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Abstract 
Word embedding has made great achievements in many natural 
language processing tasks. However, the attempt to apply word 
embedding to the field of speech got few breakthroughs. The 
reason is that word vectors mainly contain semantic and 
syntactic information. Such high level features are difficult to 
be directly incorporated in speech related tasks compared to 
acoustic or phoneme related features. In this paper, we 
investigate the method for phoneme embedding to generate 
phoneme vectors carrying acoustic information for speech 
related tasks. One-hot representations of phoneme labels are fed 
into embedding layer to generate phoneme vectors that are then 
passed through bidirectional long short-term memory (BLSTM) 
recurrent neural network to predict acoustic features. Weights 
in embedding layer are updated through backpropagation 
during training. Analyses indicate that phonemes with similar 
acoustic pronunciations are close to each other in cosine 
distance in the generated phoneme vector space, and tend to be 
in the same category after k-means clustering. We evaluate the 
phoneme embedding by applying the generated phoneme vector 
into speech driven talking avatar synthesis. Experimental 
results indicate that adding phoneme vector as features can 
achieve 10.2% relative improvement in objective test.  
Index Terms: Phoneme embedding, talking avatar synthesis, 
bidirectional long short-term memory (BLSTM) 

1. Introduction 
Word embedding becomes popular in recent years with its 
successful applications in nature language processing (NLP) 
tasks. Word vectors are generated from large unlabeled text data, 
usually by training a neural network to predict particular words 
given the context information [1][2]. In this way, word vectors 
contain abundant semantic and syntactic information that is 
helpful in NLP tasks as reported in [3]. 

Several promising studies have been reported to apply word 
embedding in speech related tasks such as speech synthesis 
[4][5] and speech recognition [6][7]. However, the results are 
not as positive as those in NLP tasks. The main reason is the 
word embedding extracted sematic and syntactic information is 

difficult to be directly incorporated in speech related tasks. 
In this work, we propose phoneme vector and apply it to 

speech driven talking avatar synthesis task. Different from word 
embedding, phoneme vectors are generated taking into account 
the acoustic speech characters representing the pronunciation of 
phoneme sequences. For phoneme embedding training, the 
input is phoneme labels, the output is corresponding acoustic 
features. Concretely, one-hot representations of phoneme labels 
are fed into embedding layer to generate phoneme vectors as the 
input of bidirectional long short-term memory (BLSTM) 
recurrent neural network (RNN) regression model to predict 
acoustic features. Weights of embedding layer are updated 
through back-propagation during training. Phoneme embedding 
analysis indicate that phoneme vector has several interesting 
characteristics. Phonemes with similar acoustic attributes are 
close to each other in cosine distance in the generated phoneme 
vector space, and tend to fall into the same category after k-
means clustering. 

Talking avatar has been widely used in human-computer 
interaction fields such as virtual reality, voice agent, computer 
assistant. Recent research [8] indicates that more representative 
acoustic features can generate more realistic and expressive 
visual gestures. In this work, we apply phoneme embedding for 
speech driven talking avatar with two main outstanding benefits. 
First, phoneme vectors contain acoustic information such as 
pronunciation, rhythm or emphatic that are essential in speech 
related tasks. Second, phoneme vector sequence can represent 
textual information (e.g. textual hints for lip movement) that are 
critical and closely correlated to visual gestures. Furthermore, 
in other speech related tasks such as text-to-speech (TTS) and 
text-to-visual-speech (TTVS) synthesis, phoneme embedding is 
very convenient to deal with the out-of-vocabulary (OOV) 
words that are not available at training time or even not in the 
dictionary as compared to word embedding.  

The rest of this paper is organized as follows. Section 2 
describes the datasets and preprocessing procedures. Section 3 
introduces the methods to generate phoneme vectors and to 
synthesize talking avatar. Analysis of phoneme vector is then 
detailed in Section 4 while talking avatar synthesis experiments 
are illustrated in Section 5. Finally, Section 6 concludes the 
work and discusses future work. 
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2. Data description and preprocessing 
We adopt bimodal corpus that has been used by several previous 
studies [8][11]. The corpus contains 700 English utterances 
recorded by a female native English speaker, including 350 
emphatic and 350 neutral utterances. The audio is in Microsoft 
WAV format with sampling rate of 16 KHz. The video frame 
rate is 25fps and well formed in AVI format. We divided the 
whole corpus into 3 parts randomly: 600 utterances as training 
set, 70 as test set and others as validation set. 

35 dimensional Mel-generalized cepstral (Mgc) [12] and 1 
dimensional lf0 feature that have been widely used in speech 
synthesis tasks are extracted as the acoustic features to generate 
phoneme vectors. In addition, for speech driven talking avatar, 
384 dimensional low level descriptors (LLD) [13] are used as 
the input features to predict facial animation parameters. LLD 
contains 16 low level descriptors and their first order delta 
coefficients (32 dimensions in total) and 12 functionals. 16 low 
level descriptors include RMSE (root mean square signal frame 
energy), 12-order MFCC (Mel-frequency cepstral coefficients), 
Zero-crossing rate, Voicing probability and F0. As listed in 
Table 1, 12 functionals are applied to LLD contours to derive 
statistical features. The acoustic features are extracted with 
frame length of 40ms and frame shift of 10ms. 

 
As for visual features, facial animation parameters (FAPs) 

defined by MPEG-4 specification [9][10] are adopted, which 
include 66 low-level FAPs and 2 high-level FAPs. The low-
level FAPs represent a complete set of basic facial actions; 
while the 2 high-level FAPs represent visemes and expressions. 
In this work, we focus on the 66 low-level FAPs. 

Phoneme sequences are extracted from text in one-hot 
representation using Carnegie Mellon University Pronouncing 
Dictionary [14]. For the vowels in CMU dictionary phoneme 
set, they carry a postfix stress marker with ‘0’ for no stress, ‘1’ 

for primary stress and ‘2’ for Secondary stress. Totally, we have 
66 phonemes, with 65 ones from CMU dictionary and one extra 
phoneme label for silence. 

A well trained HMM model [15] is adopted to conduct 
frame-to-frame forced alignment between acoustic features and 
phoneme labels. Linear interpolation is used to interpolate FAPs 
to match the frame rate of acoustic features. 

3. Methods 
The overall structure of the system is shown in Figure 1, where 
three models are involved including (1) phoneme embedding 

model, (2) phoneme vector predictor, (3) DBLSTM regression 
model. Phoneme embedding step is illustrated within the red 
dashed box. Details of the three models are elaborated below. 

3.1. Phoneme embedding 
Word vectors can capture semantic and syntactic information 
by training a neural network model related to the usage of words 
and expressions in language. Differ from that, the purpose of 
phoneme embedding is to capture the acoustic information (e.g. 
pronunciation characteristics) and represent such information in 
phoneme vectors. In realizing this, we train a neural network 
model similar to word embedding process. To capture time 
sequential context information, we adopt BLSTM RNN [16] for 
phoneme embedding modeling. 

As shown in Figure 1, phoneme embedding model (block 1) 
is implemented as RNN with two hidden layers, where the first 
hidden layer is embedding layer and the second hidden layer is 
BLSTM layer. The input of phoneme embedding model is 
phoneme labels and the output is Mgc/lf0. After training, 
phoneme vectors can be retrieved from the embedding layer. 

Phoneme label sequences are obtained from text analysis, 
and are transformed to one-hot representation. Let S be the 
number of training samples (i.e. speech utterances) in training 
set, N be the number of frames per each utterance, K be the 
number of distinct phonemes (66 in our work). The phoneme 
matrix Mp with the shape S N×K is multiplied by embedding 
matrix Me with the shape K×V where V is the dimension of 
phoneme vector. In this way, we can derive phoneme vector 
matrix Mv with the shape S×N×V. Mv is then fed into BLSTM 
layer to derive the correlation map between phoneme vectors 
and acoustic features (Mgc/lf0). Let D be the dimension of 
acoustic features. Acoustic matrix Ma with the shape S×N×D is 
the output of BLSTM model. We use mean square error (MSE) 
between the predicted acoustic features and the ground truth as 
the loss function:  
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Table 1. 12 functionals applied to LLD contours 

Functionals No. 
The max/min value of the contour 1~2 
Range (max – min) 3 
The absolute position of the max/min value  4~5 
The arithmetic mean of the contour 6 
The slope of a linear approximation of the contour 7 
The offset of a linear approximation of the contour 8 
The quadratic error computed as the difference of 
the linear approximation and the actual contour 

9 

The standard deviation of the values in the contour 10 
The skewness and the kurtosis 11~12 
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Figure 1: Overall structure of the system. Phoneme embedding 
step is illustrated within red dashed box 
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where Y=Ma[s][n] is the ground truth of acoustic feature at 
each time expansion step of BLSTM, while Y=H(Mv[s][n]) 
represents the corresponding predictions from BLSTM model. 
The weight of BLSTM model and embedding matrix Me are 
updated through backpropagation with: 


e[�][�] = 
e[�][�] − �� ∗ �������[�] ,             (2) 
where k is the phoneme order, Me[k][i] is the i-th dimension of 
phoneme embedding, bperror[i] is the backpropagated error of 
i-th node in Mv[s][n] vector. 

After training, each row of embedding matrix Me is the 
phoneme vector of the corresponding phoneme. 

3.2. Speech driven talking avatar synthesis 
For speech driven avatar synthesis, the input is acoustic features 
and the output is FAPs. To incorporate phoneme vectors into 
the task, we need predict phoneme vectors from acoustic input. 
Hence we train another DBLSTM model as phoneme vector 
predictor (block 2 in Figure 1) to map Mgc/lf0 to phoneme 
vectors. Then, DBLSTM regression model (block 3 in Figure 1) 
is trained which accepts LLD and phoneme vectors as the input 
to predict FAPs. Forced alignment between acoustic features 
(i.e. LLD, Mgc/lf0) and phoneme labels is realized by virtue of 
a well-trained HMM model. The regression models are trained 
by minimizing cross-entropy error between the output of 
DBLSTM regression model and the ground truth. 

In the prediction stage, phoneme vectors are first predicted 
from the input Mgc/lf0 features by phoneme vector predictor, 
which are then concatenated with the LLD features frame-
wisely. The concatenated features serve as the input of the 
DBLSTM regression model to predict FAPs. Finally, visual 
gestures including lip movements, facial expressions and head 
motions are rendered on a three-dimensional avatar using the 
technologies of our previous work [11]. 

4. Phoneme vector analysis 

4.1. Cosine similarity 
Cosine similarity is computed between each pair of phoneme 
vectors according to the following equation: 

Similarity =
�∙�

‖�‖∙‖�‖
 ,                            (3) 

where A and B denote a pair of phoneme vectors. 
The pairs of phonemes having the nearest cosine distance 

are list in Table 2, from which we can conclude that phonemes 
with similar pronunciation characteristics got the nearest cosine 
distance in the phoneme vector space. The results confirm that 
the proposed phoneme embedding model can capture phoneme 
pronunciation information within phoneme vectors. 

4.2. Phoneme vector clustering 
K-means clustering is adopted on the phoneme vectors with k=2, 
20. Results are shown in Table 3 and Table 4 respectively. 

For k=2, consonants and vowels tend to be in different 
categories. This confirms that phoneme vector captures the 
pronunciation characteristics from acoustic features in training. 
For k=20, we can observe that similar vowel with primary stress 
label (postfix ‘1’) and no stress label (postfix ‘0’) tend to fall 
into different categories (Cat. 5 and 6). Such results indicate that 
phoneme vector embodies not only pronunciation information 
but also emphasis and rhythm information that are important for 
most of the speech related tasks. Actually, experimental results 

with other k settings also indicate that phoneme vectors in the 
same category demonstrate similar pronunciation characters. 

Table 2. Phoneme pairs with closest cosine distance 

EY0,EY2 CH,T G,UW2 AY0,AY1 
AH2,AW2 F,TH ER0,EY0 ER1,ER0 
AA0,EH1 Y,IY1 OW0,OW2 IY0,IY2 
UH1,UW1 DH,V IT2,IY1 UW1,UH1 

ZH,JH N,M EH2,EH1 AH0,IH0 
EH0,IH1 S,Z IH0,AH0 M,NG 

AA2,AA1 L,OW2 AH1,IH1 AO2,OW2 
UH2,AA0 K,P AE2,AE0 W,OW2 

Table 3. K-means clustering result of phoneme 
vectors (k=2) 

Category 1 Category 2 
'sil', 'N', 'DH', 
'S', 'V', 'P', 'D', 

'Z', 'K', 'T', 
'W', 'B', 'G', 

'M','TH', 'HH', 
'F', 'SH', 'JH', 

'CH', 'ZH' 

'AA1', 'AH0', 'EH1', 'R', 'IY0', 'AH1', 
'IY1', 'AE1', 'L', 'AY1', 'IH1', 'NG', 

'OW1', 'AE0', 'AW1',  'UW1', 'ER1', 'Y', 
'ER0', 'AY2', 'AE2', 'AO1', 'IH0', 'OY1', 
'IH2', 'AY0', 'EH2', 'AO0', 'EY1', 'EY2', 

'UW0', 'OW2', 'AO2', 'IY2', 'OW0', 
'UH1', 'UH2', 'AA2', 'EH0', 'UW2', 

'AA0', 'AW2', 'AH2', 'EY0' 

Table 4. K-means clustering result of phoneme 
vectors (k=20), with 6 categories listed 

Cat.1 Cat.2 Cat.3 Cat.4 Cat.5 Cat.6 
'sil' 
'S' 
'D' 
'Z' 

'TH' 
'F' 

'N' 
'NG' 
'M' 

'SH' 
'JH' 
'CH' 
'ZH' 

'IY0' 
'IY1' 
'Y' 

'IY2' 

'AA1' 
'AH1' 
'AE1' 
'OW1' 
'AO1' 

'AH0' 
'AY2' 
'AY1' 
'AY0' 
'EY0' 
'EY2' 
'IH0' 

Figure 2: t-SNE visualization of phoneme vectors 
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4.3. T-SNE visualization 
We adopt t-distributed stochastic neighbor embedding (t-

SNE) visualization [17] to phoneme vectors. The result is 
shown in Figure 2. In the figure, the phoneme name is annotated 
aside the corresponding spots, the color of the spots represents 
the pronunciation stress of phonemes as presented in legend. 

Phoneme vector visualization gives us intuitive impression 
on phoneme vector’s properties. We can figure out from the t-
SNE visualization illustration that phoneme vectors tend to be 
grouped together based on their pronunciations. For example, 
“ZH”, “Z”, “S”, “SH”, “CH”, “JH” are close to each other. Most 
of the consonants are in the lower part of the figure, with the 
exceptions that “Y” is close to “IY” and “R” is close to “ER”. 
Vowels are in the upper left corner. The phonemes pronounced 
similar to “AA” with primary stress 1 (green spots) tend to be 
close to each other when comparing to phonemes with no stress 
0 (blue spots) and/or secondary stress 2 (brown spots). 

5. Experiments 

5.1. Experiment setup 
The neural networks are trained using Theano [18] with Adam 
[19] as optimizer.  

For phoneme vector training, we adopt the RNN with two 
hidden layers and use tanh as the activation for each hidden 
layer. The first hidden layer is the embedding layer with 128 
hidden units. The second hidden layer is the BLSTM layer with 
128 forward units and 128 backward units. 

For phoneme vector predictor, the input is 36 dimensional 
Mgc/lf0 and output is the phoneme vector. Three hidden layers 
are used including two BLSTM layers (with 128 forward and 
backward units) and one fully connected layer (with 128 units) 
and use tanh as the activation. 

For DBLSTM regression model to predict FAPs, it FAP 
predict model adopt three hidden layers consist of Two 128 
nodes BLSTM layers and a fully connected (FC) layer with 128 
nodes, a 68 nodes fully connected layer as the prediction layer. 
The activation of BLSTM and first FC layer is tanh, linear 
activation function is adopt in the prediction layer. Besides, 
hidden layers with one BLSTM layer and one FC layer structure 
is also tested in the experiment. A dropout layer with rate 0.5 is 
added before the prediction layer. 

To validate the performance of the proposed phoneme 
vector in speech driven talking avatar synthesis, we conducted 
a set of experiments comparing LLD features (LLD), one-hot 
phoneme representation concatenated with LLD features (One-
hot vector + LLD) and phoneme vector concatenated with LLD 
features (Phoneme vector + LLD) as three kinds of input 
features of the DBLSTM regression model. 

5.2. Objective evaluation 
We adopt root mean squared error (RMSE) between predicted 
FAPs and the ground truth as the objective evaluation criterion. 
The results for different input features are shown in Table 5. To 
compare the performance of different network architectures of 
the regression model for FAP prediction, we implement two 
architectures that are represented in the second column of the 
table. B-F means one BLSTM layer and one FC layer, B-B-F 
indicate two BLSTM layers and one FC layer. 

From the results, we can see that, for the same architecture 
of DBLSTM regression model, method with phoneme vector 

shows superior performance in RMSE, and achieve 10.2% 
relative improvement compared to the B-B-F architecture with 
LLD as input. 

5.3. Phoneme vector dimension experiment 
To find the most proper dimension of phoneme vector, we 
further conduct experiments comparing RMSE with different 
settings of phoneme vector dimensions. By setting the number 
of nodes in phoneme embedding layer (i.e. the column number 
of embedding matrix Me) to 32, 64, 128, 256, the results are 
shown in Table 6. 

As can be seen, the model with 128 dimensional phoneme 
vector achieves the lowest RMSE. However, the RMSE values 
are not statistically different between different dimension 
settings. We can’t confirm that 128 dimensional phoneme 

vector is the best choice. But we can discover that all dimension 
settings of phoneme vector achieve lower RMSE than one-hot 
representation (Table 5). Such results confirm that phoneme 
vectors provide better representative information for the speech 
driven talking avatar task.  

6. Conclusion and future work 
In this paper, phoneme embedding is proposed and applied in 
speech driven talking avatar synthesis. Phoneme vectors are 
extracted from the neural network that models the relationship 
between phoneme labels and acoustic features. Phoneme vector 
sequences contain contextual acoustic and textual information. 
We adopt phoneme vector to the task of speech driven talking 
avatar synthesis and achieve the positive result in experiments. 
In the future, we plan to investigate the use of phoneme vector 
in end-to-end speech recognition or text-to-speech synthesis. 
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Table 5. Results of RMSE with different input 
features and model architectures 

Input features Model architecture RMSE 

LLD 
B-F 420.93 

B-B-F 336.25 

One-hot vector + LLD 
B-F 380.40 

B-B-F 314.22 

Phoneme vector + LLD 
B-F 344.54 

B-B-F 301.85 

Table 6. Results of RMSE with different phoneme 
vector dimensions 

Phoneme vector dimension RMSE 
32 307.33 
64 302.01 

128 301.85 
256 304.62 
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