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Abstract 
Prosodic structure generation from text plays an important role 
in Chinese text-to-speech (TTS) synthesis, which greatly 
influences the naturalness and intelligibility of the synthesized 
speech.  This paper proposes a multi-task learning method for 
prosodic structure generation using bidirectional long short-
term memory (BLSTM) recurrent neural network (RNN) and 
structured output layer (SOL).  Unlike traditional methods 
where prerequisites such as lexicon word or even syntactic 
tree are usually required as the input, the proposed method 
predicts prosodic boundary labels directly from Chinese 
characters.  BLSTM RNN is used to capture the bidirectional 
contextual dependencies of prosodic boundary labels.  SOL 
further models correlations between prosodic structures, 
lexicon words as well as part-of-speech (POS), where the 
prediction of prosodic boundary labels are conditioned upon 
word tokenization and POS tagging results.  Experimental 
results demonstrate the effectiveness of the proposed method. 
Index Terms: prosodic structure generation, structured output 
layer (SOL), bidirectional long short-term memory (BLSTM) 

1. Introduction 
For a typical Chinese text-to-speech (TTS) system [1][2], as 
shown in Fig. 1, the input text is first tokenized into lexicon 
words (LW) with part-of-speech (POS) tagging information, 
which are sent to the prosodic structure generation module to 
predict the prosodic boundary labels including prosodic word 
(PW) and prosodic phrase (PPH).  The generated prosodic 
structure information is then used in grapheme-to-phoneme 
conversion to derive the proper pronunciations, and also 
further utilized to predict acoustic parameters such as pitch, 
duration, pause, spectrum [1][2][3] for further usage in the 
speech synthesis module.  As can be seen, prosodic structure 
generation from text plays a very important role in Chinese 
TTS synthesis, which will greatly affect the naturalness and 
intelligibility of the synthesized speech. 

Being aware of the importance of prosodic structure 
generation in practical TTS system [4][5], lots of methods 
have been proposed for addressing the problem.  In the early 
time, rule-based methods were usually adopted [6][7][8].  The 
main idea of these work is to find some explicit rules that 
could build prosodic structure of a sentence from syntax 
information.  With the development of statistical learning and 
the availability of prosody annotated corpora, more and more 
stochastic-based approaches have been proposed for prosodic 
boundary prediction, including classification and regression 
tree (CART) [9], hidden Markov model (HMM) [10][11], 

maximum entropy (ME) model [12], conditional random 
fields (CRF) [13][14].  Among all the mentioned models, CRF 
has been reported to achieve best performance in prosodic 
structure generation [13].  More recently, with the increasing 
popular of neural networks, recurrent neural network (RNN) is 
also employed in prosodic structure generation [15] for its 
outperformance in sequence processing. 

 
Fig. 1: A typical Chinese text-to-speech (TTS) system 

As is well known, there are inherent correlations between 
lexicon word (LW), part-of-speech (POS) and prosodic word 
(PW), prosodic phrase (PPH).  Hence the above approaches 
try to predict prosodic structures based on the features (e.g. 
length and POS of adjacent LW) that are derived from the 
output of the word tokenization and POS tagging module.  
However, some of the approaches suffer from the feature 
engineering problem [16].  For example, in CRF, the choice of 
effective features from a broad set of feature templates is 
critical to the success of the system.  Much efforts are required 
to design good feature template set based on expert knowledge, 
which is usually quite label-intensive.  Moreover, the existing 
approaches still lack the ability in capturing the bidirectional 
context information that are important for prosodic structure 
generation.  For example, some of the monosyllabic LW may 
be combined with preceding or succeeding LW to form the 
PW according to the intonation balance requirement. 

This paper proposes the use of bidirectional long short-
term memory (BLSTM) recurrent neural network (RNN) [17] 
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for prosodic structure generation.  Multi-task learning frame-
work with structured output layer (SOL) is further employed 
to capture the dependency of prosodic structures on POS.  The 
proposed method possesses 3 advantages.  (1) The approach 
can capture the bidirectional context information for prosodic 
structure generation by virtue of BLSTM. (2) The introduction 
of SOL can capture the correlations between LW, POS and 
PW, PPH in a unified framework without the necessity of an 
additional model for LW tokenization and POS tagging.  (3) 
The proposed method can generate prosodic structures directly 
from raw Chinese characters without the requirement for 
feature engineering. 

2. Method 
The proposed model is implemented based on BLSTM RNN 
and SOL.  With SOL, the proposed model inherits the stronger 
generalization performance and robustness of multi-task 
learning by sharing hidden layers and jointed training across 
different tasks.  The use of SOL further allows the proposed 
model being capable to exploit the dependencies between the 
prosodic structure generation and the POS tagging prediction. 
2.1. Feature Vectors 
The proposed approach is designed to use Chinese characters 
as input.  A simple way to represent Chinese character is one-
hot vector.  However, it will result in high dimensionality and 
cannot represent the relevance between characters.  Character 
embedding layer [18] can be employed to map each kind of 
character to a vector with a given dimension.  Specifically, 
characters with similar meanings will get closer representation 
after processing.  Preliminary experiments indicate character 
embedding vector achieves better performance than one-hot 
vector in the prosodic structure generation task. 
2.2. Bidirectional Long Short-Term Memory (BLSTM) 
Prosodic structure generation is a context dependent task that 
may span short or long time lags.  For example, the factors 
affecting PPH boundary may be adjacent POS tags or prosodic 
boundaries far away from the current position.  Conventional 
methods such as CRF, HMM and traditional NN cannot well 
leverage the context information.  RNN can deal with this by 
feeding the hidden layer output activations of the last time step 
to the hidden layer at current time step.  But traditional RNN 
can only retain short term memory because of the vanishing 
gradient problem.  LSTM is designed to tackle with long term 
contextual dependencies. 

A single LSTM cell can be represent as follows: 
�� = σ����	�
� + ���
�
� + ����� + ���       (1) 
�� = σ(���	�
� + ���
�
� + ����� + ��)          (2) 
�� = σ(���	� + ���
�
� + ����� + ��)           (3) 
	� = ��	�
� + ��tanh(���
�
� + ����� + ��)   (4) 

� = �� tanh(	�)                                                    (5) 

��  represents current LSTM cell’s memory and ℎ�  is the 
output of the LSTM cell.  By using forget gate ��, LSTM cell 
will choose which memory to forget and which to remember, 
thus it is able to remember some key information for a long 
time.  Input gate ��  and output gate ��  restrict model’s input 
and output, and also make model pay more attention to the key 
information related to the task. 

Furthermore, the prediction of prosodic boundary label 
may need both preceding and succeeding context information.  
Bidirectional LSTM (BLSTM) can deal with this problem by 
using two LSTM layers with different directions and merging 

the results of two LSTM s to output to upper layers [19]. 
2.3. Structure Output Layer (SOL) 
Prosodic structure generation can be hard to model from raw 
input features, but a related and simpler auxiliary task like 
POS tagging can be benefit to the modeling [20].  By sharing 
easier-to-understand high-level features from shared hidden 
layer, the prosodic structure generation can acquire general 
information from the related auxiliary task. 

To exploit the dependency between POS tags and 
prosodic structure, a multi-task learning framework shown as 
Fig. 2 is employed by setting the POS tagging task as an 
auxiliary task and the prosodic structure generation task as the 
primary task.  Structure output layer (SOL) [21] is employed 
to set the prosodic structure generation to be conditioned on 
the POS tagging task to explicitly exploit the dependency. 
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Fig. 2: The structure of the proposed model, X are the input, 
{$�, . . . , $%} presents the shared BLSTM-RNN hidden layers 
before SOL, {&$�, . . . , &$%} presents private BLSTM-RNN 

hidden layers after SOL of prosodic structure generation task 

P(!�|�) represents the probability of PW, PPH and not-
prosodic-boundary (NPB) label after t-th character in current 
sentence and P(��|�) represents the probability of each POS 
tagging label after t-th character.  The prosodic structure 
generation and POS tagging task are computed as: 

'* = (��-
% + �-)                                        (6) 
P(��|�) = /��0234('*)                                 (7) 

!
� = (��5
% + �5 + �-56('*))            (8) 
P(!�|�) = /��0234(!
%)                           (9) 

where  {7�-, 8-}  and {7�5, 85}  are the weight matrices 
and bias vectors connecting the shared hidden layer with the 
outputs associated with the two tasks.    6 is a non-linear layer 
used with weight matrix  �-5  to transmit correlation 
information from auxiliary output layer "#  to main task’s 
hidden layer.  In typical SOL, 6 and hL will directly connect 
to main task’s output layer.  However, prosodic structure 
generation is a complex problem that needs a deeper network 
for wrapping, private hidden layers {&$�, . . . , &$%} are thus 
added before the main task’s output layer. 

Same to the conventional multi-task learning network, the 
proposed model can be trained by minimizing the global loss 
computed from the weighted sum of costs from two tasks, 
which is given by: 

9: = α9* +  (1 − α) 95                            (10) 
where α is the weight at range [0, 1], 95 and 9*  are the costs 
generated by the main task (prosodic structure generation) and 
the auxiliary task (POS tagging) respectively.  
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Compared to other multi-task learning methods, SOL is 
capable of exploiting dependency between tasks in an explicit 
way.  By training with matched prosodic structure label and 
POS tag, the proposed model is able to gain related POS 
tagging information from early POS tagging prediction task 
and thus to improve the performance of prosodic structure 
generation task with more accurate prosodic boundary labels. 
2.4. Weighted Categorical Cross-entropy 
In our work, the main task of prosodic structure generation is a 
3-class classification task, which aims to predict prosodic 
boundary label PW, PPH or NPB (i.e. not-prosodic-boundary) 
after each Chinese character.  The auxiliary POS tagging is a 
98-class classification task.  As for multiclass classification 
problem, it is common to use Categorical Cross-entropy as the 
loss function: 

F5 = − �

<
∑ ∑ ?_!�@

A
@BC log (D_!�@)<

�B�               (11) 

F* = − �

<
∑ ∑ ?_��@

EG
@BC log (D_��@)<

�B�                   (12) 
where ?_!  and ?_�  represent true class of main task and 
auxiliary task, while D_!  and D_�  represent corresponding 
probability of each predicted class.  Each class is treated as of 
equal importance in Categorical Cross-entropy loss function. 

However, in Chinese TTS system, an improper insertion 
of a prosodic boundary label (PW or PPH) usually cause 
synthesized speech sound more unnatural than missing a 
specific prosodic boundary label.  Motivated by this, we 
propose the Weighted Categorical Cross-entropy by adding 
weight for each class.  The class with lower weight θ� tends to 
have higher precision and lower recall.  The new loss function 
is given as follows: 

F5 = − �

<
∑ ∑ θ@?_!�@

A
@BC log (D_!�@)I

�B�         (13) 
θC = 1 + 2K                                                      (14) 
θ� = θA = 1 − K                                               (15) 

where K  is a tunable weighting parameter adjusting the 
targeting of model in the training.  When K = 0, it equals to 
normal Categorical Cross-entropy.  When K > 0, the new loss 
function will give class 1 and 2 (for PW and PPH respectively) 
lower weight during training.  Hence, higher precision for PW 
and PPH prediction will be preferred while retaining the 
overall accuracy in prosody structure prediction. 

3. Experiments 
3.1. Experimental Setup 
The dataset used for experiments contains 98,211 sentences, 
with 5,066 distinct Chinese characters, totally 1,054,276 PW 
and 585,284 PPH boundaries.  All the sentences are selected 
from People’s Daily.  To make the model more robust and 
representative to Chinese characters, the punctuations that 
may directly related to prosodic boundaries (such as comma, 
period, etc.) are removed.  The lengths of the sentences range 
from 5 to 100 characters.  Lexicon word tokenization and POS 
tagging was processed with the specification defined in [22], 
amounting to 98 POS tagging labels in total.  The prosodic 
boundary labels (PW and PPH) are labeled by professional 
annotators, and the labeling consistency between different 
annotators are checked in a common validation dataset.  For 
prosodic structure generation, 80% of the aforementioned data 
are used as the training set, 10% data as the validation set, and 
the remaining 10% data as the test set.  Besides, another large 
set of texts including 455,273 sentences is also collected from 
People’s Daily for unsupervised character embedding feature 
learning and POS tagging pre-training in the “Enhance” model. 

In the experiments, PW, PPH and NPB (i.e. not-prosodic-
boundary) labels are predicted simultaneously as the 3-class 
classification task.  As for character embedding, word2vec [23] 
is adopted for training with the embedding feature size of 300.  
Such 300-dimensional character embedding vectors are then 
used as the input of our proposed models.  FNN layers of our 
models have 256 nodes, and BLSTM layers have 256 nodes in 
both forward and backward layers.  All hidden layers apply 
dropout (dropout rate = 0.4) [24] to prevent over-fitting.  
Keras [25] with Theano [26] as backend is used to implement 
the neutral network models.  CRF++ toolkit [27] is used to 
implement the CRF baseline model. 
3.2. Evaluation Metrics 
In our experiments, we use four measurements to evaluate our 
model, including F-0.5 score for PPH (PPH F-0.5), F-0.5 score 
for PW (PW F-0.5), total accuracy for 3-class classification 
(T-ACC) and POS accuracy (P-ACC).  T-ACC is calculated as 
the number of samples with correct PW, PPH, NPB prediction 
results divided by the number of all samples.  As for POS 
tagging, P-ACC is the number of samples with correct POS 
tag divided by the number of all samples related to POS.  F-
0.5 score is calculate as: 

F-0.5 =
(1 + 0.5A) ∗ RSTU�/��� ∗ VTU3WW

0.5A ∗ RSTU�/��� + VTU3WW
          (16) 

F-0.5 score weights precision higher than recall.  The reason 
we choose F-0.5 rather than F1 score is based on the finding 
the improper insertion of prosodic boundary (especially for 
PPH) will greatly degrade the naturalness of the synthesized 
speech.  Hence, precision is more important for the prosodic 
structure generation task.  In our work, we mainly use PPH F-
0.5 score to compare the performance of different models.  At 
the same time, PW F-0.5, T-ACC and P-ACC are recorded to 
ensure the model’s performance on these measurements. 
3.3. Hyper-parameters of the Proposed Model 
There are a lot of hyper-parameters in our proposed model, 
such as the number of BLSTM layers before SOL lb, number 
of BLSTM layers after SOL la, parameter of weighted loss 
function β, learning weight of auxiliary task Y and activation 
function type 6.  A set of experiments need to be conducted to 
determine the proper settings for these parameters. 

3.3.1. Model Structure 
We first try to determine the number of layers of our model.  
Different combination of lb (=1,2,3) and la (=1,2,3) values are 
evaluated, with prefixed value of Y=0.3, K=0.3 and Softmax 
for 6.  Experimental results of PPH F-0.5 are shown in Table 
1.  As can be seen, the model with lb=2 and la=2 have the best 
performance in PPH F-0.5.  Further analysis shows PW F-0.5 
and T-ACC under this configuration have similar performance 
to the highest PW F-0.5 and T-ACC.  Hence in the following 
experiments, we use two BLSTM layers before SOL and two 
BLSTM layers after SOL as the model structure. 

Table 1: PPH F-0.5 of models with different lb and la  
 lb = 1 lb = 2 lb = 3 

la = 1 0.7630 0.7537 0.7670 
la = 2 0.7730 0.7770 0.7665 
la = 3 0.7657 0.7668 0.7681 

3.3.2. Weighted Categorical Cross-Entropy 
To validate the effectiveness of the newly proposed weighted 
categorical cross-entropy loss function, different values of β (= 
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-0.1,0,0.1,0.2,0.3) are tested, with prefixed lb=2, la=2, Y=0.3 
and Softmax for 6.  The results of PPH F-0.5, PW F-0.5 and 
T-ACC are shown in Table 2, where the column with β=0.0 
lists the results with normal loss function.  The results indicate 
the new loss function can improve PPH F-0.5, PW F-0.5 and 
T-ACC when β>0 as expected.  β=0.3 is chosen for following 
experiments. 

Table 2: Result of models with different β 
β -0.1 0.0 0.1 0.2 0.3 

PPH F-0.5 0.7593 0.7626 0.7647 0.7676 0.7770 
PW F-0.5 0.8157 0.8221 0.8316 0.8280 0.8340 
T-ACC 0.8921 0.8952 0.8983 0.8961 0.8995 

Table 3: Results of different activation function 6 
 PPH F-0.5 PW F-0.5 T-ACC P-ACC 

Linear 0.8543 0.8927 0.9366 0.9562 
Softmax 0.8584 0.8940 0.9378 0.9563 
Sigmoid 0.8563 0.8964 0.9382 0.9558 
ReLU 0.8571 0.8940 0.9375 0.9560 
Tanh 0.8551 0.8914 0.9365 0.9559 

 
Fig. 3: Results of different learning weight of auxiliary task Y 

3.3.3. Activation Function and Learning Weight of SOL 
Table 3 presents the results with different activation function 
6 in SOL structure with prefixed lb=2, la=2, Y=0.3, K=0.3.  
Softmax works best in PPH F-0.5 and also performs well in 
other metrics, and is hence used in the following experiments.  
Fig. 3 illustrates the prosodic structure generation performance 
using different learning weight of auxiliary task Y.  The results 
at Y=0.0 represent models without using SOL, whose results 
are obviously worse than the models with SOL.  The model 
tends to have better performance when α=0.2~0.5.  The results 
also indicate that P-ACC can reach the high value of 95.4% at 
α=0.3, which proves the effectiveness of our SOL architecture 
on the auxiliary POS tagging task.  Finally α=0.3 is chosen as 
the optimal weight value. 
3.4. Comparison with Related Models 
As discussed in introduction session, POS information plays 
important role in prosodic structure generation.  It is valuable 
to compare different models with or without POS information 
as input.  Moreover, there are huge amount of data with POS 
tag.  If the model related to auxiliary POS tagging task can be 
pre-trained with such data, the accuracy improvement in POS 
tagging is believed to be able to boost performance in prosodic 
structure generation.  Hence, an enhanced BLSTM-SOL-E is 
also proposed.  6 different models are compared for prosodic 
structure generation:  
� CRF: Conventional CRF model with lexicon words and 

POS tagging labels as input. 

� BLSTM-Word: BLSTM model with lexicon words and 
POS tags as input. 

� BLSTM-Char: BLSTM model with Chinese characters 
and POS tags as input. 

� BLSTM-MTL: BLSTM model which accepts Chinese 
character as input (no POS input), with POS tagging as 
the second independent output layer. 

� BLSTM-SOL: The proposed BLSTM model with SOL 
which accepts Chinese characters as the only input. 

� BLSTM-SOL-E: The enhanced BLSTM-SOL model by 
adding POS pre-training and preprocessing steps. 

The results are shown in Table 4, from which we can see 
that the BLSTM derived models perform far better than the 
conventional CRF model.  It indicates that, unlike CRF where 
feature engineering is indispensable, BLSTM can model more 
complex context features.  The BLSTM-Char model achieves 
the best performance as it can capture the valuable information 
brought by the “golden” POS tags during both training and 
evaluation.  Comparing BLSTM-SOL with BLSTM-MTL, our 
proposed BLSTM-SOL perform better, which indicates the 
necessity and effectiveness in modeling the correlations 
between PW, PPH and POS; and the SOL provide a good 
solution to model such dependencies on PW and PPH on the 
POS information.  Furthermore, the BLSTM-SOL-E model 
achieves performance comparable to the upper bound 
BLSTM-Char model.  This indicates the pre-training of POS 
auxiliary task really can bring performance improvement to 
prosodic boundary label prediction, which might be caused by 
sufficient training of shared hidden layers. 

Table 4: Results comparing different models 
Method PPH F-0.5 PW F-0.5 T-ACC P-ACC 

CRF 0.8159 0.8752 0.9313 / 
BLSTM-Word 0.8599 0.8983 0.9415 / 
BLSTM-Char 0.8704 0.9084 0.9478 / 
BLSTM-MTL 0.8524 0.8870 0.9332 0.9525 
BLSTM-SOL 0.8606 0.8959 0.9389 0.9543 

BLSTM-SOL-E 0.8648 0.9000 0.9421 0.9614 

4. Conclusions 
This paper proposes a multi-task learning method for prosodic 
structure generation using BLSTM and SOL by predicting 
prosodic boundary labels directly from the Chinese characters.  
BLSTM RNN is used to capture the bidirectional contextual 
dependencies of prosodic boundary labels.  While SOL further 
models correlations between prosodic structures, lexicon 
words as well as POS information.  By using weighted 
categorical cross-entropy as loss function, the performance of 
the model can be further improved.  Experiment results prove 
that the performance of the proposed method is close to that of 
the model which need extra POS tagging as input.  The further 
advantage of our model is we can get prosody structure and 
POS tag at the same time.  In the future, we will investigate 
the possibility of build a unified model for all text analysis 
tasks for Chinese TTS synthesis. 
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