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Abstract 

With the explosive development of human-computer speech 

interaction, spoken term detection is widely required and has 

attracted increasing interest. In this paper, we propose a weak 

supervised approach using Siamese recurrent auto-encoder 

(RAE) to represent speech segments for query-by-example 

spoken term detection (QbyE-STD). The proposed approach 

exploits word pairs that contain different instances of the 

same/different word content as input to train the Siamese RAE.  

The encoder last hidden state vector of Siamese RAE is used as 

the feature for QbyE-STD, which is a fixed dimensional 

embedding feature containing mostly semantic content related 

information. The advantages of the proposed approach are: 1) 

extracting more compact feature with fixed dimension while 

keeping the semantic information for STD; 2) the extracted 

feature can describe the sequential phonetic structure of similar 

sounds to degree, which can be applied for zero-resource QbyE-

STD.  Evaluations on real scene Chinese speech interaction data 

and TIMIT confirm the effectiveness and efficiency of the 

proposed approach compared to the conventional ones. 

Index Terms: Siamese recurrent auto-encoder, query-by-

example spoken term detection, zero-resource 

1. Introduction 

With the explosive development of human-computer speech 

interaction, spoken term detection tasks have drawn increasing 

interests, e.g. detecting specific segments from massive speech 

utterances in search engine, wake-up and command control in 

smart home hardware, smart phones and vehicular network. 

Spoken term detection tasks can be categorized into two kinds 

according to the terms format: 1) keyword search using text; 2) 

query-by-example spoken term detection (QbyE-STD) using 

speech segments. Unlike keyword search [1][2] which is mainly 

based on large vocabulary continuous speech recognition 

(LVCSR), QbyE-STD system consists of two parts: feature 

extraction and term detection. The feature extraction part 

among them directly affects the overall performance of the 

QbyE-STD system, because speech contains rich and variable 

characteristics such as semantic content, speaker characteristics, 

environment noise, etc. In this paper, we explore a compact 

semantic content related feature representation for QbyE-STD. 

Different from the semantic meaning in the text, the 

semantic content derived from speech signals mentioned in the 

paper is referred to the sequence of phonetic structure. We 

usually use the phonemes sequence to describe the speech 

content in one language, but many phonemes are not shared 

between different languages. Similar sounds between different 

languages can be modeled by smaller modeling units than 

phonemes of international phonetic alphabet (IPA). These 

modeling units are unknown to us and usually represented by 

the neural networks (NN). Multi-language bottleneck features 

[3] [4] have been used to represent the shared cross-language 

information by discriminative frame-level features for QbyE-

STD. However, we think the NN modeling of entire audio 

sequence can ignore the frame-level mismatches of 

pronunciation representation between different languages, so 

we wish to use sequential phonetic structure to represent the 

semantic content derived from speech segments.    

It has always been a research focus that extracts compact 

features for variable length vectors sequence. Recurrent neural 

networks (RNN) with long short term memory (LSTM) can 

represent the input segment by using the outputs of the hidden 

layer of RNN at the last few time steps for QbyE-STD, which 

is trained by targeting to word units [5]. However, the acquired 

feature only models the distributed acoustic word embedding 

space rather than the sequential phonetic structure. In addition, 

one of the vital problems in these supervised methods is the 

requirement of a large amount of labeled data that is hard to 

collect. Recurrent auto-encoder (RAE) [6], which is called 

sequence-to-sequence auto-encoder (SA) in [7], has been 

successful for mapping variable-length audio segments into 

fixed dimensional vectors in an unsupervised way. But the 

vector representation still contains non-semantic information 

such as speaker and emotion, which maybe influence the 

performance of the QbyE-STD system. Hence, weak supervised 

methods using pairwise information have attracted increasing 

interest of researchers. [8] proposed the use of Siamese 

convolutional neural network (CNN) to learn shared semantic 

representation of one word from various speakers while 

increasing the representation differences between different 

words. However, the approach does not possess the strong 

ability in capturing long term temporal dependences for 

modelling the sequential phonetic structure

In this paper, we proposed a weak supervised method using 

Siamese RAE to represent variable-length audio segments by 

fixed dimensional vectors that are mostly related to semantic 

content for QbyE-STD. Different from the previous work in 

RAE [6][7], pairwise information helps learning Siamese RAE, 

which is inspired from the research on semantic similarity[9]. 

We hope the vector representations obtained in this method can 

describe more precisely the sequence of phonetic structure, so 

the representation learned by high-resource language is also 
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effective in zero-resource QbyE-STD. This is referred to 

Siamese RAE representation for QbyE-STD. QbyE-STD using 

Siamese RAE here only needs the similarities between two 

single vectors, which is much more efficient than the 

conventional dynamic time warping (DTW) based approaches. 

Experimental results demonstrate the superior performance of 

the proposed approach. 

The rest of the paper is organized as follows. Section 2 

describes in detail the proposed Siamese RAE model. Section 3 

introduces the Siamese RAE based QbyE-STD system. 

Experiments and analyses are provided in the Section 4.  

Section 5 concludes the paper. 

2. Siamese RAE Representation 

The proposed Siamese RAE model is outlined in Figure 1. 

There are two networks RAEa and RAEb which each processes 

one of the segments of a given pair, and the Siamese 

architecture is the two networks with tied parameters, which 

means RAEa = RAEb in this work. It’s desired that the encoder 

of the RAE learns a mapping from the space of variable length 

acoustic feature vectors 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑇}  into a fixed 

dimensional vector 𝑧, which can describe the semantic content 

(the sequential phonetic structure) of the segment to the 

maximum extent. The learned vector representation is called 

Siamese RAE representation. In addition, the computational 

time of the subsequent detection process in QbyE-STD can be 

reduced at large due to the single vector representation.  

2.1. RAE model 

We use the RAE model in [6], which consists of three parts as 

shown in Figure 1: 1) An encoder  RNN with gated recurrent 

unit (GRU) hidden units; 2) A dense layer with weight matrix 

W and D rectified linear units (ReLUs) denoted by g; 3) A 

decoder GRU-RNN. The encoder RNN reads the input acoustic 

feature vectors sequence 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑇} sequentially and 

the hidden state of the RNN is updated accordingly. The dense 

layer g then transforms the hidden state vector ℎ𝑇
𝜀  from time 

step 𝑇 into a D-dimensional vector 𝑧 = 𝑔(𝑊ℎ𝑇
𝜀 ). The decoder 

GRU-RNN takes the vector 𝑧 as input at each time step 𝑡 to 

reconstruct the original sequence of T acoustic feature vectors. 

The D-dimensional vector 𝑧  is extracted as the feature 

representation for the input speech segment. 

2.2. Semantic content similarity for Siamese RAE 

To make the extracted feature z  more related to the semantic 

content, we apply a pre-defined similarity function to the vector 

representations of the segments of the given pair. Motivated by 

the previous work [8], we use a margin-based (hinge) loss 

which is based on the computation of the relative distance, in 

which the intra class distance can be smaller while the distance 

between classes become larger. The objective function of 

Siamese RAE is a weighted sum of the reconstruction loss for 

each segment and the similarity loss between the vector 

representations for segments. In this way, the Siamese RAE is 

able to make the vector representation z  learn the semantic 

content as much as possible while depressing other non-

semantic information. 

The features extracted from each segment X𝑖 =

{𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑇}, where  𝑥𝑖𝑡 ∈ ℝd, 𝑑 = 40 are sent to the RAE 

and output Xo = {𝑥𝑜1, 𝑥𝑜2, … , 𝑥𝑜𝑇} respectively. For each 

group of inputs, there are two pairs composed of three feature  

 

Figure 1: Siamese recurrent auto-encoder (RAE) architecture 

in which RAEa (the left large block) and RAEb (the right large 

block) are with tied parameters. The encoder of RAE maps the 

speech segment (variable length input feature vectors 

sequence) into a fixed dimensional vector representation z (the 

blue box). The whole model is trained by the weighted sum of 

the segments’ reconstruction losses and the similarity loss 

between the vector representations for these segments. 

vectors sequence: anchor sample  A𝑖 = {𝑥𝑖1
(𝑎)

, 𝑥𝑖2
(𝑎)

, … , 𝑥𝑖𝑇𝑎
(𝑎)

} ,  

positive sample  P𝑖 = {𝑥𝑖1
(𝑝)

, 𝑥𝑖2
(𝑝)

, … , 𝑥𝑖𝑇𝑝
(𝑝)

} (of the same semantic 

content type with the anchor sample) and negative sample  N𝑖 =

{𝑥𝑖1
(𝑛)

, 𝑥𝑖2
(𝑛)

, … , 𝑥𝑖𝑇𝑛
(𝑛)

} (of the different semantic content type with 

the anchor sample). The reconstruction losses of segments A, P 

and N can then be computed as the mean square error (MSE) 

between the original features and the recovered features. 
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The hinge loss is used to measure the relative semantic 

similarity between the segments’ vector representations 𝑧(𝑎), 

𝑧(𝑝) and 𝑧(𝑛).   

( ) ( ) ( ) ( )  max{0, ( , ) ( , )}    (4)a p a n

lossHinge M l z z l z z    

where the similarity distance l between two vector 

representations 𝑧1 and 𝑧2 is computed by the cosine distance as 

follows: 

1 2 1 2                  ( , ) (1 ( , )) / 2)                (5)l z z cos z z   

Finally, the objective function of Siamese RAE is the 

weighted sum of the three segments’ recovery losses and the 

semantic hinge loss as follows and will be back propagated 

through the whole model:  

loss  (1 )

                 ( + + ) / 3     (6)

loss

loss loss loss

total a Hinge

a MSE A MSE P MSE N

    

where 𝑎 is the weight used to balance the semantic similarity 

loss and the recovery losses.  
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Note that the vector representation 𝑧  trained by Siamese 

RAE is the Siamese RAE representation used for QbyE-STD. 

3. Siamese RAE based QbyE-STD 

 

Figure 2: Siamese RAE based QbyE-STD framework  

The audio segment representation learned by the proposed 

Siamese RAE model can be applied to QbyE-STD as shown in 

Figure 2, which is inspired from the previous work [7]. The 

system consists of off-line and on-line processes. The off-line 

process is in the upper half of Figure 2. First, the audio archives 

are segmented based on word boundaries into variable-length 

speech segments. As for the speech of zero-resource language, 

voice activity detection (VAD) is available for segmenting. 

Then, the system exploits the trained RAE encoder in Figure 1 

to encode these variable length segments into fixed dimensional 

vectors. When a spoken query is entered in the lower left corner 

of Figure 2, the same RAE encoder can encode the input spoken 

query similarly into a fixed dimensional vector. The evaluation 

of QbyE-STD is based on the cosine similarities computed and 

ranked between the vector representation of the query and those 

of all segments in the archive. Please note that the computation 

consumption of the on-line process here is very low, due to the 

similarity comparison between single vector representations. 

4. Experiments 

4.1. Experiments Setup 

We use a real scene Chinese speech interaction data from Sogou 

and TIMIT for the experiments. 40 dimensional F-bank features 

with mean and variance normalization (MVN) on each speech 

segment are extracted using Kaldi toolkit [10] and used as the 

original acoustic features. 

 There are totally 500,000 speech sentences randomly 

selected from Sogou human-computer speech interaction 

engine for the experiments. All 500,000 sentences have 

been force aligned to get the duration for each segment that 

contains a complete word meaning. We select segments 

which consist of at least 6 phonemes and are with the 

length between 0.5 and 2.0 seconds. There are 50K 

segments in the training set, which belong to 18,320 

different word types. For each segment, we select 

randomly a segment of the same word type in the training 

set to form a positive pair, and a segment of different word 

type to form a negative pair. Ultimately, there are 50K 

groups (100K pairs) in total for training.  

 In the Chinese test set, there are totally 24,916 word types, 

of which 6,596 word types (about one-quarter) are not in 

the training set, so we regard them as OOVs. We randomly 

select 3,723 segments as the Chinese speech archive, in 

which one-third are OOVs, and 3,723 segments as spoken 

queries for QbyE-STD. The word type of each query only 

occurs once in the archive.  

 TIMIT is regarded as the zero-resource language dataset 

and then used to evaluate the performance of the learned 

representation in a different language. For comparison, the 

segmentation is based on word boundaries instead of VAD. 

Thereafter, the speech segments are grouped into different 

word types, from which the functional words such as 

articles, conjunctions are removed. Finally, 2,089 word 

types that occur most frequently in the TIMIT dataset are 

selected, from which two speech segments are randomly 

selected for each word type, one to form the English 

speech archive and the other as the spoken query. 

Deep learning models in this paper are implemented with 

Pytorch [11]. Mini-batch-trained Adam [12] with 0.0001 

learning rate and 40 batch size is used for training. All RNN 

based models are with GRU units and trained for 2 epochs. The 

number of the RAE encoder hidden layer units and D in section 

2.1 are set to 300 as the previous work in [6]. Mean Average 

Precision (MAP), which is the mean of the average precision in 

the range of recall for each query in the test set, was used as the 

evaluation metrics for QbyE-STD as the previous work [3].  

Several approaches implemented for the experiments are 

described as follows:  

 F-bank (DTW-based): the mostly used baseline with the 

help of frame-based DTW [13] for spoken term detection, 

the F-bank features are processed with MVN. 

 Siamese CNN: the best of the previous approaches on 

word discrimination task [8], which obtained acoustic 

word embeddings from padded speech input by CNN.  

All hyper-parameters in the approach are set as the 

previous work [8]. 

 GRU-RAE: an unsupervised method with GRU as hidden 

units to represent variable length vectors sequence by a 

fixed-length vector, which is equivalent to the model by 

setting 𝑎 of Eq.6 to 1 in section 2.2. 

 Siamese RNN: The model by setting 𝑎 = 0 for Eq.6. By 

using pairwise information, the model exploits LSTM to 

map variable length vectors sequence into a fixed 

dimensional embedding space. 

 Siamese RAE: The proposed model, which combines the 

advantages of GRU-RAE and Siamese RNN. The 𝑎 of 

Eq.6 is set to 0.5. 

4.2. Analysis of the sequential phonetic structure learned 

by Siamese RAE in Chinese 

Table 1 shows the average cosine distance of segment pairs 

with different phoneme sequence edit distance and suffixes for 

analysis of the sequential phoneme structure. These pairs are 

randomly selected from the Chinese test set. Due to the vector 

representation is extracted from the last hidden state of the RNN, 

we distinguish pairs with the same or different suffixes (the last 

phoneme). For the segment pairs with the same suffixes, there 

are 49,868 pairs whose phoneme sequence edit distances are 

less than 5, and 65,378 pairs whose edit distances are equal to 

5. While for the pairs with different suffix, 57,836 pairs are with 

edit distance less than 5, and 106,735 pairs with edit distance 

equal to 5. From Table 1, it can be seen, for the learned vector 

representation of all three RNN derived networks, the average 
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cosine distance of segment pairs is increasing with the phoneme 

sequence edit distance increased, which implies the RNN-based 

model can describe the sequential phonetic structure to some 

extent. An interesting observation is that the cosine distance of 

the learned representation for the pairs with same suffixes is 

less than that of pairs with different suffixes. This demonstrates 

that the last phoneme of the word is indeed important in the 

sequential phonetic structure. Another important observation is 

that, compared to Siamese RNN, the proposed Siamese RAE 

model can reduce the gap of cosine similarity distances between 

the segment pairs with the same and different suffixes, due to 

the reconstruction mechanism of RAE. 

Table 1: Average cosine distance of the learned representation 

between segment pairs clustered by the phoneme sequence edit 

distance, on the condition of whether the suffixes (the last 

phoneme) are the same.  

Phoneme 

Sequence  

Edit 

Distance 

Average cosine distance of the learned representation 

 for segment pairs with same / different suffixes 

(difference in brackets) 

GRU-RAE Siamese RNN Siamese RAE 

<5 
0.0321 / 0.0326 

(+0.004) 

0.769 / 0.724 

(-0.045) 

0.694 / 0.653 

(-0.041) 

5 
0.0326 / 0.0333 

(+0.007) 

0.926 / 0.848 

(-0.078) 

0.826 / 0.752 

(-0.074) 

 

4.3. Evaluation of QbyE-STD on the language that is the 

same as the one the representation is learned from 

Table 2: Performance of Siamese RAE and its comparisons on 

QbyE-STD task (on the same language the representation is 

learned). 

Model Dim 
MAP 

(IVs) 

MAP 

(OOVs) 

MAP 

(total) 

F-bank (DTW-based)  40 0.048 0.057 0.051 

Siamese CNN 1024 0.083 0.091 0.086 

GRU-RAE 300 0.060 0.065 0.061 

Siamese RNN 300 0.082 0.084 0.083 

Siamese RAE 300 0.112 0.126 0.116 

 

We divide the test set for QbyE-STD into In-Vocabulary (IVs) 

test set and Out-Of-Vocabulary (OOVs) test set in accordance 

with the belonging of the entered spoken query in the training 

set. Table 2 shows the performance of Siamese RAE and all 

comparisons on the Chinese testing set. The F-bank (DTW-

based) model is based on Frame-based DTW approach. We can 

see from the table that the performance of the Siamese CNN is 

better than the Siamese RNN on the STD task. The possible 

reason may be the dimension of the learned representation is 

1024 for Siamese CNN, containing more useful information for 

STD. GRU-RAE, a totally unsupervised method, is better than 

F-bank method as it can learn more representative information 

by auto-encoders, while is worse than Siamese RNN because of 

the missing of pairwise information. As expected, Siamese 

RAE performs the best among all the approaches, indicating 

that it can generate vector representations containing both 

representative information presented by the reconstruction 

function of RAE model and distinctive information introduced 

by the Siamese architecture at the same time. 

4.4. Evaluation of QbyE-STD on the language that is 

different from the one the representation is learned 

In the above experiment, for all approaches, the performance on 

OOVs test set is similar to the IVs. The right judgments on 

OOV segments indicate that the model can learn the sequential 

phonetic structure for similar sounds. Inspired by the origin of 

the IPA, we assume the vector representation may be also 

effective in other languages, although trained on Chinese. 

Table 3: Performance of Siamese RAE and its comparisons on 

QbyE-STD task (on a language different from the one where the 

representation is learned).  

Model MAP (2 epochs) MAP (5 epochs) 

F-bank (DTW-based) 0.241 0.241 

GRU-RAE 0.242 0.333 

Siamese RNN 0.178 0.065 

Siamese RAE 0.242 0.234 

 

To verify the idea, we test the vector representation learned 

from Chinese on an English dataset TIMIT. Table 3 shows the 

performance of the proposed Siamese RAE and comparisons on 

the TIMIT dataset. It’s obvious that the performance of GRU-

RAE is better than the DTW-based approach while Siamese 

RNN is worse, which attests that pairwise information in 

Chinese is detrimental to the model directly used for English 

spoken term detection. However, the proposed Siamese RAE 

model, which combines the advantages of Siamese RNN and 

GRU-RAE, behaves between the GRU-RAE and Siamese RNN. 

Due to the similar sound between Chinese and English is 

limited, the vector representation learned by GRU-RAE 

performs better than Siamese RAE with the increase of the 

training epochs. It indicates the sequential phonetic structure 

can be learned by Siamese RAE and the performance of the 

model depends on the similarity of the languages. In conclusion, 

not only the Siamese RAE representation performs best on the 

same language dataset, but also is effective in different 

languages, which can be applied for zero-resource QbyE-STD.  

5. Conclusion 

In this paper, we propose a Siamese adaptation of RAE model 

for QbyE-STD. By using Siamese RAE to map variable length 

speech segments into fixed dimensional vectors, the learned 

feature representation can describe the semantic content (the 

sequential phonetic structure) to some extent.  Furthermore, due 

to similar sounds between different languages, the sequential 

phonetic structure learned by one language is also effective in 

another different languages, which can be used for zero-

resource QbyE-STD.  In addition, the detection time can be 

reduced at large due to the single vector representation. 

Evaluations on real scene Chinese speech interaction data and 

TIMIT confirmed the effectiveness and efficiency of the 

proposed approach in spoken term detection task.   

Although Siamese RAE performs well in the task, the 

encoder model is too simple to describe the sequential phonetic 

structure at large.  In the future, we will investigate an improved 

version of the proposed approach. 
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