employed and the beam pruning threshold is set to 400.
The model is discriminatively trained for 8 iterations and
the PER1 on the test set is 14.9% (FRR = 7.9%, FAR
= 7.5%), which reduces PER1 from 26.1% by a relative
of 42.8%.

A similar discriminative training procedure is also applied
to the HMMs in the single-pass framework, where the lattices
are generated from the networks spanned by all the pronun-
ciations found in the training set. A PER1 of 15.1% (FRR =
8.1%, FAR = 9.5%) on the test set out of the “cheating ERN”
is obtained by the discriminatively trained HMMs, which is
slightly higher than the PER1 of 14.9% in the first-pass of the
two-pass framework.

We visualize the first two cepstral coefficients of the cen-
tral state of the canonical model of the consonant [dh] (which
is non-existent in the mother tongue of the Cantonese learners
of English) and that of its anti-model before and after DT in
Figures 4 and 5. The two plots correspond to the contour lines
of the two central state of the GMMs. The anti-model of [dh]
has been adjusted to automatically capture the modes surround-
ing the canonical [dh] in the data that does not belong to the
canonical [dh].

Fig. 4. The contour of the first and second cepstral coefficients of the central
state of the GMMs for the canonical/anti-phones of [dh], before discriminative
training (DT).

Fig. 5. The contour of the first and second cepstral coefficients of the central
state of the GMMs for the canonical/anti-phones of [dh], after DT.

Fig. 6. The contour of the first and second cepstral coefficients of the central
state of the GMMs for the canonical/anti-phones of [iy], after DT.

Another such canonical/anti-phone pair on the vowel [iy] is
shown in Figures 7 and 6. For the pair on [iy], apart from cap-
turing some extraneous modes, the canonical phone and the
anti-phone are separated as much as they can to reduce the
overlap between them.

It is also interesting to note that after discriminative training,
the penalty to UPM in recognition does not seem to be effec-
tive, as shown in Table IV. Since we attach such penalty when
generating lattices, this is likely due to the indirect adaption of
the acoustic models to the scaled UPM in the lattice during DT.
Therefore, the UPM is penalized during the estimation.
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Fig. 7. The contour of the first and second cepstral coefficients of the central
state of the GMMs for the canonical/anti-phones of [iy], before DT.

TABLE IV
PER1 OF DISCRIMINATIVELY TRAINED DETECTION HMMS WITH

DIFFERENT UPM PENALTY

Fig. 8. The contour of the first and second cepstral coefficients of the central
state of the GMMs for the UPM and the anti-phone of [t], before DT.

To investigate, we visualize the first two cepstral coefficients
of the central state of the HMMs, before and after DT, in
Figure 8 and Figure 9. There is a huge overlap between the
acoustic space covered by the UPM and that by the anti-phone
of [t] before DT. DT effectively separates the two spaces cov-
ered by the respective models so that the penalty to UPM is no
longer necessary.

D. Minimum Diagnosis Error Training and Results

Similarly, the diagnosis HMMs θdia is optimized to maximize
the accuracy of phone error diagnosis following the objective
function shown below:

max
θdia

R∑

r=1

∑
sr pκθdia(Or|sr)p(sr)A(sr,wr)∑

ur pκθdia(Or|ur)p(ur)
, (2)

where A(sr,wr) means the number of matched phones
between sr and wr.

We generate mispronunciation diagnosis lattices based on
“perfect” detection of errors using the baseline diagnosis

Fig. 9. The contour of the first and second cepstral coefficients of the central
state of the GMMs for the UPM and the anti-phone of [t], after DT.

TABLE V
THE COMPARISON BETWEEN THE SINGLE-PASS FRAMEWORK AND THE

TWO-PASS FRAMEWORK, BEFORE AND AFTER DT. “DET.” IS SHORT FOR

“DETECTION” AND “DIA.” IS SHORT FOR “DIAGNOSIS”

HMMs. To control the sizes of the lattices, a 32-best token
passing algorithm is employed. As the mispronunciation diag-
nosis lattice does not grow exponentially as the mispronunci-
ation detection lattice does, no beam pruning is applied. The
model is discriminatively trained for 8 iterations. The oracle
experiment based on the transcription of “perfect” detection is
re-rerun on the test set.

The PER2 in the oracle experiment is 5.2% which translates
to 24.8% relative reduction compared to the 6.9% result before
DT. To test the discriminatively trained detection and diagnosis
HMMs jointly in the two-pass framework, we take the detection
transcription by the best detection HMMs obtained so far and
expand the resulting detection transcription into mispronunci-
ation diagnosis networks. The diagnosis HMMs give a PER2
of 16.5%. Compared to the 27.7% result before DT, DT of the
diagnosis HMMs provides a relative reduction of 40.4%.

To compare the result of the single-pass framework with that
of the two-pass framework, we calculate the PER2 of the dis-
criminatively trained HMMs using the “cheating ERN”. The
PER2 is 17.4% which is slightly worse than that of the two-pass
framework.

Overall, the results can be summarized in Table V. We con-
duct one-tailed significant test for proportions on both detection
and diagnosis to test the error reduction by the two-pass frame-
work (after DT) over the single-pass framework (after DT), at
at significance level of 0.05. There is strong evidence that both
passes are statistically significant.
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VII. CONCLUSIONS

This paper describes a two-pass framework for mispronunci-
ation detection and diagnosis without any prior knowledge of
the error patterns, and the discriminative training of acoustic
models in the framework. The first-pass of mispronuncia-
tion detection is achieved by a carefully designed network
which can capture insertions, deletions and substitutions. A
recognition pass over the designed network yields a transcrip-
tion containing possible insertions, deletions and substitutions.
Maximum likelihood training of the detection HMMs, espe-
cially the anti-phones, fails to make a sharp distinction between
the canonical phones and their corresponding anti-phones, with
a benchmark PER1 of 46.0%. This is because the universal
phone model (UPM), which is used to account for the phone
insertions, overlaps with the anti-phones greatly, so the UPM
and anti-phone compete to control the speech segments acces-
sible to both of them. The problem can be partially solved
by attaching a penalty to the UPM, which leads to a PER1
reduction to 26.1%. Discriminative training (DT) of the mis-
pronunciation detection HMMs reduces the PER1 further to
14.9%. Visualization shows that DT separates not only the
canonical phones and their anti-phones but the anti-phones and
the UPM as well. The second-pass of mispronunciation diag-
nosis, as a follow-up to mispronunciation detection, considers
all possible phones for detected phone insertions and substitu-
tions and tells their true identities through another recognition
pass. The maximum likelihood baseline of the diagnosis HMMs
yields a benchmark PER2 of 27.7% based on the detection
result given by the baseline detection HMMs. Discriminative
training of the diagnosis HMMs is performed on lattices based
on “perfect” detection, as the training focuses on discriminat-
ing the correct phone and the rest of the competing diagnoses,
instead of being biased towards handling insertions and dele-
tions due to errors in detection. Overall, when conducting
detection and diagnosis consecutively in the two-pass frame-
work, discriminative training of the two sets of HMMs brings
the PER2 down to 16.5%. A possible lower bound to the PER2
is 5.2% which is given by the discriminatively trained diagno-
sis HMMs based on “perfect” mispronunciation detection in the
first pass. Future directions include experimenting on replacing
the GMMs by with deep neural networks for further acoustic
model replacement.
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