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ABSTRACT 

Speech is bimodal in nature. There are close correlations between 

the acoustic speech signals and the visual gestures such as lip 

movements, facial expressions and head motions. For speech 

driven talking avatar, how to derive more representative acoustic 

features from which to predict more accurate and realistic visual 

gestures still remains the research problem. Inspired by the 

promising performance of low level descriptors (LLD) in speech 

emotion recognition, in this work, we investigate the usage of LLD 

feature for the task of speech driven talking avatar. Furthermore, 

visual gestures also demonstrate correlations with not only context 

information of past or future acoustic features (e.g. anticipatory co-

articulation phenomena) but also textual information (e.g. textual 

hints for lip movement). To incorporate such information, we also 

propose to use deep bidirectional long short-term memory 

(DBLSTM) as the bottleneck feature extractor, which can combine 

LLD feature with contextual information. Experimental results 

indicate that the proposed LLD based DBLSTM bottleneck feature 

outperforms the conventional spectrum related features for the task 

of speech driven talking avatar, and more sophisticated contextual 

information can further improve the performance. 

 

Index Terms—bottleneck feature, deep bidirectional long 

short-term memory (DBLSTM), low level descriptors (LLD), 

talking avatar 

1. INTRODUCTION 

Talking avatar has drawn extensive attention for its wide use in 

human-computer interaction fields, e.g. voice agent, virtual teacher 

or host, intelligent computer assistant, etc. Speech is bimodal in 

nature. The visual gestures such as lip movements, facial 

expressions and head motions are closely correlated with the 

acoustic speech. Hence lots of research interests have been devoted 

to find and model such correlations. 

To build a speech driven talking avatar, extracting appropriate 

acoustic features is very important. Traditional spectrum related 

features such as mel-frequency cepstral coefficients (MFCC) were 

widely used in facial animation and head motion generation [1-3]. 

Recent works have mainly focused on developing machine 

learning models for the audio-visual mapping problem, but put less 

emphasis on how to find more representative acoustic features for 

more realistic and expressive visual gesture generation. Speech 

emotion recognition provides us some hints. [4] and [5] chose 

pitch (F0), root mean square energy (RMSE) and formants as 

prosodic features to perform affect recognition. Afterwards, low 

level descriptors (LLD) attracted lots of attentions and achieved 

state-of-the-art performance. [6] and [7] developed systems for 

emotion classification from LLD features. Inspired by the 

promising performance of LLD in speech emotion recognition, we 

investigate if LLD could outperform the traditional features in the 

speech driven talking avatar task. 

Most previous studies on talking avatar have focused on facial 

animation (lip movements and/or facial expressions) only. Some 

photo-real methods reconstructed face images with lip movement 

from principle component analysis (PCA) based visual features [8]. 

[9] adopted active appearance model (AAM) features involving 

both shape and texture information for more realistic lip animation. 

[10] used motion unit parameters (MUP) for talking face animation 

with expression. Recently, lots of work rendered animation using 

the MPEG-4 facial animation parameters (FAPs) [11][12], where 

FAPs offer a parameterization approach for the animation of eyes, 

mouth, tongue, teeth, head motion, etc. However, most works have 

omitted the head motions that often occur simultaneously with lip 

movements and facial expressions for an expressive and realistic 

talking avatar. Although some studies have tried to generate head 

motions [13][14], the facial animation and head motion are still 

modeled separately regardless the close correlations between them. 

In this work, we adopt FAPs as the visual features and predict lip 

movements, facial expressions and head motions simultaneously 

from acoustic speech with a single shared regression model. 

Visual gestures at a particular time step are also correlated 

with the context information of past or future acoustic features (e.g. 

the anticipatory co-articulation phenomena). How to model such 

correlation provides another challenge. In previous work, there are 

mainly two streams of approaches. The first one is hidden Markov 

model (HMM) based method [2][8] motivated by the ideas from 

automatic speech recognition (ASR). In this method, the textual 

context information can be easily incorporated by state-transition 

probabilities. The second one is the direct acoustic to visual feature 

mapping approach using long short-term memory (LSTM) [15][9], 

bidirectional LSTM (BLSTM), etc. These LSTM derived models 

have shown superior performance over HMM with capabilities in 

capturing long-range context information [9]. Whereas, the textual 
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information such as phoneme labels that are most valuable for lip 

movements and head motions are not well considered in these 

models. On the other hand, deep bidirectional LSTM (DBLSTM) 

as the probabilistic feature extractor, can involve context of both 

acoustic features and phoneme labels during feature extraction 

[16][17]. In this paper, we propose a LLD based DBLSTM 

bottleneck feature that takes into account not only the contextual 

acoustic feature correlations but also the textual information. 

The rest of the paper is organized as follows. Section 2 gives 

an overview of our system architecture. Detailed acoustic visual 

features and their extraction method are listed in Section 3. Section 

4 describes the LLD based DBLSTM bottleneck feature and the 

training method of the DBLSTM for bottleneck feature extraction. 

Section 5 discusses the objective and subjective experiments 

comparing the performance of different features and network 

architectures. Finally, our conclusions are drawn in Section 6. 

2. SYSTEM FRAMEWORK 

Fig. 1 shows the block diagram of the proposed system, which 

involves a training stage for two DBLSTMs and a prediction stage. 

The first DBLSTM is for bottleneck feature extraction and the 

second DBLSTM is for bottleneck to visual feature mapping. 

In the training stage, given the audio visual bimodal corpus, 

we extract acoustic features and visual features (FAPs). Meanwhile, 

forced alignment between acoustic features and contextual labels 

(e.g. phoneme labels) is performed with a homegrown HMM based 

speech recognizer. The DBLSTM feature extractor is then trained 

with cross entropy error; thus a discriminative mapping between 

the acoustic feature and latent contextual sequence is established. 

Thereafter, we can derive the DBLSTM bottleneck feature. Then 

the second DBLSTM is trained to learn the regression model 

between the bottleneck feature and FAPs. 

In the prediction stage, given an input speech utterance, the 

DBLSTM feature extractor first extracts bottleneck features from 

the raw acoustic features, and then the DBLSTM mapping model 

predicts the FAP sequences from the bottleneck features. Finally, 

the visual gestures including lip movements, facial expressions and 

head motions are reconstructed on a 3 dimensional avatar using the 

technologies of our previous work [12][13][21]. 

3. ACOUSTIC AND VISUAL FEATURES 

3.1. Low level descriptors (LLD) 

Taking advantage of the attracting performance of LLD in emotion 

recognition task, we chose a 384 dimensional acoustic feature 

vectors that served as the feature set of the INTERSPEECH 2009 

Emotion Challenge [22], which contains 16 low level descriptors 

and their first order delta regression coefficients (32 dimensions in 

total) and 12 functionals. Table 2 lists the statistical functionals 

that are applied to the low level descriptors shown in Table 1. 

3.2. Facial animation parameters (FAPs) 

The MPEG-4 specification defines totally 68 FAPs, including 66 

low-level FAPs and 2 high-level FAPs [21]. The low-level FAPs, 

based on the movements of facial definition points, represent a 

complete set of basic facial actions; while the 2 high-level FAPs 

represent visemes and expressions respectively. All low-level 

FAPs are standard values and expressed in terms of the facial 

animation parameter units (FAPUs), which allow the interpretation 

of the FAPs to fit with any face models. MPEG-4 standard defines 

a neutral face and all the FAPs are expressed as displacements 

from the positions defined in the neutral face. 

Our work focuses on controlling the facial definition points 

directly. The 2 high-level FAPs are not considered. We adopt the 

open source toolkit visageSDK [18] to extract FAPs from raw 

video data. Some of the parameters related to tongue, teeth, nose 

and ears currently cannot be reliably estimated and do not affect 

the animation of talking avatar on our following prediction steps. 

The values of these FAPs are simply set to be zeros. 

4. DBLSTM BOTTLENECK FEATURE 

4.1. DBLSTM bottleneck feature extractor 

As a kind of recurrent neural network (RNN), long short term 

memory (LSTM) has been demonstrated to be one of the most 

effective architectures to map the long-term history of inputs to the 

current output by solving the vanishing gradient problem that 

traditional RNN faces. To retrieve both past and future contextual 

information, bidirectional LSTM (BLSTM) with two separate 

hidden layers scanning the input sequences in both directions has 

 

Fig 1. System framework 

Table 1. 16 low level descriptors used 

Feature Group Features in Group No. 

RMSE Root mean square signal frame energy 0 

MFCC Mel-frequency cepstral coefficients 1~12 

PCM zcr Zero-crossing rate of time signal 13 

Voice 

Probability 

Voicing probability computed from 

the autocorrelation functions (ACF) 
14 

F0 
The fundamental frequency computed 

from the Cepstrum 
15 

Table 2. 12 functionals applied to LLD contours 

Functionals No. 

The max/min value of the contour 1~2 

Range (max – min) 3 

The absolute position of the max/min value (in frames) 4~5 

The arithmetic mean of the contour 6 

The slope of a linear approximation of the contour 7 

The offset of a linear approximation of the contour 8 

The quadratic error computed as the difference of the 

linear approximation and the actual contour 
9 

The standard deviation of the values in the contour 10 

The skewness and the kurtosis 11~12 
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been popular recently [20]. Inspired by its promising performance 

in sequence classification and regression, deep BLSTM (DBLSTM) 

has been developed to extract potential features from input features. 

This paper proposes a LLD based DBLSTM bottleneck feature 

extractor, which accepts LLD acoustic feature vectors and outputs 

potential contextual sequences, to extract the bottleneck feature.  

Fig. 2 illustrates the network structure in detail. The feature 

extractor can be divided into two parts, namely training stage and 

extracting stage. During the training stage, we train the DBLSTM 

as a speech-based recognizer on the training dataset. LLD acoustic 

feature serves as the input of DBLSTM network, while the frame 

wise contextual label serves as the output. In this work, two kinds 

of contextual labels (phoneme label and HMM state label) are 

involved to generate two contextual levels of bottleneck features. 

The frame wise correspondence information are generated by the 

forced alignment process as described in Section 2. Three hidden 

LSTM layers are used for both forward and backward directions. 

Taking advantage of the results from previous work, we adopted 

two hidden layers and a bottleneck layer with stationary size of 40 

[17]. In the extracting stage, the activations of the output layer of 

DBLSTM are ignored, as we focus on the output of the bottleneck 

layers. As shown in Fig. 2, the final 80 dimensional bottleneck 

feature is generated by combining the outputs of the two 

directional bottleneck layers of DBLSTM. 

4.2. Training method 

Training a DBLSTM feature extractor can be regarded as learning 

a special kind of neural network for speech recognition from the 

LLD acoustic features to the contextual label sequences. It can be 

trained to minimize the cross-entropy error between the predicted 

contextual sequence
p

kC and the ground truth
o

kC . The loss function 

of the kth sequence can be: 

  , logo p o p

k k k nk nk

n

H C C c c  , ⑴ 

where
o

nkc and
p

nkc are the nth dimension of ground truth contextual 

label vector and predicted one separately. In addition, we adopt 

one-hot representation (a vector with a specific dimension set to 1 

while all other dimensions 0) for the contextual label (phoneme 

label and/or HMM state label). 

We feed forward the DBLSTM bottleneck feature extractor 

like traditional DBLSTM and adopt the back propagation through 

time (BPTT) algorithm to train the network [19]. By applying the 

chain rule, we could obtain that: 
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1
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where ijw  denotes the weight unit i and unit j, and 
t

ja  indicates 

the input activations of unit j at time t. Then we could feed back 

the network error and train the extractor as traditional DBLSTM. 

5. EXPERIENMENTS 

5.1. Experimental setup 

This work adopted an emphatic audio visual database with 700 

English utterances spoken by a female, including 350 emphatic 

and 350 neutral utterances, for experimentation. The video frame 

rate is 25fps and well formed in AVI format. We divided the whole 

corpus into 3 parts randomly, 600 utterances as training set, 60 as 

test set and others as validation set.  

To evaluate the proposed approach, we take the advantage of 

the well-known objective evaluations criterion root mean squared 

error (RMSE) and correlation coefficient (CORR) between the 

predicted FAPs and the ground truth. These metrics are defined as: 
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where TM denotes the scale of the test set, kT  is the frame number 

of the kth test set, o

tkf  and p

tkf  mean the frame wise ground truth 

and the predicted result separately, corr(.) indicates the correlation 

coefficient between the two vectors of each frame. 

Different architecture of the DBLSTM mapping model may 

affect the prediction accuracy from acoustic features to FAPs. To 

extensively explore the performances of different acoustic features, 

we conducted experiments on several network topologies for 

DBLSTM mapping model with different numbers of hidden layers 

and numbers of hidden units per hidden layer. 

For both the DBLSTM networks, the learning rate is set to be 

1e-4, and the momentum is 0.9. In addition, we choose the steepest 

optimizer and consider the network to be the best when it meets 

the stopping criterion. 

5.2. Objective experiment on LLD and MFCC-RMSE 

To compare the performance of the proposed LLD feature and the 

traditional feature, a 39 dimensional MFCC-RMSE feature 

containing 12 order MFCCs and RMSE together with their first 

and second order derivatives was used as the baseline. The MFCC-

RMSE and LLD were extracted with 25ms frame size and 10ms 

frame shift. The dimension of the LLD acoustic feature is 384. 

Experimental results are shown in Table 3, where the second 

column means different network structures of DBLSTM mapping 

model with one (100), two (100-100) or three hidden layers (100-

100-100) respectively. The hidden unit numbers per hidden layer 

 

Fig 2. DBLSTM bottleneck feature extractor 
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are all set to 100. As can be seen, MFCC-RMSE performs better 

than LLD on the condition that BLSTM structure is simple, such 

as one or two bidirectional hidden layers. While when the network 

goes deeper with three hidden layers, LLD outperforms MFCC-

RMSE significantly indicating that high dimensional LLD carries 

more information that can be learned with complex deep network. 

5.3. Objective experiment on bottleneck features 

Furthermore, to compare the performance of different contextual 

levels of bottleneck features, we trained two kinds of DBLSTM 

bottleneck feature extractors for extracting phoneme level and 

HMM state level bottleneck features respectively. The phoneme 

level bottleneck feature was extracted by a well-trained DBLSTM 

with the output layer of 41 dimensional phoneme labels, while the 

HMM state level bottleneck feature was extracted with the output 

layer of 123 (41×3) dimensional HMM state label. 

As for the structure of DBLSTM bottleneck feature extractor, 

we adopted a commonly used DBLSTM structure. The network 

contains three bidirectional hidden layers, with 100, 100 and 40 

hidden units for each hidden layer respectively [17]. The structure 

of DBLSTM mapping model is the same as the above experiment. 

Experimental results are shown in Table 4. The first column 

indicates different kinds of bottleneck features. MFCC-phoneme 

(LLD-phoneme) is the MFCC-RMSE (LLD) based phoneme level 

bottleneck feature where the DBLSTM feature extractor is trained 

with MFCC-RMSE (LLD) and phoneme labels; while MFCC-state 

(LLD-state) means the DBLSTM is trained with MFCC-RMSE 

(LLD) and HMM state labels. From Table 3 and Table 4, we can 

find that, for the same architecture of DBLSTM mapping model, 

bottleneck feature shows superior performance for both RMSE and 

CORR. Furthermore, we can see that bottleneck features at state 

level perform best for the complex and deep network structure of 

DBLSTM mapping model.  

5.4. Subjective evaluation 

We further conducted a set of subjective experiments to evaluate 

the naturalness of synthetic animation of the talking avatar driven 

by the above mentioned four different acoustic features. 

10 speech utterances were randomly selected from the test set 

and used to generate synthetic lip movements, facial expressions as 

well as head motions on a 3D talking avatar. The synthetic visual 

animation together with the acoustic speech input were saved as 10 

video files. 20 subjects were asked to watch the video file and then 

assign a score at 5-point scale for each file based on naturalness 

and synchronization between the visual animations and acoustic 

speech. Higher score means more natural and closer synchrony. 

The mean opinion score (MOS) over 10 speech utterances and 20 

subjects are computed and presented in Table 5. As can be seen, 

the MOS score of raw LLD feature is a bit higher than MFCC-

RMSE feature, while LLD based bottleneck features lead to further 

performance improvement. Furthermore, LLD based bottleneck 

feature of state labels achieves the best MOS score. The results 

suggest that our proposed LLD based bottleneck feature is able to 

capture inherent information of lip movements, facial expressions 

and head motions simultaneously from acoustic speech signals, 

and can achieve more nature speech driven talking avatar. 

6. CONCLUSION 

In this paper, we investigated new acoustic features and proposed 

LLD based DBLSTM bottleneck feature for speech driven talking 

avatar. Our work shows that LLD can enhance the performance of 

regression model for audio visual speech mapping. In addition, the 

bottleneck feature shows strong representation ability and gets 

further performance improvement. Specifically, bottleneck feature 

involving HMM state contextual label information performs better 

than the bottleneck feature with phoneme label information. In the 

future, we plan to investigate in detail the performance of different 

LLD feature sets for the task. 
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Table 3. Results for LLD and MFCC-RMSE, where “Map 

Model” means network structure of DBLSTM mapping model 

Acoustic Feature Map Model RMSE CORR 

MFCC-RMSE 100 199.0083 0.5667 

MFCC-RMSE 100-100 108.3619 0.6259 

MFCC-RMSE 100-100-100 108.2610 0.6607 

LLD 100 224.5075 0.5637 

LLD 100-100 115.3336 0.6144 

LLD 100-100-100 91.1433 0.6824 

Table 4. Results for different bottleneck features, where “Map 

Model” mains network structure of DBLSTM mapping model 

Bottleneck Feature Map Model RMSE CORR 

MFCC-phoneme 100 161.9562 0.6209 

MFCC-phoneme 100-100 103.5360 0.6209 

MFCC-phoneme 100-100-100 93.9756 0.6439 

LLD-phoneme 100 186.6465 0.6336 

LLD-phoneme 100-100 103.5785 0.6750 

LLD-phoneme 100-100-100 89.2479 0.6969 

MFCC-state 100 159.7956 0.5776 

MFCC-state 100-100 118.3734 0.6797 

MFCC-state 100-100-100 96.2563 0.6507 

LLD-state 100 176.0278 0.5769 

LLD-state 100-100 87.8979 0.6602 

LLD-state 100-100-100 77.2061 0.7242 

Table 5. Results for subjective evaluation 

Acoustic feature MOS score 

MFCC-RMSE 3.3 

LLD 3.4 

LLD-phoneme 3.6 

LLD-state 3.8 
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