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Abstract 
From speech, speaker identity can be mostly characterized by 
the spectro-temporal structures of spectrum.  Although recent 
researches have demonstrated the effectiveness of employing 
long short-term memory (LSTM) recurrent neural network 
(RNN) in voice conversion, traditional LSTM-RNN based 
approaches usually focus on temporal evolutions of speech 
features only.  In this paper, we improve the conventional 
LSTM-RNN method for voice conversion by employing the 
two-dimensional time-frequency LSTM (TFLSTM) to model 
spectro-temporal warping along both time and frequency axes.  
A multi-task learned structured output layer (SOL) is afterward 
adopted to capture the dependencies between spectral and pitch 
parameters for further improvement, where spectral parameter 
targets are conditioned upon pitch parameters prediction.  
Experimental results show the proposed approach outperforms 
conventional systems in speech quality and speaker similarity. 
Index Terms: Voice conversion, time-frequency long short 
term memory (TFLSTM), structured output layer (SOL) 

1. Introduction 
Voice conversion (VC) aims at learning the complex non-linear 
relationship of the acoustic features between source and target 
speakers.  Lots of methods have been proposed for the task.  
Gaussian mixture model (GMM) based probabilistic approach 
[1] assumes acoustic features have a random component that 
can be reasonably described, which is further improved by 
exploiting global variance (GV) [2] to alleviate the over-
smoothing problem.  Non-negative matrix factorization (NMF) 
based approach [3] uses speech exemplars to synthesize target 
speech directly rather than convert the acoustic features.  

More recently, inspired by the successful applications in 
automatic speech recognition (ASR) [4] and text-to-speech 
(TTS) synthesis [5], neural network (NN) based approaches 
have been increasingly popular in VC.  [6] employed artificial 
neural network (ANN) to replace GMM to map the source and 
target features in high order space.  [7] further improved ANN 
with deep neural network (DNN).  To learn temporal context 
dependency across acoustic features, [8] proposed to employ 
deep bidirectional recurrent neural networks with long short-
term memory (DBLSTM) that outperforms DNN based 
methods with the ability in capturing long-term dependencies. 

In typical NN based models, the inputs are usually log-
filter-bank features that are regarded as independent of each 
other [9].  Switching the positions of the features from any two 
filter-banks will not affect the overall performance of the 
network.  However, in human spectrogram reading, phoneme 
prediction is relied on both patterns evolving in time and 
frequency axes.  Just like switching any two frames destroys the 
time-wise pattern, switching the positions of any two banks will 

destroy the frequency-wise pattern.  Moreover, formant 
structure determined by articulators has a particular distribution 
pattern over frequency axis that contributes to speaker timbre 
perceiving.  These observations inspire us to employ a novel 
structure to learn time and frequency dynamics simultaneously. 

In statistical parametric systems, pitch parameters are used 
to represent the state of the vocal folds and the spectral features 
are those associated with the articulators.  While vocal folds and 
articulators are highly cooperated in human speech production 
[10], the dependency between these two features is valued to 
model.  Traditionally, these features are produced by two 
independent subsystems or predicted as concatenated vectors 
by the output layer of models.  Two problems arise from this.  
First, both approaches are difficult in modelling the dependency 
of spectral features on pitch contour parameters.  Second, due 
to the unbalance in dimensionality between spectral and pitch 
features, the contribution of pitch parameter prediction in 
gradient statistics accumulated at the intermediate hidden layer 
is unduly suppressed.  Therefore, it is preferable to employ a 
novel output layer in voice conversion system to exploit the 
correlation between spectral and pitch targets while reasonably 
balancing the error costs from prediction tasks in training.  

This paper proposes the use of time-frequency LSTM 
(TFLSTM) [11] and structured output layer (SOL) [12] to 
address the above mentioned issues.  Inheriting the properties 
of multidimensional LSTM, TFLSTM can model spectro-
temporal dependencies across sequences by scanning time and 
frequency axes simultaneously.  Using SOL as output layer 
allows the joint optimization and prediction of spectral and 
pitch targets, with an explicit dependency of spectral targets on 
pitch targets.  To appropriately balance the error cost functions 
associated with spectral and pitch features, multi-task learning 
[13][14] is employed to train the proposed models. 

2. Voice Conversion with Time-Frequency 
LSTM and Structured Output Layer 

2.1. Time-frequency LSTM (TFLSTM) RNNs 
Multidimensional LSTM is first proposed in [15] and [16] for 
handwriting recognition.  [11] further optimized the structure 
by simplifying the multiple forget gates and memory units to a 
single forget gate and a single memory unit to significantly 
reduce the complexity.  
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Fig. 1: The frequency chunks generation with w = 11,c= 3. 
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The optimized structure, named time-frequency LSTM 
(TFLSTM), uses frequency chunks as inputs.  As shown in 
Fig.1, for input � at time step � containing an N-dimensional 
vector of log-filter-bank values, the frequency chunks are 
generated by dividing the log-filter-banks into overlapped 
chunks with window-length �  and window-shift � , leading 
� = (� − � + �) �⁄  chunks in each frame at time �. 

The structure of TFLSTM cell is shown in Fig. 2, where � 
denotes the tanh activation function.  Same as the conventional 
LSTM, a TFLSTM cell contains one input gate, one forget gate, 
one memory unit and one output gate.  However, each gate or 
unit now has two indices instead of one: frequency chunk 	 and 
time �.  The formulation of the TFLSTM is as follows: 


�,� =  
(�����,� + ���
� ��,��� + ���
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where 
�,�,  ��,�, ��,�, ��,�, ��,� denote the activation vectors of 
input gate, forget gate, memory unit, output gate and hidden 
output at frequency chunk 	 time �.  � terms are the weight 
matrices connecting different vectors: ��� denotes the weight 
matrix connecting input vectors ��,�  and input gate; ��∙

�  and 
��∙

�  denote the weight matrices connecting to ��,��� and ����,�, 
the hidden output from the same frequency chunk at previous 
time step and previous frequency chunk at the same time step, 
respectively.  � terms are the bias vectors.  
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Fig. 2: Structure of a TFLSTM cell at frequency chunk k time t. 
TFLSTM accepts ℎ�,���, ℎ���,� and #�,� as inputs to compute 
current hidden ℎ�,� following Eqs. (1) to (5). 

 
Fig. 3: An example of stacked 2-layers TFLSTM. 

At each time step � , the hidden outputs ��,�  with 	 =
1 … � can be merged into one super-vector �� as a trajectory of 
time-frequency patterns.  A deep TFLSTM can be built by 
stacking multiple TFLSTM hidden layers.  The layer $ will use 
the hidden output from the lower layer ��,�

%�� instead of ��,� in 
Eqs. (1) to (5) to generate the output ��,�

% .  An example of 2-
layers TFLSTM is shown in Fig. 3. 

TFLSTM can also be extended to bidirectional for 
modelling temporal dependencies in both preceding and 
succeeding directions [17].  This can be done by processing 
input in both forward and backward directions using separate 
hidden layers and then feeding forward to the upper layer.  
Combining the deep TFLSTM and bidirectional TFLSTM, the 
deep bidirectional TFLSTM (DBTFLSTM) is proposed. 

2.2. Structured output layer (SOL) TFLSTM RNNs 
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Fig. 4: The overall structure of the proposed model with SOL.  
Tasks share the same hidden representations and the spectrum 
prediction can benefit by using the hidden layer output of pitch 
prediction.  � are the source acoustic feature inputs. 
In conventional VC systems, target spectral features and pitch 
parameters are either produced by two independent subsystems 
or predicted as concatenated acoustic features by a single output 
layer.  However, these two approaches both have difficulty in 
modelling the dependencies of spectral features on pitch 
parameters.  To address the issue, this paper proposes the use of 
structured output layer (SOL), in which pitch parameter 
prediction is used not only as a regularization during training 
but also as an auxiliary predictor in spectral feature prediction.  
The overview of the proposed structure is shown in Fig. 4. 

In SOL, spectral feature prediction is set as the main task 
and conditioned upon the auxiliary task of pitch parameter 
prediction.  This is realized by feeding the pitch parameter 
generation task's hidden layer output �& through an activation 
function '(∙) (e.g. Sigmoid or ReLU) modelling the correlation 
between the two tasks before being augmented to the hidden 
layer output �* after the weight matrix C used to connect the 
two tasks is applied. 

In the conventional multi-task formulation where no 
between task dependency is modelled, the two tasks share the 
same hidden layers {��, . . . , �-} and the prediction of spectral 
and pitch parameters are computed as follows: 

�/ = (��0/�- + �/)                                       (6) 
2/ = 
/(�/)                                                      (7) 
�3 = (��03�- + �3)                                      (8) 

   23 = 
3(�3)                                                    (9) 
where 2/  and 23  are predicted spectral and pitch parameter 
outputs respectively.  {��0/, �/} and {��03, �3} are the weight 
matrices and bias vectors connecting the shared hidden layer �- 
with the outputs associated with the two tasks.  
/(∙) and 
3(∙) 
are the linear output activation functions employed to produce 
the final predicted spectral feature and pitch parameter outputs. 

In contrast, the proposed SOL based approach shown in 
Fig. 4 introduces an additional dependency of the primary 
spectrum prediction task on the auxiliary pitch parameter 
prediction task. The main spectral feature outputs are thus 
modified as: 

�/3 = (��0/�- + '(�3)4 + �/3)                         (10) 
2/ = 
/(�/3)                                                            (11) 

3410



2.3. Multi-task learning of SOL TFLSTM RNNs 
In common with the conventional multi-task learning (MTL) 
framework, networks with structured output layer (SOL) can be 
trained by minimizing a global cost function expressed as a 
weighted sum of the two task-specific error costs as: 

56 = α5* +  (1 − α) 5&                                       (12) 
where  5*  and 5&  are the costs generated by the main task 
(spectral feature prediction) and the auxiliary task (pitch 
parameter prediction) computed as mean squared errors, and the 
global error cost in (12) can be re-expressed as: 

56 = �

89
∑ ∑ [α(;* − <)� + (1 − α)>;& − ?@

�
]9

�
8
�           (13) 

The gradients used to update the parameters θ in the SOL 
employed network are then computed as the weighted average 
gradient statistics computed over both tasks: 

         BC
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�
8
�
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With SOL, the proposed model can earn stronger 
performance and robustness in voice conversion facilitated by 
shared hidden layers and jointly training over multiple tasks.  
The use of a structured output layer can further exploit the 
regularization properties of the comparatively simpler auxiliary 
task of pitch prediction and its direct effect on the primary 
spectral feature generation task. 

2.4. Framework of the voice conversion system 
The overall architecture of the proposed voice conversion 
system is shown in Fig.5.  In training stage, spectral features 
and pitch parameters, i.e. log F0 contour and voiced/unvoiced 
flag (V/UV), are extracted and sent for time alignment with 
dynamic time warping (DTW) procedure.  DTW is set as 
unconstrained and the distance measure employed is the square 
root of the minimum sum of squared differences divided by the 
number of comparisons computing on spectral features.  After 
being normalized to zero mean and unit variance, the time-
aligned features are then fed into the network-based model for 
training.  In conversion stage, acoustic features extracted from 
source speeches are fed directly to the trained model to predict 
target acoustic features.  A vocoder is then used to synthesize 
the converted speech using the predicted features. 
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Fig. 5: Overview of the voice conversion framework. 

3. Experiments 
3.1. Experimental setup 
The evaluation is conducted on the CMU ARCTIC parallel 
speech corpus.  CLB (a female speaker from U.S) is used as the 
source speaker, and RMS (a male speaker from U.S) as the 
target speaker.  The 1,132 parallel utterances are divided into 
three sets: the first 1,000 parallel utterances as the training set, 

the following 100 utterances as the validation set and the rest 
32 utterances as the test set.  The acoustic signals are sampled 
at 16kHz with mono channel.  Acoustic features including 35-
dimensional Mel-cepstral coefficients (MCEPs), 2 dimensional 
pitch parameters (log F0 and V/UV), 25-dimensional aperiodic 
component (AP) are extracted using STRAIGHT [18] with 25-
ms frame length window and 5-ms frame shift.  For training and 
validation sets, source and target feature sequences are aligned 
using DTW.  Six different models with similar parameter 
numbers are implemented for comparison: 
� LSTM: Conventional LSTM based approach containing 

one LSTM hidden layer with 1024 nodes. 
� TFLSTM: TFLSTM based approach containing one 

TFLSTM hidden layer.  The window-length and shift of 
frequency chunk is set as 11 and 3 respectively, thus (35 −
11 + 3)/ 3 = 9 chunks are fed into TFLSTM.  Therefore, 
9 memory cells are implemented for TFLSTM, each with 
230 nodes.  

� DBLSTM: DBLSTM based approach containing two 
bidirectional LSTM hidden layers with 672 nodes per layer 
(336 forward nodes and 336 backward nodes). 

� DBTFLSTM: DBTFLSTM based approach containing 
two bidirectional TFLSTM hidden layers using the same 
settings as the above TFLSTM approach and each cell has 
100 forward or backward nodes.  

� DBLSTM-SOL: DBLSTM based approach with a 
structured output layer.  The weight α used in (12) is 0.925, 
and tanh function is used as activation function '(∙) . 
Selection of '(∙) and α is elaborated in the next section. 

� DBTFLSTM-SOL: DBTFLSTM based approach with a 
structured output layer.  The settings for '(∙) and α is the 

same as the above DBLSTM-SOL approach. 
Models without SOL will generate 35-dimensional output 

containing MCEPs only, while SOL derived models will 
generate 37-dimensional output containing MCEPs and pitch 
parameters.  It should be noted this paper focuses on improving 
the performance of spectral feature conversion.  Hence, to be 
fair for different models, although the source pitch parameters 
are needed in SOL derived models, the predicted pitch 
parameters from SOL are just ignored, and instead, the 
traditional linear prediction (LP) conversion method is used for 
converting pitch parameters.  STRAIGHT vocoder is then 
employed to synthesize the converted speech using the 
converted MCEPs from aforementioned models, the generated 
pitch parameters from LP conversion and the original AP. 

Models are trained using back-propagation through time 
(BPTT) [19] by unfolding RNNs into standard feed-forward 
networks through time steps.  Keras [20] with Theano [21] as 
the backend is used to implement the above systems using mini-
batch-based Adam training algorithm [22]. 

3.2. Hyper-parameters in structured output layer 
Hyper-parameters including '  and α  can significantly affect 
the performance of SOL models, a series of experiments thus 
are conducted to figure out the optimal selection of activation 
function ' and the value of weight α.  Mel-cepstral distortion 
(Mel-CD), the Euclidean distance between the MCEPs of 
converted speech and that of target speech, is measured for 
objective evaluation.  Table 1 presents the objective evaluation 
of spectral features prediction using different activation 
functions with prefixed α  value.  Tanh activation function 
outperforms others in the evaluation thus being selected as 
default '.  Fig. 6 illustrates the objective evaluation results on 
spectral features prediction using different value of α.  Optimal 
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performance has been achieved using α=0.925 which is used as 

the default weight value. 

Table 1 : Mel-CD (dB) of spectrum prediction with different 
activation functions with α = 0.925 in DBLSTM-SOL based 
system (S1) and DBFTLSM-SOL based system (S2). 

' –activation 
System Linear Softmax Sigmoid ReLU Tanh 

S1 5.489 5.482 5.463 5.467 5.425 
S2 5.296 5.302 5.265 5.284 5.259 

 
Fig. 6: Mel-CD of spectral features predicted from DBLSTM-
SOL and DBTFLSTM-SOL systems with different α values. 

3.3. Objective evaluation 
In the objective evaluation, Mel-CD is measured to assess the 
conversion performance of systems employing different models.  
As illustrated in Table 2, TFLSTM based system outperforms 
LSTM baseline with a 3.5% relative improvement and achieves 
similar performance with conventional DBLSTM based system.  
When extending to DBTFLSTM, a 4.3% relative improvement 
is further gained.  By employing SOL, the system gains further 
0.9% relative improvement over DBTFLSTM based systems, 
which is the best among all systems. 

Table 2 : Objective evaluation results of spectral features 
generated by aforementioned systems.  

Systems Network 
architecture 

Numbers of 
parameters 

Mel-CD 
(dB) 

LSTM 1*1024 4.3M 5.6858 
TFLSTM 1*(9*230) 3.8M 5.5402 
DBLSTM 2*(2*336) 3.7M 5.4852 

DBTFLSTM 2*(2*9*100) 3.7M 5.3046 
DBLSTM-SOL 2*(2*336) 3.7M 5.4254 

DBTFLSTM-SOL 2*(2*9*100) 3.7M 5.2588 

3.4. Subjective evaluation 
Mean opinion score (MOS) is used to evaluate the perceived 
naturalness and quality of converted speeches.  15 utterances 
from the test set are randomly selected as the testing material.  
For each of them, 7 parallel utterances, containing 6 converted 
utterances from aforementioned approaches and the original 
target natural speech, are randomly shuffled and then evaluated 
by 15 listeners with no reported listening difficulties.  These 
speeches are scored following a 5-point scale in naturalness and 
speech quality, in which the grades are standardized as 5 = 
Excellent (same as the natural speech), 4 = Good, 3 = Fair, 2 = 
Poor, 1 = Bad.  As illustrated in Fig. 7, TFLSTM based system 
outperforms LSTM baseline, gaining relative improvements for 
naturalness and quality at 2.4% and 3.3% respectively.  After 
extending to DBTFLSTM, the scores increase to 3.45 and 3.48, 
2.7% and 2.6% better comparing to DBLSTM based system.  
Employing SOL in DBTFLSTM based system can further 
improve the naturalness and quality at 3.2% and 2.9% 

respectively, achieving 3.8% and 3.7% relative improvements 
over DBLSTM-SOL based system for naturalness and quality.  

ABX preference test is used to measure the speaker 
similarity of converted speeches.  Participants are asked to 
choose one of two converted utterances A or B of higher 
similarity to the target utterance X.  If it is hard to tell, no 
preference (N/P) is allowed.  All pairs are randomly shuffled to 
avoid preference bias.  As illustrated in Fig. 8, TFLSTM based 
systems are frequently preferred over paired LSTM based 
systems.  However, no significant improvement has been 
observed by extending TFLSTM to DBTFLSTM.  
DBTFLSTM-SOL based system has achieved better 
preferences over DBTFLSTM based system.  The results 
illustrate the effectiveness of the proposed methods. 

 
Fig. 7: MOS test results for speech naturalness and quality with 
95% confidence intervals, the natural speech has set as 
‘Excellent’. 

 
Fig. 8: ABX preference test results for speaker similarity, where 
N/P stands for no preference. 

4. Conclusions 
This paper proposes the use of TFLSTM and SOL in voice 
conversion.  With TFLSTM, the proposed system can model 
both time-wise and frequency-wise patterns simultaneously 
through the input sequences.  With SOL, the simple but related 
pitch parameter prediction task can be used as an auxiliary task 
to support the complex spectral feature prediction thus to 
explicitly exploit the correlation between pitch and spectrum.  
Experimental results suggest the improvement on speech 
quality and speaker similarity by using the proposed techniques.  
In the future, we will explore the possibility of combining 
proposed framework and text-to-speech (TTS) synthesis to 
generate personalized speeches with different expressive 
characteristics such as emphasis, interactive styles, etc. 
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