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Abstract 

Most conventional methods to detect glottal closure instants 

(GCI) are based on signal processing technologies and 

different GCI candidate selection methods.  This paper 

proposes a classification method to detect glottal closure 

instants from speech waveforms using convolutional neural 

network (CNN).  The procedure is divided into two successive 

steps.  Firstly, a low-pass filtered signal is computed, whose 

negative peaks are taken as candidates for GCI placement.  

Secondly, a CNN-based classification model determines for 

each peak whether it corresponds to a GCI or not.  The method 

is compared with three existing GCI detection algorithms on 

two publicly available databases.  For the proposed method, 

the detection accuracy in terms of F1-score is 98.23%.  

Additional experiment indicates that the model can perform 

better after trained with the speech data from the speakers who 

are the same as those in the test set. 

Index Terms: glottal closure instants (GCI), pitch mark, 

convolutional neural network (CNN), classification 

1. Introduction 

In speech processing, glottal closure instants (GCIs) are 

referred to the instances of significant excitation of the vocal 

tract.  These particular time events correspond to the moments 

of high energy in the glottal signal during voiced speech.  For 

speech analysis, closed-phase linear prediction autoregressive 

analysis techniques have been developed for better estimating 

the prediction coefficients, which results in a better estimation 

of the vocal tract resonances [16].  These techniques explicitly 

require the determination of GCIs.  A wide range of 

applications also implicitly assume that these instants are 

already known.  In concatenative speech synthesis, it is well 

known that some knowledge of a reference instant is necessary 

to eliminate concatenation discontinuities [10].  Knowing the 

GCI location is of particular importance in speech processing.  

Such information has been put to practical use in applications 

including prosodic speech modification [1], glottal flow 

estimation [2], speech synthesis [3][4] and data-driven voice 

source modelling [5].  

Although GCIs can be reliably detected from a 

simultaneously recorded electroglottograph (EGG) signal 

(which measures glottal activity directly—see Figure 1.c), it is 

not always possible or comfortable to use an EGG device 

during recording [11].  Hence, there is a great interest to detect 

GCIs directly from the speech signal. 

 

Figure 1: Example of a speech signal (a), the corresponding 

lowpass filtered signal (b), EGG signal (c). GCIs are marked 

by red dashed lines in speech-based and glottal-based signals 

respectively. Note the delay between speech and EGG signals. 

 

Various algorithms have been proposed to detect GCIs 

directly in speech signals.  Most conventional methods to 

detect GCI are based on signal processing technologies and 

different GCI candidate selection methods.  For example, most 

previous work have been devoted to convert original speech 

waveform to a new signal in which features related to GCI 

locations are easily to be identified, followed by identifying a 

series of GCI candidates from which accurate GCI locations 

are identified. 

Several approaches relying on the Hilbert Envelope (HE) 

have been proposed in the literature [6][7][8].  The Dynamic 

Programming Phase Slope Algorithm (DYPSA) [9] estimates 

GCIs by the identification of peaks in linear prediction 

residual of speech in a similar way to the HE method.  The 

Speech Event Detection using the Residual Excitation and a 

Mean-based Signal (SEDREAMS) algorithm was proposed in 

[10] as a reliable and accurate method for locating both GCIs 

and GOIs from the speech waveform.  The ERT-P3 algorithm 

applies extremely randomized trees (ERT) trained on relevant 

features extracted around potential locations of GCIs (peaks in 

speech waveforms) to classify whether or not a peak 

corresponds to a true GCI [11].  It was shown that the ERT-P3 

algorithm and the technique proposed in [11] clearly 

outperformed other state-of-the-art methods.  
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This paper proposes a classification method to detect 

glottal closure instants from speech waveforms using 

convolutional neural network (CNN).  The procedure is 

divided into two successive steps.  Firstly, a low-pass filtered 

signal is computed, whose negative peaks are taken as 

candidates for GCIs placement.  Secondly, a CNN-based 

classification model classifies each peak into two categories, 

deciding whether or not a peak corresponds to a GCI. 

Unlike the above conventional algorithms which require 

some manual tuning of parameters (such as window length), 

the proposed method is similar to ERT-P3 algorithm that it is 

purely data-driven as the parameters of the classifier are set up 

automatically based on a training database. 

The paper is structured as follows.  The proposed method 

is fully described in Section 2.  In Section 3, we present our 

experiments and results obtained on the CMU ACRTIC 

database [12].  The proposed method is compared with 

DYSPA, SEDREAMS and ERT-P3 algorithms according to 

their GCI detection performance.  Finally, Section 4 concludes 

the paper. 

2. Proposed Method 

The problem of GCI detection could be viewed as a two-class 

classification problem in deciding whether a GCI candidate 

(peaks in speech waveforms) represents a reference GCI [13].  

2.1. GCI candidates 

 

Figure 2: Illustration of GCI candidates’ selection: raw signal 

(dashed line), low-pass filtered signal (solid line), GCI 

candidates (circle), true GCIs (solid points) 

 

Since glottal wave makes up the low-frequency content of the 

raw speech signal, high-frequency content helps little on GCI 

detection.  Speech waveforms were low-pass filtered by a 6th-

order low-pass Butterworth filter with a cutoff frequency of 

700 Hz to reduce the high-frequency structure in the speech 

signal.  The low-pass filtered signal needs to be move ahead 

about 1.5ms (depends on signal period and cutoff frequency) 

to fixed the time delay caused by low-pass filtering.  Negative 

peaks in the low-pass filtered signal were taken as the 

candidates for the GCI placement.  Details on selecting GCI 

candidates are illustrated in Figure 2. 

2.2. Features 

In [11], best sample-based classifier could not outperform the 

best peak-based classifier.  In this work, CNN based method is 

adopted to deliver better classification accuracy for GCI on the 

raw waveform samples.  Raw waveform samples in a window 

surrounding the negative peak (GCI candidates) were taken as 

features in our proposed method.  For the speech waveform 

sampled at 16 kHz, if the window length is 30ms (S = 30), 481 

samples (one sample representing the current peak plus 240 

samples to the left and 240 samples to the right) were taken as 

features. 

2.3. Classifier 

Different from the multilayer perceptron (MLP) classifier 

which directly classify candidates on waveform samples in the 

window [11], a 9-layer Convolutional Neural Network (CNN) 

model whose structure is described as Table 1 was used in our 

proposed method to extract different high-level features from 

the whole window, followed by a multilayer fully connected 

network to make the decision based on the extracted features.  

Cross entropy with L2 norm is used as the loss function.  

 

Table 1: Detailed Specifications of the Proposed Network for 

GCI classification 

Layers 

Output shape 

(channels * 

time dimension) 

padding 

Kernel 

Size / 

Strides 

Output 2*1   

Fully Connected 64*1   

Max_Pool_9 512*1 same 1*3 / 2 

Conv_9 512*2 same 1*3 / 1 

Max_Pool_8 512*2 same 1*3 / 2 

Conv_8 512*4 same 1*3 / 1 

Max_Pool_7 512*4 same 1*3 / 2 

Conv_7 512*8 same 1*3 / 1 

Max_Pool_6 512*8 same 1*3 / 2 

Conv_6 512*16 same 1*3 / 1 

Max_Pool_5 256*16 same 1*3 / 2 

Conv_5 256*31 same 1*3 / 1 

Max_Pool_4 128*31 same 1*3 / 2 

Conv_4 128*61 same 1*3 / 1 

Max_Pool_3 64*61 same 1*3 / 2 

Conv_3 64*121 same 1*3 / 1 

Max_Pool_2 32*121 same 1*3 / 2 

Conv_2 32*241 same 1*5 / 1 

Max_Pool_1 16*241 same 1*3 / 2 

Conv_1 16*481 same 1*7 / 1 

Input 1*481   

 

The number of CNN layers depends on time dimension of 

the input vector (481).  In this work, the number of layers is 9.  

With this number of layer, the proposed structure can exactly 

down sample on time dimension from 481 to 1.  A schematic 

view of the resulting network is depicted in Figure 3.  

In ERT-P3 algorithm, a set of local descriptors reflecting 

the position and shape of other 2P neighboring peaks are used 

as GCI candidate features [11].  We think that this kind of 

artificial designed features limit the performance of the 

classifier.  In our proposed method, CNN extracts features 

from raw wave samples, and feeds these high-level features to 

the following fully connected network for final classification. 

3. Experiments and Results 

In this section, the proposed method was evaluated in the GCI 

classification task and the GCI detection task by comparing 

with other algorithms. 
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3.1. Speech material 

The evaluation of GCI detection methods relies on the ground-

truth obtained from EGG recordings.  Electroglottography 

(EGG), also known as electro-laryn-gography, is a non-

intrusive technique for measuring the impedance between the 

vocal folds.  The EGG signal is obtained by passing a weak 

electrical current between a pair of electrodes placed in contact 

with the skin on both sides of the larynx.  This was done in 

this work by HQTX program of Speech Filing System (SFS) 

[14] for each database.  

 

Figure 3: Network with all the bells and whistles. 

 

The methods are compared on 6 large corpora containing 

contemporaneous EGG recordings whose description is 

summarized in Table 2, where BDL, SLT, KED and JMK 

database are CMU ARCTIC databases and can be obtained 

through [12].  

 

Table 2: Description of Speech Databases 

Database 
Number of 

speakers 

Number of 

utterances 

Approximate 

duration 

BDL 1 1132 54 min 

SLT 1 1132 54 min 

KED 1 452 20 min 

JMK 1 1132 55 min 

MIX2 2 1200 57 min 

MIX4 4 1700 81 min 

 

To prevent CNN-based model from learning speaker-

specific features on a one-speaker database, which may cause 

the network to have poor generalization ability on different 

speaker datasets, we made a two-speaker database named 

MIX2 for network training.  MIX2 database consists of 800 

utterances of BDL database and 400 utterances of JMK 

database.  In the preliminary experiment, we trained model on 

BDL, SLT, KED and JMK respectively, and then tested the 

trained model on the other three database.  Results indicated 

the models trained on BDL and JMK got higher classification 

accuracy.  Hence, we construct the MIX2 database by mixing 

the utterances from BDL and JMK databases. 

Furthermore, to verify the effect of speaker characteristics 

on the classification accuracy, a four-speaker database named 

MIX4 is further constructed, which consists of 800 utterances 

of BDL, 400 utterances of JMK, 400 utterances of SLT and 

100 utterances of KED database. 

3.2. Performance measures 

Two kinds of methods are used in our work to measure the 

performance of the models.  One focuses on GCI classification 

task, and the other focuses on GCI detection task. 

3.2.1. GCI classification 

Table 3: Binary Confusion Matrix 

 Positive Class Negative Class 

Predict Positive True Positive (TP) False Negative (FN) 

Predict Negative False Positive (FP) True Negative (TN) 

 

GCI classification task is to classify whether or not each GCI 

candidate is a true GCI.  A confusion matrix, depicted in Table 

3, is used to show results of binary classification.  For this task, 

three classification accuracy measures are used to measure the 

performance of the classifier: 

 Precision = TP / (TP + FP) 

 Recall = TP / (TP + FN) 

 F1-score = 2*(Precision * Recall) / (Precision + Recall) 

3.2.2. GCI detection 

GCI detection task is to estimate the location of GCI in a 

speech signal.  The most common way to assess the 

performance of GCI detection techniques is to compare the 

estimates with the reference locations extracted from EGG 

signals.  For the task, we here make use of the performance 

measure defined in [15].  The first three measures describe 

how reliable the algorithm is in identifying GCIs: 

 Identification Rate (IDR): the proportion of larynx 

cycles for which exactly one GCI is detected. 

 Miss Rate (MR): the proportion of larynx cycles for 

which no GCI is detected. 

 False Alarm Rate (FAR): the proportion of larynx cycles 

for which more than one GCI is detected. 

and two indicators characterizing the timing error probability 

density: 

 Identification Accuracy (IDA): the standard deviation of 

the distribution. 

 Accuracy to ±  0.25ms (A25): the proportion of 

detections for which the timing error is smaller than this 

bound. 

3.3. Compared methods 

We compared the proposed classification-based GCI detection 

method with three existing state-of-the-art methods: 

 The ERT-P3 algorithm [11]. 

 The Dynamic Programming Phase Slope Algorithm 
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(DYPSA) [9]. 

 The Speech Event Detection using the Residual 

Excitation and a Mean-based Signal (SEDREAMS) 

algorithm [10]. 

3.4. Results 

For performance of ERT-P3, DYPSA and SEDREAMS, we 

refer to [11]. 

3.4.1. Experiment 1 

The MIX2 database was first divided into training set (800 

utterances), validation set (100 utterances) and test set (300 

utterances), and then used to train CNN-based model.  Table 4 

shows the classification accuracy of methods on MIX2 test set, 

SLT set and KED set.  Table 5 shows the detection results of 

methods evaluated on MIX2 test set, SLT set and KED set. 

 

Table 4: Classification accuracy of models trained on MIX2 

training set and tested on MIX2 test set, SLT set and KED set 

Database Method Precision (%) Recall (%) F1-score (%) 

MIX2 CNN 97.26 99.22 98.23 

SLT 
CNN 95.16 98.48 96.79 

ERT-P3 95.07 99.69 97.33 

KED 
CNN 93.07 96.15 94.21 

ERT-P3 92.73 96.96 94.79 

 

Table 5: Detection accuracy of models trained on MIX2 

training set and tested on MIX2 test set, SLT set and KED set 

Data 

set 
Method 

IDR 

(%) 

MR 

(%) 

FAR 

(%) 

IDA 

(ms) 

A25 

(%) 

MIX2 CNN 92.33 7.01 0.67 0.04 95.65 

SLT 

CNN 94.87 4.51 0.62 0.03 99.46 

ERT-P3 95.18 1.35 3.47 0.15 95.08 

DYPSA 91.50 2.80 5.70 0.30 81.23 

SEDREAMS 92.96 1.15 5.89 0.19 89.09 

KED 

CNN 91.51 6.87 1.62 0.02 96.98 

ERT-P3 91.88 2.94 5.18 0.27 88.02 

DYPSA 89.01 4.62 6.37 0.48 83.70 

SEDREAMS 89.54 1.16 9.30 0.56 78.46 

 

The results in Table 4 and Table 5 show that the proposed 

method performs near or better on SLT and KED set than 

those state-of-the-art algorithms, especially with respect to the 

False Alarm Rate (FAR), Identification Accuracy (IDA) and 

Accuracy to ± 0.25ms (A25) metrics.  We attribute this to the 

superior capabilities of CNN in extracting more representative 

features from raw speech signals.  Taking Miss Rate (MR) into 

consideration, we review the larynx cycles for which no GCI 

is detected, most of these cycles are located on the border 

between voiced and silent sections.  Speech signal decays 

sharply and affects the extraction of features. 

3.4.2. Experiment 2 

The MIX4 database was divided into training set (1300 

utterances), validation set (200 utterances) and test set (500 

utterances), and was used to train CNN-based model.  The rest 

utterances of SLT (732 utterances) and KED (352 utterances) 

make up the SLT and KED test set for measuring performance 

on these two databases.  Table 6 shows model classification 

accuracy on MIX4 test set, SLT test set and KED test set.  

Table 7 shows the detection results of models. 

 

Table 6: Classification accuracy of models trained on MIX4 

training set and tested on MIX4, SLT, KED test sets 

Database Method Precision (%) Recall (%) F1-score (%) 

MIX4 CNN 97.26 98.44 97.85 

SLT 
CNN 95.80 99.71 97.72 

ERT-P3 95.07 99.69 97.33 

KED 
CNN 93.40 97.12 95.23 

ERT-P3 92.73 96.96 94.79 

 

Table 7: GCI detection evaluation of models trained on MIX4 

training set and tested on MIX4, SLT, KED test sets 

Data 

set 
Method 

IDR 

(%) 

MR 

(%) 

FAR 

(%) 

IDA 

(ms) 

A25 

(%) 

MIX4 CNN 94.67 4.86 0.47 0.03 97.38 

SLT 

CNN 97.51 2.27 0.22 0.03 99.47 

ERT-P3 95.18 1.35 3.47 0.15 95.08 

DYPSA 91.50 2.80 5.70 0.30 81.23 

SEDREAMS 92.96 1.15 5.89 0.19 89.09 

KED 

CNN 94.61 5.12 0.26 0.02 98.31 

ERT-P3 91.88 2.94 5.18 0.27 88.02 

DYPSA 89.01 4.62 6.37 0.48 83.70 

SEDREAMS 89.54 1.16 9.30 0.56 78.46 

 

The results in Table 6 and Table 7 show that the proposed 

method perform better on both SLT and KED databases, if the 

training set includes utterances from speakers in the test set. 

By checking locations of missed GCIs, it was found that 

most missed GCIs were located at the boundary between 

silence and voiced phoneme. Features of these boundary 

candidates might not be extracted as easily as candidates in 

voiced phoneme segments, therefore, missing rate was higher 

than what we expected. 

4. Conclusions 

A CNN based model is proposed to detect glottal closure 

instants (GCIs) from speech waveform.  Experiments show 

that the proposed method performed very well on several test 

databases and got near or better performance compared to 

state-of-the-art methods.  Model trained on multi-speaker 

database especially including speech utterances from the 

speakers that are in the test database would perform better. I n 

our future work, we would like to concentrate more on those 

boundary candidates and investigate method that can further 

reduce the Miss Rate (MR) of the proposed method. 
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