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Abstract
Conventional statistical parametric speech synthesis (SPSS)
generates frame-level acoustic features in two separately op-
timized steps—namely, duration prediction and acoustic fea-
ture generation. It also incorporates a conditional independence
assumption to generate independent output frames given tex-
tual inputs. Both factors constrain the quality of the generated
speech output. This work proposes to apply the attention-based
recurrent generator (ARG) with Gaussian Tolerance (GT) for
SPSS, where duration prediction and acoustic feature genera-
tion are jointly optimized with attention mechanism, and the
dependency across output frames is modeled by acoustic fea-
ture generation conditioned on preceding frames. GT is intro-
duced to train ARG to acquire robustness based on previous out-
put frames with errors. Perceptual experiments comparing the
naturalness between ARG and the conventional hidden Markov
model show a gain in MOS score and the effectiveness of GT.
Index Terms: Statistical parametric speech synthesis, Attention
mechanism, Sequence to sequence, Joint optimization

1. Introduction
Statistical parametric speech synthesis (SPSS) has made signif-
icant progresses these years [1][2]. However, the naturalness of
speech generated by SPSS still lies below that of well-built unit
selection systems [3]. Two reasons leading to the unnatural-
ness of SPSS are: the two-step optimization and the conditional
independence assumption [4]. More specifically, conventional
SPSS generates frame-level acoustic features in two steps: du-
ration prediction and acoustic feature generation. These two
steps are optimized separately with their own objectives instead
of being optimized globally, thus potentially limiting the natu-
ralness of generated speech [5]. [6] tried to jointly model du-
ration and acoustic feature with mixture density network. Be-
sides, previous research shows that acoustic features of differ-
ent frames are correlated with each other [4]. However, under
the assumption of conditional independence, different frames of
acoustic features are assumed to be independent of each other
given the input linguistic features. Dynamic features are used
to address this problem [7]. [8] tried to consider the temporal
relation by introducing recurrent connections in the output layer
to a long short-term memory recurrent neural network (LSTM-
RNN) based SPSS system, but improvements are still needed.
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Recently, attention mechanism has been successfully ap-
plied to automatic speech recognition (ASR) to jointly train
components of ASR, with one objective to obtain a globally op-
timal solution, without the conditional independence assump-
tion [9]. Motivated by this idea, we try to utilize attention-
based recurrent generator (ARG) for SPSS. In ARG, the atten-
tive context, a weighted sum of encoded representation of input
features, is first calculated. Based on this context, the output
acoustic features are generated. The calculation of these atten-
tion weights, the encoded representation and acoustic feature
generation, are modeled together and optimized jointly aiming
at generating high quality speech. On the other hand, ARG
generates acoustic features of each frame based on the atten-
tive context, which are calculated based on acoustic features of
previous frames and input linguistic features. This connects the
output frames and brings the relation across frames into con-
sideration. However, the output errors in previous frames will
affect the generation in current frame. The errors will be ac-
cumulated along the sequence, which degrades output perfor-
mance significantly. [10] tried to address this problem with in-
put quantification, which may introduce additional error. Also,
different acoustic features (i.e., spectral, pitch features) need to
be quantified with different scales.

In this paper, we try to completely model all the four acous-
tic features in a unified framework, including Mel-cepstral coef-
ficients (MCEPs), band aperiodicities (BAPs), logarithmic fun-
damental frequency (LF0), and voiced/unvoiced (V/UV) deci-
sions. Thus we need to consider the error of four features simul-
taneously. Under the assumption that the output error follows
a Gaussian distribution, the output error is treated as Gaussian
noise. We introduce Gaussian tolerance (GT) in training to im-
prove the robustness of ARG, by leveraging the denoising abil-
ity of neural network. Our experiments show that introducing
the GT can help solve the error accumulation problem. ARG
can generate speech with better naturalness than HMM. Com-
pared with previous reported results of ARG-based SPSS [10],
our system models acoustic features in a more holistic way for
generating speech waveform. Compared with [11] and [12],
this paper focuses on the investigation of the error accumula-
tion problem.

The rest of this paper is organized as following, we briefly
introduce the two-step structure of SPSS, as well as the condi-
tional independence assumption, in Section 2. The structure of
ARG will be described in Section 3. The error accumulation



problem and the GT is illustrated in Section 4. Experimental
results and conclusions will be given in Sections 5 and 6.

2. Conventional Statistical Parametric
Speech Synthesis

Conventional SPSS is divided into two parts: duration predic-
tion and frame-level acoustic feature generation. In the du-
ration prediction stage, the duration model learns to predict
the numbers of frames of basic modeling units (i.e., states,
phonemes, syllables). In acoustic feature generation, the acous-
tic feature outputs are generated based on corresponding HMM
states, or frame-level linguistic features. To formalize this
problem, we denote the input linguistic feature sequence as
x = {x1,x2, ...,xN}, and the output frame-level acoustic fea-
ture sequence as y = {y1,y2, ...,yT }, where N and T are the
numbers of timesteps in input sequence and output sequence,
respectively. Our task to convert text to speech can be formal-
ized as the probability density function (PDF) of acoustic fea-
tures y given the linguistic features x:

p(y|x) =
∑
∀d

p(d|x)p(y|d,x)

≈ p(d∗|x)p(y|d∗,x) (1)
d∗ = argmax

d
p(d|x) (2)

where d is duration of basic modeling units. p(y|x) is approxi-
mated by only considering the most probable duration d∗. Then
acoustic features are generated according to:

y∗ = argmax
y

p(y|d∗,x) (3)

where y∗ is the generated acoustic features. Eq. (2) and (3) rep-
resent the duration model and the frame-level acoustic feature
generation model respectively. These two models are optimized
with different optimization objectives. The solution obtained in
this way is not globally optimal to p(y|x), which potentially
limits the quality of generated speech.

Conventionally, with the conditional independence assump-
tion, each frame is treated independently given input linguistic
feature sequence, as shown in Eq. (4).

p(y|d,x) ≈
∏
t

p(yt|dt,x) (4)

However, acoustic features in different frames have temporal re-
lations, and ignoring dependence across frames may constrain
the quality of the generated speech. Recently, WaveNet shows
impressive speech synthesis performance [13], where at each
timestep, it generates waveform point conditioning on all previ-
ous timestep outputs.

p(y|d,x) ≈
∏
t

p(yt|dt,x,y<t) (5)

To obtain a globally optimal solution and model the depen-
dence across frames, we try to merge the two models (i.e., dura-
tion model and acoustic feature generation model) into a unified
model with the attention mechanism, and generate frame-level
acoustic features explicitly conditioned on the features of previ-
ous frames.
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Figure 1: Structure of LSTM-RNN (left) and ARG (right).

3. Attention-based Recurrent Generator
Model Structure

3.1. RNN & LSTM-RNN

RNN is a kind of neural network with recurrent connections
between hidden units at neighboring timesteps to model the
temporal relation. At each timestep, the output of hidden unit
is conditioned not only on the current input, but also on the
output of hidden units at the previous timestep. By replacing
units in hidden layers of RNN with long short-term memory
cells, LSTM-RNN can remember long-range context informa-
tion [14].

3.2. Attention-based Recurrent Generator

The ARG is based on sequence to sequence (seq2seq) model,
which is proposed to model the mapping between input and
output with various lengths [9]. In seq2seq, the input is first
encoded into an intermediate vector representation, and then
the output is generated step by step, by decoding the interme-
diate representation, where the input information is stored. The
general idea of the attention mechanism is to select a subset of
input units to focus on, treated as context for generating out-
puts. When applied to SPSS, ARG generates the acoustic fea-
ture sequence frame by frame according to the weighted selec-
tion of linguistic features and previous output acoustic features
as Eq. (6). Different from Eq. (5), duration is implicitly mod-
eled here by the attention mechanism.

p(y|x) ≈
∏
t

p(yt|x,y<t) (6)

At timestep t, the attention layer Attention computes the
attention weight αt paid to each timestep of linguistic fea-
ture sequence x based on x and rt−1. rt−1 is the embedded
hidden representation of yt−1. In this work, uni-directional
LSTM-RNN is applied to build the embedding layer, thus rt−1

contains information of y<t. In the attentive context layer as
Eq. (8), a weighted sum of linguistic features across timesteps
is calculated to form an attentive context gt for the current
timestep, according to the attention weight αt. The context is
then fed into a generation layerGeneration to generate acous-



tic features of the current step as Eq. (9).

αt = Attention(rt−1,x) (7)

gt =

N∑
n=1

αt,nxn (8)

y = Generation(g) (9)

where αt,n is the attention weight for xn at timestep t. Inside
the attention layer Attention, αt,n is determined as follows:

et,n = wT tanh(W xxn +W rrt−1 + b
e) (10)

αt,n =
exp(et,n)∑N

n=1 exp(et,n)
(11)

where W x,W r are the learned weight matrices and w, be are
the learned vectors.

Before the linguistic features x are fed into the attention
layer, they need to be encoded into hidden representations via
bi-directional encoding layers, because the input linguistic fea-
tures are sparse, containing lots of binary features. On the other
hand, the past and the future linguistic features are important
for determining the attention of the current timestep.

4. Attention-based Recurrent Generator
with Gaussian Tolerance for Speech

Synthesis
We apply the ARG to model all the four acoustic features simul-
taneously. To address the problem of output error accumulation,
we introduce GT to train ARG to acquire robustness against the
output error, under the assumption that the output error follows
a Gaussian distribution.

4.1. Training & Synthesis Stage

At the training stage, the ARG learns to generate acoustic fea-
tures y based on linguistic features x. At each timestep t, ARG
is trained to make a one-step forward prediction as stated in
Eq. (6). The output ŷt is generated based on the input lin-
guistic features x and true target output y<t to approximate
the target output yt. The squared errors between ŷt and yt
of all timesteps are summed up as the loss function. At the
synthesis stage, for any linguistic feature vector x, the acous-
tic features ŷ are generated step by step using the trained ARG
model. At each timestep t, the linguistic features x and the
previous acoustic features ŷ<t are used as input. For the first
timestep t=1, the initial output ŷ0 is assigned a small Gaussian
noise value. Based on x and ŷ<t, the trained ARG model is
driven to generate the acoustic features ŷt for timestep t and
the process continues until the end of the utterance. A heuristic
method to determine the end of output sequence is when the end
of the input sequence dominates 80% of attention weight for a
constant number of timesteps η, and the generation stops. η is
empirically chosen as 5.

4.2. Mismatch & Gaussian Tolerance

As stated in [15], there is a mismatch between the training stage
and synthesis stage. At the training stage, the output is condi-
tioned on the true target acoustic outputs of previous timesteps.
However, at the synthesis stage, the predicted acoustic outputs
are provided to the model when generating the next timestep
output. This mismatch will affect the output performance, since
the predicted output may contain errors, while the trained ARG

Figure 2: Histogram of F0 output error of ARG without GT.

model treats the predicted erroneous output as true target out-
put without any error. The error in the predicted output will be
propagated as the generation goes on, which is referred as error
accumulation [10]. Although some efforts have been made to
alleviate this problem, e.g., input quantification [10], schedule
sampling [16], etc., they still suffer from amplified errors.

We analysed the F0 output error of ARG (without GT) on
a validation set, and observed that the distribution of the er-
ror follows a Gaussian distribution, as the histogram shown in
Figure 2. Since the error in output is inevitable, especially in
real-value output, we directly train the model on data with sim-
ulated output error. In this way, the trained model is tolerant
with output error. Assume that there exists an error between the
predicted output ŷt and the true output yt, following a Gaussian
distribution with mean 0 and variance σ2.

ε = ŷt − yt ∼ N (0, σ2) (12)

During training, we impose a Gaussian noise ε′ ∼ N (0, (σ′)2)
on the true output. The model is trained based on the artificially
contaminated true output yt + ε′. The motivation is to leverage
the denoising ability of RNN to reduce noise from speech [17].
At the synthesis stage, as long as the distribution of the error
between the predicted output and the true output is similar to
our imposed Gaussian noise, i.e., σ ≈ σ′, then the error can be
reduced as noise, i.e., the error is tolerant by the model. Here σ
is referred as Gaussian tolerance. Experimental results suggest
that GT can be applied to improve output accuracy.

5. Experiment
5.1. Corpus

In our experiments, we use a corpus of female Mandarin na-
tive speaker, consisting of 5,428 utterances (around 5 hours),
including 98,623 syllable samples. These syllable samples can
be partitioned into 1,660 tonal syllable classes. We use 5,000
utterances as training data (5% is used as validation data), and
the remaining 428 as testing data. The speech signals are sam-
pled at 16 kHz, windowed by a 25-ms window and shifted every
5 ms. We extract 39-order MCEPs plus log energy, 25 BAPs,
LF0, and V/UV decision as frame-level acoustic features. 80%
of the starting and ending silence frames are removed to reduce
the impact of many silence frames [8].

5.2. Experimental Setup

We trained two models, HMM and LSTM-RNN, as baseline
systems. The HMM-based system is built with eleven-state
HMM syllable models with left-to-right topology. Each state
(i.e., the eleven states of one syllable) is modeled by a sin-
gle Gaussian and related to certain output frames. For each
frame, the four acoustic features are generated and then fed into
STRAIGHT [18] to synthesize speech waveform.

For LSTM-RNN and ARG system, we use syllable features
as well as prosodic features, e.g., prosodic word and prosodic



phrase features. Theoretically, the prosodic features needed for
generating acoustic features can be learned by the model. How-
ever, we only have about 5 hours of training data, which is in-
sufficient to cover all possible prosodic contexts. Thus we add
prosodic features to input linguistic features. The input linguis-
tic features for each syllable include binary feautres for categor-
ical linguistic contexts and numerical features for numerical lin-
guistic features following [19]. The output frame-level acoustic
features are the same as those modeled in HMM. All numerical
linguistic features and acoustic features are normalized to have
zero mean and unit variance.

LSTM-RNN system consists of two separately trained
parts, i.e., the duration model and the acoustic feature genera-
tion model [8]. The duration model consists of 1 unidirectional
hidden LSTM layer with 256 memory blocks and 1 linear out-
put layer with linear activation function. The feature generation
model is composed of 3 unidirectional LSTM layers with 256
memory blocks and another linear output layer.

In the ARG system, we use 2 bi-directional LSTM-RNN
layers with 512 memory blocks per layer as the encoding layers.
2 and 4 uni-directional LSTM-RNN layers, with 256 memory
blocks per layer, are respectively used as the embedding layers
and generation layers.

5.3. Part-to-Whole Training for ARG

Initialization of attention weights as rough alignment is helpful
for ARG training [10]. Since the updates of attention calcula-
tion and feature generation affect each other, separately training
these two parts at first can help reach a better initialization. In
this work, we adopt a part-to-whole training method to train
ARG, consisting of two stages, part-training and fine-tuning. In
the part-training stage, we train the attention layer with rough
alignment results (from manual labelling knowledge or forced
alignment) with context layer and generation layer fixed. Then
we train the context layer and generation layer with attention
layer fixed. In the fine-tuning stage, we optimize all layers
of the whole model. More specifically, in part-training, if a
frame is related to a certain syllable according to alignment la-
bels, then the attention weight for the syllable is trained to be
95%, and the rest 5% averagely divided to the other syllables.
The RMSProp algorithm and stochastic gradient descent (SGD)
based back-propagation algorithm are respectively adopted in
part-training and fine-tuning stages.

5.4. Objective Evaluation

To evaluate our system, we use Mel-cepstral distortion (MCD),
root mean squared error (RMSE) of F0, and V/UV error rate to
measure the performance. MCD is often used in speech synthe-
sis to measure the distance between synthesized speech and the
target speech [19].

GT is an important factor that will affect the final perfor-
mance. Large GT is good for correcting error existing in model
output. However, it will also increase the generation error of
model. We conducted experiments to explore effect of various
GT values. Table 1 shows that introducing of GT improves the
output performance. Values around 0.1 are appropriate options
of GT. Subjective evaluation results in Table 3 also demonstrate
the effectiveness of utilizing GT.

The objective measures, e.g., MCD, are calculated frame by
frame. In order to compare the generated speech with the target
speech, we need to generate speech with the same duration as
target speech. For HMM and LSTM-RNN, we use manually
labeled duration to synthesize speech. For ARG, to generate

Table 1: Objective metrics on various values of GT in training.

Gaussian Tolerance MCD F0 RMSE V/UV Error
(σ) (dB) (Hz) Rate (%)

0 5.92 26.38 10.79
0.01 5.77 26.50 10.7
0.1 5.72 25.36 10.0
0.5 5.72 25.82 10.51
1 5.84 25.73 10.5

Table 2: Objective metrics on results of HMM, LSTM-RNN and
ARG system.

MCD F0 RMSE V/UV Error
System (dB) (Hz) Rate (%)

HMM 5.97 29.45 12.9
LSTM-RNN 5.85 29.32 11.1

ARG 5.72 25.36 10.0

speech with the same duration as target speech, and thus com-
parable with target speech, acoustic feature outputs are condi-
tioned on true previous timestep acoustic features. The experi-
mental results are shown in Table 2. In this table, our proposed
ARG model achieves the best qualitative results. One of the
reasons might be that the ARG model can generate acoustic fea-
tures of each timestep conditioned on true acoustic features of
previous steps, thus can use more contextual information than
other systems.

5.5. Subjective Evaluation

We conduct mean opinion score (MOS) test to subjectively eval-
uate the naturalness of synthesized speech. 11 utterances are
randomly selected from the test set. These utterances are syn-
thesized by HMM, LSTM-RNN, ARG without GT and ARG
with GT respectively, and thus we have 44 utterances to be
evaluated1. We invite 20 subjects without hearing impairment
to participate in the MOS test. Each of them listens to 44 ut-
terances individually and rates the naturalness and clearness of
each utterance based on a 5-point scale (5: excellent, 4: good,
3: fair, 2: poor, 1: bad). MOS scores of different systems with
confidence interval (CI) at confidence level 0.95 are given in
Table 3. It shows that our proposed method achieves better per-
formance than HMM, but is still worse than LSTM-RNN. One
possible reason is that salient errors in output features are be-
yond the capture of GT and the errors are amplified stepwise.

Table 3: Subjective evaluation of HMM, LSTM-RNN, ARG with-
out GT and ARG with GT.

System MOS 95% CI

HMM 2.99 ±0.14
LSTM-RNN 3.50 ±0.12
ARG w/o GT 2.12 ±0.13
ARG w/ GT 3.10 ±0.13

1Some synthesized speech samples are presented in
https://sites.google.com/site/argttsdemo/



6. Conclusions
This paper proposes to apply attention-based recurrent genera-
tor (ARG) with Gaussian tolerance (GT) to SPSS, to solve the
two existing problems in conventional SPSS, i.e., separate, lo-
cal optimization and conditional independence assumption. We
completely model four streams of acoustic features in ARG. To
address the problem of error accumulation, we introduce GT
to train ARG to acquire robustness against conditioned output
errors. Both objective and subjective evaluation demonstrate
the effectiveness of GT. For the moment, ARG achieves better
performance than HMM, while has not exceeded that of LSTM-
RNN. A possible reason is that salient errors in output feature
generation are amplified along the output sequence. Hence, our
next step is to improve the performance of the ARG by introduc-
ing context-dependent acoustic feature distribution to acoustic
feature generation.
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