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Abstract—End-to-end text-to-speech (E2E TTS) synthesis has
achieved great success. This work investigates the emphatic
speech synthesis and control mechanisms in the E2E framework
and proposes an E2E-based method for transferring emphasis
characteristic between speakers. Characteristic differences be-
tween emphatic and neutral speech are learned from a small-
scale corpus containing parallel neutral and emphasis speech
utterances recorded by one speaker and further transferred to
another speaker so that we can generate emphatic speech with
latter speakers voice. Emphasis embedding is injected to the
encoder of the extended E2E TTS model to capture the aforemen-
tioned differences; while the decoder and attention module are
used to decode those differences into synthetic neutral / emphatic
speech. Speaker codes linked to the decoder and attention module
provide the E2E model the ability for characteristic transferring
between speakers. To control the emphatic strength, an encoder
memory manipulation mechanism is proposed. Experimental
results indicate the effectiveness of our proposed model.

Index Terms—end-to-end, expressive speech, multi-speaker
speech synthesis, transfer learning, emphatic speech

I. INTRODUCTION

With the progressive development of deep neural networks
(DNN), nowadays neutral speech synthesis has achieved great
success. Reference [1] proposed Deep Voice, a production-
quality text-to-speech (TTS) system constructed entirely from
DNN. Tacotron, a complicated end-to-end (E2E) TTS model,
was proposed in [2] and obtained superior performance over
a productive statistical parametric speech synthesis system in
terms of naturalness. However, it still remains a challenge to
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control the synthesis model to generate speech with desired
characteristics such as emotion, emphasis, speaker, etc.

Traditional hidden Markov model (HMM) based speech
synthesis is highly controllable [3], [4]. Latest research [5]
indicated it is feasible to control DNN-based speech syn-
thesis model using input codes. Reference [6] used implicit
emotion codes to synthesize expressive speech. Both studies
revealed that the control codes could be determined simul-
taneously with other parts of the model [5], [6]. For E2E
TTS synthesis, Tacotron [2] can achieve better naturalness
in synthetic speech than HMM-based methods. However, the
flexibility in controlling prosodic and spectral characteris-
tics is compromised. Even though [2] conjectured E2E TTS
system more easily allows for rich conditioning on various
attributes, such research has not been well studied. Reference
[7] performed multi-speaker E2E TTS synthesis by extending
Tacotron, exhibiting the feasibility to control E2E TTS model.
Reference [7] also found it is necessary to incorporate speaker
embeddings into the character encoder, otherwise, the model
is incapable of learning its attention mechanism and cannot
generate meaningful output. However, no theoretical proof
is provided for this finding. Furthermore, instead of global
control such as multi-speaker synthesis, effective word- or
phoneme-level local control strategies that are required for
some of the tasks like emphatic speech synthesis have not
been studied for E2E TTS synthesis.

This paper investigates the emphatic speech synthesis and
control mechanisms in the E2E TTS framework and proposes
an E2E-based method for emphasis characteristic transferring
between different speakers. Traditional methods for emphatic
speech synthesis usually employ two speech corpora from
the same speaker to train the model, one large-scale neutral
corpus to ensure the voice quality of synthetic speech and
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the other small-scale emphatic corpus to fine-tune the model
so that it can generate speech with appropriate emphasis
characteristics. However, when only neutral corpus of the
target speaker is available, how to synthesize emphatic speech
of this specific speaker remains a challenging problem. In
this paper, a small-scale parallel corpus (with neutral and
emphatic speech) of another different speaker is adopted to
represent the characteristic differences between emphatic and
neutral speech. Such differences are modeled by the encoder
and corresponding encoder memory through the joint training
of encoder and decoder of the E2E TTS model, which are
further transferred to the target speaker by the decoder and
attention module with the aid of speaker codes. Furthermore,
an encoder memory manipulation mechanism is proposed so
that the emphasis strength of the synthetic speech can be easily
controlled.

II. MODEL

A. Model architecture

The architecture of the controllable multi-speaker end-to-
end emphatic speech synthesis model is illustrated in Fig. 1.

During training, the model learns to infer mel- and linear-
scale spectrogram from character sequence. In the encoder
side, the input character / emphasis flag sequence is first
mapped to a distributed embedding representation by embed-
ding lookup. The embeddings, after processed by the PreNet,
are then fed to the CBHG architecture to generate the encoder
memory. The CBHG [2] is composed of a bank of convolu-
tional filters (ConvNet), highway networks (HighwayNet) and
the bidirectional gated recurrent units (BiGRU). In the decoder
side, the previous time step ground-truth mel-spectrogram, pre-
processed by the PreNet, is sent to the AttentionRNN, together
with the Attention module, to generate the attention of current
time step. Then the AttentionRNN output and the attention
context of current time step are fed to the DecoderRNN to
generate the mel-spectrogram output of current time step. The
PostNet is then used to convert the mel-spectrogram to the
linear-scale spectrogram.

During synthesis, what is different from the training phase
is that the previous time-step output instead of ground-truth
mel-spectrogram is used in the decoder side.

B. Emphasis characteristic transferring between speakers

Different from the basic Tacotron [2] model, we inject
the emphasis information into the CBHG architecture so that
the encoder can model the differences between the neutral
and emphatic inputs. For the decoder, speaker embedding
(SpeakerEmb, which is trained by back-propagation) is used
and linked to the AttentionRNN and DecoderRNN to capture
the acoustic differences of speakers.

Through joint training of emphasis-injected encoder,
speaker-dependent decoder and the attention module, the
model is able to learn the differences between the emphatic
and neutral speech of one speaker and transfer such infor-
mation to another speaker with just neutral recordings. More
details are elaborated as follows. With the above design, using

the training data from the speaker with both emphatic and
neutral speech recordings, the acoustic differences between
emphatic and neutral speech are modeled by the decoder and
attention module, and are conditioned on the emphasis related
linguistic differences captured by the encoder memory of the
emphasis-injected encoder. Furthermore, using the training
data from different speakers with neutral speech recordings,
the speaker related acoustic differences are also modeled by
the decoder and attention module with the aid of speaker
embedding codes. To generate emphatic speech for the speaker
with only training data of neutral speech recordings, what we
need to do is just set the appropriate speaker embedding code
and feed the emphasis character sequence input to the encoder.

C. Different setups of linguistic emphatic encoder

To synthesize emphatic speech, emphasis information must
be fed to the model. We designed several encoders, as shown
in Fig. 2, to find the most effective way to inject emphasis
information into the basic encoder that consists of one PreNet
layer and one CBHG module.

1) Emphatic encoder A (EEA). The architecture of EEA
is the same as the basic encoder, but the input is
different. For EEA, the input character sequence is
augmented with the emphatic code, “0” for neutral “1”
for emphasized, at the end of every word. An example
sentence for EEA is “The0 trend1 of0 pretending0 to0
contend1 has0 extended0.” where “trend” and “contend”
are emphasized.

2) Emphatic encoder B (EEB). In EEB, we investigate
injecting the emphatic embedding (EmphasisEmb) into
ConvNet. The input of EEB consists of two parts, the
character sequence and the emphasis flag sequence.
For characters in the character sequence, their emphatic
codes (1 or 0 indicating if the corresponding character is
from emphasized or neutral word) compose the emphasis
flag sequence. The EmphasisEmb, a distributed repre-
sentation of the emphatic codes by embedding lookup,
is concatenated with the outputs of the encoder PreNet
and fed to the ConvNet.

3) Emphatic encoder C (EEC). In EEC, a little different
from EEB, EmphasisEmb is concatenated with the out-
puts of the HighwayNet and fed to the BiGRU in CBHG.
For both EEB and EEC, the dimension of EmphasisEmb
is set to 32, while a smaller one works as well.

D. Speaker-dependent decoder

In this work, we use two speech corpora recorded by
different speakers for emphatic speech synthesis, a large scale
neutral corpus by one speaker and a small scale emphatic
corpus by another speaker. The purpose is to train the model
to learn the emphasis characteristics from the emphatic corpus
and then transfer them to the neutral corpus speaker. We
extend Tacotron [2] to handle multi-speaker speech synthesis.
An insight into the functionalities of different modules of
the E2E model, the DecoderRNN may act as the traditional
acoustic module of a TTS system, the AttentionRNN has the



Fig. 1. Architecture of the controllable emphatic multi-speaker end-to-end text-to-speech (TTS) model.

Fig. 2. Different setups of the emphatic encoder.

similar function as the traditional duration module, while the
encoder serves as the module for linguistic emphatic feature
extraction and representation. In this way, we can implement
multi-speaker speech synthesis like [5].

In this work, the speaker information is only considered
and injected to the decoder, leading to the speaker-dependent
decoder (SDD); while the encoder is speaker independent
(i.e. speaker independent encoder, SIE). We concatenate the
speaker embedding, the context vector and the AttentionRNN
output as the input of the DecoderRNN; and concatenate the
SpeakerEmb and the decoder PreNet output as the input of the
AttentionRNN. SpeakerEmbs are learned by back-propagation
in conjunction with other parts of the model. The dimension
of SpeakerEmb is set to 32.

E. Emphasis strength control

In the E2E model, the emphatic encoder, the decoder and
the attention module are jointly trained. The output of encoder
module, i.e. the encoder memory, captures information from
not only the input character / emphasis flag sequences but also
the acoustic characteristics back-propagated from the decoder
and attention modules.

During synthesis, for the same character sequence input,
we can get either an emphatic encoder memory (Memp) when
desired emphasis flag sequence is given or a neutral encoder
memory (Mneu) when the emphasis codes are all set to 0. Such
memories are further fed to attention and decoder modules to
generate emphatic or neutral synthetic speech respectively. To
control the emphasis strength of synthetic speech, we pro-
pose an encoder memory manipulation mechanism by linear
interpolation to derive the re-represented memory (Mre), as
shown in Fig. 3. The emphasis strength can be controlled by
the hyperparameter α. The larger value of α, the stronger the
emphasis level is.

III. EXPERIMENTS AND ANALYSIS

A. Corpora

Two corpora are used in our work for experiments. The first
one is a large-scale neutral corpus from Blizzard Challenge
2011, which contains about 10 hours of speech data uttered
by a professional female speaker, Nancy.

The second one is a small-scale emphatic corpus with paral-
lel neutral and emphatic speech recordings. 350 text prompts,
each of which contains one or more emphatic words, are



Fig. 3. Emphasis strength control.

designed to cover all pronunciation mechanisms of phonemes.
However, since we only have 350 text prompts, apparently, the
phonetic contexts are not covered thoroughly. Two contrastive
speech utterances, a neutral version and an emphatic one,
are recorded for each of the prompts by another professional
female speaker in a sound proof studio.

The large-scale Nancy corpus ensures the well training of
the E2E model to generate speech with high voice quality,
while the small-scale emphatic corpus is used for modeling
emphasis characteristics that are further transferred to Nancy
speaker to synthesize emphatic speech with Nancys voice.

B. Experimental setup

Since we synthesize speech directly from character se-
quences, common text analysis routine is not needed. The
text prompts are just preprocessed by a simple normalization
procedure to convert the digits into spoken form according to
the speech utterance, e.g. “1908” is normalized to “nineteen
O eight”.

The speech waveforms of the two corpora are sampled
at 16 kHz. Griffin-Lim [8] is used to reconstruct waveform,
only spectrogram is extracted. Before extracting features, all
waveforms are pre-emphasized with a coefficient of 0.97 as
suggested by [2]. Spectral analysis is conducted with Hann
windowing, 50 ms frame length, 12.5 ms frame shift and
1024-point fast Fourier transform (FFT). 513-dimensional
spectrogram is set as the target of the post-processing net of
the model, and 80-band mel-spectrogram is set as the target
of the decoder. The log-magnitude spectrograms of training
set are standardized to have zero mean and unit variance. The
spectrograms of validation and test set are normalized using
the statistical parameters of training set.

We randomly select 80% of the neutral and emphatic corpus
as training set, 10% as validation set and the rest as test set.
The parallelization property of the emphatic corpus is kept
for the training, validation and test set. Since the basic E2E
TTS model we adopted is Tacotron [2], which predicts several
frames at one decoding time step, we set the reduction rate (r)
as 5, i.e. five frames are predicted at each decoding time step.
Adam optimizer [9] is used with fixed learning rate 0.001. All
our models are trained for 50,000 global steps with a batch
size of 32, while longer training time may further improve the
quality of synthetic speech.

To evaluate the proposed model, two sets of subjective tests
are conducted. 15 sentences were randomly selected from the
test set for synthesizing speech. 20 subjects without listening
impairment were invited to participate in the tests.

C. Experiments on the effect of speaker code in encoder

As aforementioned, [7] claimed speaker embedding must be
sent to the encoder to learn attention and generate meaningful
output. We conducted two subjective tests to compare the
encoder without speaker embedding (i.e. the SIE proposed in
our work) and the encoder with speaker embedding (speaker
dependent encoder, SDE). SDE is built by injecting speaker
embedding into the HighwayNet of the encoder CBHG, as
suggested in [7]. Both methods are used to synthesize neutral
speech for large-scale corpus (SDE-L, SIE-L) and small-scale
corpus (SDE-S, SIE-S). Corresponding original recordings
from the test set are also provided during tests.

1) Speaker similarity test. The subjects were asked to
choose which of 2 synthetic neutral speech, generated
by SDE and SIE, sounds more similar to the reference
recording.

2) Multi-speaker speech naturalness test. The subjects
were asked to rate the naturalness in 5-point scale for
the speech files: 2 neutral utterances synthesized by SDE
and SIE and 1 natural reference speech recording.

The results are given in Fig. 4 and 5. From Fig. 4, no
apparent preference can be observed between SIE and SDE
for both speakers. From Fig. 5, there are also no significant
differences for MOS between SIE and SDE for two speakers,
respectively. So we speculate that it is not necessary to
inject speaker information into the encoder, while further
experiments are needed to validate this idea in future work.

Fig. 4. Results for speaker similarity test.

Fig. 5. Results for multi-speaker naturalness test.

D. Experiments for emphasis characteristic transferring on
different setups of emphatic encoder

To validate emphasis characteristic transferring and investi-
gate an effective way of injecting emphatic control signal, we
further conducted two subjective tests.



1) Emphatic speech naturalness test on the neutral-
corpus speaker. The first test is for evaluating the
naturalness of the emphatic speech synthesized by the
models with different setup of emphatic encoder (EEA,
EEB or EEC). In this test, only synthetic speech of large-
scale corpus speaker (L) is evaluated. The results are
shown in Fig. 6, which indicate that EEA and EEB
can achieve comparable naturalness of the synthetic
emphatic speech, and they both outperform EEC. A
possible explanation is that the convolution layers (Con-
vNet) can better model the complex context information
of emphatic words in EEA and EEB.

Fig. 6. Results for emphatic speech naturalness test.

2) Emphasis identification test on the neutral-corpus
speaker. In this test, the subjects are asked to identify all
the emphasized words in the synthetic speech. Another
10 sentences were randomly selected from the test set.
Due to the similar performance of EEA and EEB, only
EEA setup was evaluated. The precision and recall of
the perceived emphatic words are 89.47% and 94.44%,
which indicates the high performance of the model in
generating emphatic speech.

E. Analysis on the encoder memory in capturing and control-
ling emphasis characteristics

As mentioned in II-E, the encoder memory is expected
to capture information from not only the input sequences
but also the emphasis characteristics. To validate this, we
further performed analysis of the learnt encoder memory.
We first calculate the difference vector Ediff by subtracting
corresponding bits of emphatic encoder memory (Memp) and
neutral memory (Mneu) of the same character sequence input,
at each encoding step. K-means clustering is then performed
to cluster all the samples of Ediff from the training set into
different categories.

We found that the vectors can be clustered in an intuitive
way when K = 7. The clustering results of the log-scale
Euclidean and cosine distance between the emphatic and
neutral memory of an example sentence is shown in Fig. 7. As
can be seen, the nearer the word is to the emphatic word, the
larger the Ediff is. This confirms to the phonetic knowledge
of acoustic realization of emphasis that the emphasized speech
segments tend to have more influence to its adjacent segments
and such influence will degrade for segments far away from
the emphasized one [10]–[12]. As for the clustering result, it is

quite similar to the manually defined 6 emphasis categories as
shown in [13]. All these promising findings indicate that our
proposed method is really effective in capturing the emphasis
characteristics.

Furthermore, the method to control emphasis levels as
proposed in II-E also utilizes the above findings. By tuning
hyperparameter α of linear interpolation, the method changes
the value of Ediff vector that will further lead to the change
of acoustic realization of emphasis degree. To demonstrate
the effectiveness of our emphatic strength control method, we
analyzed the pitch under different α for a sentence. As shown
in Fig. 8, the larger α is, the higher the pitch of the emphasized
word is. Furthermore, the acoustic characteristics of the words
around the emphasized are influenced too. Besides pitch,
duration is also an important acoustic correlates of emphasis.
Fig. 9 shows the word duration under different α. The larger
α is, the longer the duration of emphasized word is. All these
observations confirm to the phonetic knowledge of acoustic
realization of emphasis, indicating the effectiveness of our
proposed method.
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V. CONCLUSION

In this paper, we tried to transfer the emphasis characteris-
tics from the small-scale corpus to the larger one. To achieve
this purpose, we designed a multi-speaker end-to-end TTS
model with SIE, found to be comparable to SDE. We also
investigated the different ways of injecting emphatic control
information; results showed that EEA and EEB achieved the
best performance. In addition, we found that the emphatic
strength of synthesized speech could be controlled in a simple
way. We did some objective analysis and found that the model
could learn the influence of emphatic words on their neighbors.
For future work, we plan to transfer other character of a small-
scale corpus to a larger one.
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