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ABSTRACT 

For mispronunciation detection and diagnosis (MDD), 
nowadays approaches generally treat the phonemes in correct 
and mispronunciations as the same despite the fact they may 
actually carry different characteristics.  Furthermore, serious 
data imbalance issue between correct and mispronunciation 
in dataset further influences the performances.  To address 
these problems, this paper investigates the use of multi-task 
(MT) learning technique to enhance the acoustic-phonemic 
model (APM) for MDD.  The phonemes in correct and mis-
pronunciations are processed separately but in multi-task 
manner considering both correct and mispronunciation 
recognition tasks.  A feature representation module is further 
proposed to improve performance.  Compared with baseline 
APM, the proposed MT-APM, R-MT-APM achieve better 
performance not only in Precision, Recall and F-Measure, but 
also in mispronunciation detection and diagnosis accuracies.  
With feature representation module, R-MT-APM achieves 
the highest mispronunciation detection accuracy. 

Index Terms— Computer-aided pronunciation training, 
mispronunciation detection and diagnosis, multi-task 
learning, acoustic-phonemic model, feature representation 

1. INTRODUCTION 
By providing self-learning opportunities in second-language 
(L2) learning, computer-aided pronunciation training (CAPT) 
systems have attracted wide research interests.  As the core 
of CAPT, mispronunciation detection and diagnosis (MDD) 
aims at detecting mispronunciations in the learner’s speech 
and providing diagnosis feedback. 

Several methods have been proposed for MDD [1]-[15] 
which can be grouped into two categories.  The first is 
pronunciation scoring based approaches that use different 
types of confidence measures, such as likelihood ratios, 
phone posterior probabilities, etc. to evaluate the scores of 
pronunciations and give scores as feedback [2]-[7].  
Goodness of pronunciation (GOP) is the most representative 
score measure.  GOP is obtained from the target phoneme’s 
posterior probability computed by the acoustic models [3].  
Scoring methods can make a judgement on whether the 
pronunciation is correct or wrong by thresholding, but cannot 
give diagnostic feedback.  The second category of methods 
aims at detecting the details of mispronunciations and giving 
feedback about specific errors such as phoneme substitutions, 

deletions and insertions [8]-[12].  Extended recognition 
networks (ERN) perform well in diagnosing 
mispronunciation types [13]-[15], which incorporate 
manually designed or data-derived phonological rules to 
generate possible phonemic paths in a word, including the 
canonical phonemic path and common mispronunciation 
paths.  However, such approaches lack the ability to diagnose 
mispronunciation patterns in L2 speech that are not covered 
by the phonological rules.  The acoustic-phonemic model 
(APM) is another approach to MDD, which is a deep neural 
network (DNN) that maps input features with acoustic 
information and phonemic context information into 
phonemic posterior probabilities [12].  APM can achieve 
better performance in MDD due to the incorporation of the 
canonical phonemic context information. 

Riding on the development of automatic speech 
recognition (ASR) [16] and deep learning technologies [17], 
MDD has achieved much improvement, but there are still 
problems in current approaches.  First, the phonemes in 
mispronunciation may carry characteristics different from the 
counterparts in correct pronunciation.  For example, a 
common mispronunciation found in Cantonese L2 English 
shows that the phoneme /th/ may be mispronounced as a 
sound that bears resemblance to both /f/ and /th/.  But the 
current systems only regard them as the same.  Second, the 
proportion of mispronunciation is far less than correct in L2 
speech [12].  Such data imbalance problem will influence the 
performance of the systems. 

Inspired by multi-task learning in ASR [18]-[23], we 
propose the multi-task APM to solve the above problems.  
Correct and mispronunciations are processed separately in 
multi-task manner. 

2. ACOUSTIC-PHONEMIC MODEL (APM) 
The acoustic-phonemic model (APM) calculates the phone-
state posterior probabilities from the input acoustic and 
phonemic features [12].  As shown in Fig. 1, the input of 
APM is the concatenation of acoustic features ( 𝑥" ) and 
phonemic features (𝑞"$%&").  After several hidden layers, the 
phone-state posterior probabilities P 𝑠% 𝑥",𝑞"$%&" , 𝑖 ∊ [1… 144] 
are derived.  Finally, Viterbi decoding is used to generate the 
recognized phoneme sequence.  For each frame, APM uses 
Mel-frequency cepstral coefficients (MFCC) as acoustic 
features (𝑥") and 7 canonical phones (3 before, 1 current and 
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3 after) as phonemic features (𝑞"$%&"), where the alignment 
between acoustic frame and the corresponding canonical 
phone is performed by Gaussian mixture model-hidden 
Markov model (GMM-HMM).  For example, in Fig.2(a), the 
7 canonical phones (𝑞"$%&") of the frame t=0.90s are /dh ax sil 
n ao r th/. 

APM introduces canonical phones as features and adds 
context information to input, leading to better results over 
other methods.  However, APM tends to miss the recall of 
actually mispronounced phones (recall rate is less than 70%) 
[12].  One reason is that the proportion of mispronunciations 
is far less than the correct pronunciations (around 16:84 
according to dataset statistics).  Such data imbalance problem 
degrades the performance of the model.  Furthermore, there 
may be differences between correct and mispronunciations of 
a phone.  Treating them as the same may further affect 
model’s performance. 

3. MULTI-TASK LEARNING FOR APM 
3.1. Multi-Task APM (MT-APM) 
To solve the aforementioned problems, we propose the multi-
task APM (MT-APM) by incorporating the multi-task 
learning technique into APM, where the phone state posterior 
probabilities are trained by multi-task learning considering 
both correct and mispronunciation recognition tasks. 
3.1.1. Structure of MT-APM 
As shown in Fig.3(a), MT-APM involves two tasks: Task 1 
deals with correct pronunciations (correct recognizer) and 
Task 2 for mispronunciations (mispronunciation recognizer).  
The two tasks are of equal importance and can be trained and 
used with multi-task learning.  The acoustic and phonemic 
features (𝑥", 𝑞"$%&") are concatenated together as the input of 
MT-APM; followed by several shared hidden layers that are 
jointly trained by the two tasks; and the output of MT-APM 
are two separate layers computing phone-state posterior 
probabilities for the two tasks respectively.  In MT-APM, the 
correct and mispronunciations are processed separately in 
two tasks but with shared common characteristics in multi-
task learning, which improves the recognition performance 
(in calculating phone-state posterior probabilities) of both 
correct and mispronunciation recognizers. 
3.1.2. Labels of Data for MT-APM 
For APM, there are 144 phoneme states (48 phonemes * 3 
states per phoneme) for labels.  The label of each frame is 
obtained by forced alignment with linguists’ Annotation.  In 
MT-APM, we introduce two new states (mis and cor) for the 
two tasks, mis for Task 1 and cor for Task 2 respectively.  mis 
serves as the “collection” state for all pronunciations that do 
not belong to any of the 144 states of correct pronunciations 
in correct recognizer (Task 1), while cor serves as similar 
purpose in mispronunciation recognizer (Task 2).  As shown 
in Fig.2, the Annotations are compared with the canonical 
phones 𝑞"$%&"  at frame level to determine the correct and 
mispronunciation segments.  If a frame belongs to a correct 
segment (i.e. Annotation is the same as canonical phone), its 

label for Task 1 is the canonical phone, while its label for 
Task 2 is cor.  If a frame belongs to a mispronounced segment 
(i.e. Annotation is different from canonical phone), its label 
for Task 1 is mis, while its label for Task 2 is the Annotation 
phone.  Fig.2(b) provides the example labels of the data for 
MT-APM.  
3.1.3. Joint Decoding for MT-APM 
For Task 1, its output is a vector representing the probabilities 
of all correctly pronounced phone-states P(𝑐𝑠% 𝑥",𝑞"$%&") and 
the probability of mispronunciation P(𝑚𝑖𝑠 𝑥",𝑞"$%&").  While 
for Task 2, its output is the probabilities of all mispronounced 
phone-states P(𝑚𝑠% 𝑥",𝑞"$%&")  and the probability of correct 
pronunciation P(𝑐𝑜𝑟 𝑥",𝑞"$%&").  Here, 𝑐𝑠%  is the 𝑖th correctly 
pronounced phone-state and 𝑚𝑠%  is the 𝑖 th mispronounced 
phone-state, 	𝑖 ∊ [1 … 144]. 

Joint decoding scheme is then proposed for MT-APM, 
as shown in Fig. 4.  For each frame, the P(𝑚𝑖𝑠 𝑥",𝑞"$%&") from 
Task 1 and P(𝑐𝑜𝑟 𝑥",𝑞"$%&") from Task 2 are compared first.  If 
P(𝑚𝑖𝑠 𝑥",𝑞"$%&")	 is greater than P(𝑐𝑜𝑟 𝑥",𝑞"$%&"), the frame is 
treated as a mispronounced frame and the P(𝑚𝑠% 𝑥",𝑞"$%&"), 𝑖 ∊
[1… 144]	 from Task 2 are used as the final 144 bits output for 
Viterbi decoding.  Otherwise, the frame is treated as correctly 
pronounced and the P 𝑐𝑠% 𝑥",𝑞"$%&" , 𝑖 ∊ [1… 144]	 are used for 
decoding. 
3.2. Feature Representation for MT-APM (R-MT-APM) 
In MT-APM, the two tasks recognize the frames into different 
phone-states (𝑐𝑠% or 𝑚𝑠%) according to the distribution of the 
input acoustic and phonemic features (𝑥", 𝑞"$%&").  To increase 

 
Fig.1. Diagram of acoustic-phonemic model (APM) 

 
Fig.2. (a) An example of L2 speech aligned with canonical 

phones 𝑞"$%&"  [12]; and (b) corresponding ground-truth labels 
in MT-APM and R-MT-APM 
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the distinction between feature distributions of correct and 
mispronunciations, we improve MT-APM by adding the 
feature representation module and propose the R-MT-APM. 
3.2.1. Structure of R-MT-APM 
As shown in Fig.3(b), the difference between R-MT-APM 
and MT-APM is the representation module.  To derive R-
MT-APM, a correct-mispronunciation DNN (CM-DNN) is 
first trained in stage 1, to judge if the current frame has correct 
pronunciation (cor) or mispronunciation (mis).  The trained 
CM-DNN is fixed during the network training of stage 2.  For 
input features (𝑥", 𝑞"$%&"), P 𝐶 𝑥",𝑞"$%&"  and P(𝑀 𝑥",𝑞"$%&") are 
derived first through the fixed trained CM-DNN.  A dense 
output vector is then computed which has the same bits as 
input features through linear transformation in the dense layer.  
The represented new features are finally computed by adding 
corresponding bits of input features (𝑥", 𝑞"$%&") and the dense 
output vector. 
3.2.2. Proof of the Effectiveness of Representation Module 
In R-MT-APM, the representation module uses information 
about whether current frame has correct pronunciation or 
mispronunciation, as computed by a well-trained CM-DNN.  
Such a process is expected to increase the inter-class distance 
while keeping the intra-class characteristics of feature 
distributions of correct pronunciations and mispronunciations, 
and hence will further boost the performance of the model.  

This section proofs that the proposed representation module 
satisfies such requirements.  

Let 𝑓"% be the 𝑖th bit of input feature at time step 𝑡.  After 
the representation module, 𝑓"% becomes 𝑛𝑒𝑤_𝑓"%: 

𝑛𝑒𝑤_𝑓"% = 𝑓"% + 𝑤%BP 𝐶 𝑥",𝑞"$%&" + 𝑤%CP 𝑀 𝑥",𝑞"$%&" 										(1) 
where 𝑤%B	and 𝑤%C are the parameters in the dense layer, and 

P 𝐶 𝑥",𝑞"$%&" + P 𝑀 𝑥",𝑞"$%&" = 1																												(2) 
The mathematical expectation and variance of 𝑛𝑒𝑤_𝑓"% 

can be computed as: 
𝐸 𝑛𝑒𝑤_𝑓	 % = 𝐸 𝑓	 % + 𝑤%B𝑃 𝐶 𝑥	,𝑞	$%&" + 𝑤%C𝑃 𝑀 𝑥	,𝑞	$%&" 																								 

= 𝐸 𝑓	 % + 𝑤%B𝐸 𝑃 𝐶 𝑥	,𝑞	$%&" + 𝑤%C𝐸 𝑃 𝑀 𝑥	,𝑞	$%&" 										 

= 𝐸 𝑓	 % + (𝑤%B − 𝑤%C)𝐸 𝑃 𝐶 𝑥	,𝑞	$%&" + 𝑤%C																						(3) 
𝐷 𝑛𝑒𝑤_𝑓	 % = 𝐷 𝑓	 % + 𝑤%B𝑃 𝐶 𝑥	,𝑞	$%&" + 𝑤%C𝑃 𝑀 𝑥	,𝑞	$%&" 																									 

= 𝐷 𝑓	 % + (𝑤%B − 𝑤%C)𝑃 𝐶 𝑥	,𝑞	$%&" + 𝑤%C 																																				 
= 𝐷(𝑓	 %) + 𝑤%𝐷 𝑃 𝐶 𝑥	,𝑞	$%&" + 2𝑤%𝑐𝑜𝑣 𝑓	 % , 𝑃 𝐶 𝑥	,𝑞	$%&" 	 

(4) 
Assume 𝑤%B − 𝑤%C = 𝑤%  and 𝑃 𝐶 𝑥	,𝑞	$%&" |𝐶𝑜𝑟~𝑁(𝜇O, 𝜎OC) , 

𝑃 𝐶 𝑥	,𝑞	$%&" |𝑀𝑖𝑠~𝑁(𝜇Q, 𝜎QC): 
𝐸 𝑛𝑒𝑤_𝑓	 %|𝐶𝑜𝑟 = 	𝐸 𝑓	 %|𝐶𝑜𝑟 + 𝑤%𝜇𝐶 + 𝑤%C																				(5) 
𝐸 𝑛𝑒𝑤_𝑓	 %|𝑀𝑖𝑠 = 	𝐸 𝑓	 %|𝑀𝑖𝑠 + 𝑤%𝜇𝑀 + 𝑤%C																			(6) 

𝐷 𝑛𝑒𝑤_𝑓	 %|𝐶𝑜𝑟 = 𝐷 𝑓	 %|𝐶𝑜𝑟 + 𝑤%𝜎OC + 2𝑤%(𝐸 𝑓	 %𝑃 𝐶 𝑥	,𝑞	$%&" − 𝜇O𝐸(𝑓	 %)) 
= 𝐷 𝑓	

𝑖|𝐶𝑜𝑟 + 𝑤𝑖𝜎𝐶
2 + 2𝑤𝑖𝐸 𝑓	

𝑖(𝑃 𝐶 𝑥	,𝑞	
𝐷𝑖𝑐𝑡 − 𝜇𝐶) 				(7) 

𝐷 𝑛𝑒𝑤_𝑓	 %|𝑀𝑖𝑠 = 𝐷 𝑓	 %|𝑀𝑖𝑠 + 𝑤%𝜎QC + 2𝑤%𝐸 𝑓	 %(𝑃 𝐶 𝑥	,𝑞	$%&" − 𝜇Q) 			(8) 
For CM-DNN, it is a binary classification (cor or mis) 

network.  By careful and sufficient training, the variances of 
its outputs P(𝐶 𝑥",𝑞"$%&") and 	P 𝑀 𝑥",𝑞"$%&"  (i.e. 𝜎OC ,	𝜎𝑀2) can 
be controlled, while the expectations (i.e. 𝜇O, 𝜇Q) are near to 1 
and 0 respectively.  Hence: 

𝐸 𝑛𝑒𝑤_𝑓	 %|𝐶𝑜𝑟 → 	𝐸 𝑓	 %|𝐶𝑜𝑟 + 𝑤%B																									(9𝑎) 
𝐸 𝑛𝑒𝑤_𝑓	 %|𝑀𝑖𝑠 → 	𝐸 𝑓	 %|𝑀𝑖𝑠 + 𝑤%C																									(9𝑏) 
𝐷 𝑛𝑒𝑤_𝑓	

𝑖|𝐶𝑜𝑟 → 𝐷 𝑓	
𝑖|𝐶𝑜𝑟 																																						(9𝑐) 

𝐷 𝑛𝑒𝑤_𝑓	
𝑖|𝑀𝑖𝑠 → 𝐷 𝑓	

𝑖|𝑀𝑖𝑠 																																					(9𝑑) 
which indicates the feature representation module satisfies 
the above requirements. 

4. EXPERIMENTS 
4.1. Speech Corpus 
Our experiments are based on the CU-CHLOE (Chinese 
University CHinese Learners of English) corpus that 
contains L2 English speech uttered by 100 Cantonese 

Fig.3. Diagrams of the proposed MT-APM (a) and R-MT-APM (b) 

 
Fig.4. Joint decoding scheme for MT-APM 
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speakers (CHLOE-C) and 110 Mandarin speakers (CHLOE-
M) [24].  30% of each speaker audios are labeled by skilled 
linguists with L2 speakers’ actual pronunciations (i.e. 
Annotation in Fig. 2).  To eliminate the influence of inherent 
differences between Mandarin and Cantonese speakers, all 
our experiments are conducted only on CHLOE-C. 
4.2. Experimental Setup 
To evaluate the performance of models, three scales (small, 
medium and large) of CHLOE-C dataset are used.  The data 
of 40, 60 and 80 speakers are randomly selected as training 
set, amounting to 5.0, 7.5 and 9.5 hours respectively.  The 
data of another 20 speakers (2.0 hours) are selected as test set 
and keep consistent across experiments of different scales. 

11 frames (5 before, 1 current and 5 after) of MFCC are 
used as the acoustic features 𝑥".  7 canonical phones (3 before, 
1 current and 3after) are employed as the phonemic features 
(𝑞"$%&"). 

Four different models are implemented for comparison: 
(1) baseline APM; (2) MT-APM; (3) R-MT-APM; and (4) A-
MT-APM.  The A-MT-APM is designed in a straightforward 
way where the CM-DNN outputs P(𝐶 𝑥",𝑞"$%&"), P(𝑀 𝑥",𝑞"$%&") 
are directly appended to (𝑥", 𝑞"$%&") as the input, and the other 
parts are the same as MT-APM.  After preliminary 
experiments on network configurations, all the models have 
7 hidden layers with 2048 units per layer and tanh as 
activation function.  The CM-DNN contains 5 hidden layers 
with 512 units per layer and sigmoid as activation function. 
4.3. Experimental Results 
The performance of phone recognition is evaluated with the 
correctness and accuracy which are computed against 
linguist’s annotations: 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 =
𝑁 − 𝑆 − 𝐷

𝑁
	, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑁 − 𝑆 − 𝐷 − 𝐼
𝑁

											(10) 

where 𝑁  is the total number of labels, and 𝑆, 𝐷, 𝐼	  are the 
counts of substitution, deletion and insertion errors.  The 
performance of MDD is evaluated with the hierarchical 
evaluation structure proposed in [25].  True Acceptance (TA), 
True Rejection (TR), False Rejection (FR), False Acceptance 
(FA), Correct Diagnosis (CD) and Diagnosis Error (DE) are 

defined as Table 2.  Precision, Recall, F-Measure and 
accuracies of mispronunciation detection and diagnosis are 
used for performance measurement of MDD: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑅

𝑇𝑅 + 𝐹𝑅
	, 𝑅𝑒𝑐𝑎𝑙𝑙	 =

𝑇𝑅
𝑇𝑅 + 𝐹𝐴

																			 11𝑎  

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙	
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙	

																				 11𝑏  

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 =
𝑇𝐴 + 𝑇𝑅

𝑇𝐴 + 𝐹𝑅 + 𝐹𝐴 + 𝑇𝑅
																							 11𝑐  

𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	
𝐶𝐷

𝐶𝐷 + 𝐷𝐸
																																											 11𝑑  

The results are shown in Table 1.  MT-APM and R-MT-
APM approaches outperform baseline on both performance 
of phone recognition and MDD.  Comparing R-MT-APM 
with APM shows significant F-Measure improvement from 
64.44% to 74.02% (small scale), from 65.02% to 76.02% 
(medium scale) and from 72.13% to 77.07% (large scale). 

5. CONCLUSION 
This paper incorporates the multi-task learning technique into 
APM.  The phone state posterior probabilities are derived in 
multi-task manner considering both correct recognition and 
mispronunciation recognition tasks.  A feature representation 
module is then proposed to improve performance.  Compared 
with the baseline APM, the proposed MT-APM and R-MT-
APM achieve better performance.  Through the 
representation module of input features, R-MT-APM 
achieves the highest mispronunciation detection accuracy. 
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Table 2. The definitions in hierarchical evaluation 

For all Phonemic Units 
Recognition Result 

Correct 
Pronunciation Mispronunciation 

Manually 
Transcribed 
Phonemic 

Unit 

Correct 
Pronunciation TA FR 

Mispronunciation FA TR (CD/DE) 

 

Table 1. Experimental results of phone recognition and MDD with different metrics 

Dataset Method Performance of Recognition Performance of Mispronunciation Detection and Diagnosis 
Correct Accuracy Precision Recall F-measure Detection Accuracy Diagnosis Accuracy 

Small 
Scale 

APM 79.60% 72.20% 52.02% 84.67% 64.44% 84.24% 57.07% 
MT-APM 84.40% 76.80% 59.31% 89.33% 71.29% 87.86% 75.69% 

R-MT-APM 86.10% 77.00% 63.47% 88.78% 74.02% 89.44% 74.07% 
A-MT-APM 74.80% 61.80% 52.02% 84.67% 64.44% 84.24% 57.07% 

Medium 
Scale 

APM 80.80% 78.60% 53.22% 83.56% 65.02% 84.92% 73.47% 
MT-APM 85.50% 81.70% 61.29% 86.14% 71.62% 88.54% 75.83% 

R-MT-APM 87.50% 83.10% 65.84% 89.92% 76.02% 90.44% 77.71% 
A-MT-APM 83.70% 78.70% 62.26% 90.35% 73.72% 89.10% 73.77% 

Large 
Scale 

APM 81.40% 76.30% 63.35% 83.74% 72.13% 89.03% 68.36% 
MT-APM 86.40% 80.50% 62.78% 89.05% 73.64% 89.26% 79.63% 

R-MT-APM 88.20% 83.30% 67.65% 89.52% 77.07% 90.99% 78.24% 
A-MT-APM 86.80% 81.30% 67.75% 85.60% 75.63% 90.70% 75.72% 
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