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Abstract
Audio super-resolution is the task to increase the sampling rate
of a given low-resolution (i.e. low sampling rate) audio. One
of the most popular approaches for audio super-resolution is to
minimize the squared Euclidean distance between the recon-
structed signal and the high sampling rate signal in a point-wise
manner. However, such approach has intrinsic limitations, such
as the regression to mean problem. In this work, we introduce
a novel auto-regressive method for the speech super-resolution
task, which utilizes WaveNet to model the distribution of the
target high-resolution signal conditioned on the log-scale mel-
spectrogram of the low-resolution signal. As an auto-regressive
neural network, WaveNet uses the negative log-likelihood as
the objective function, which is much more suitable for highly
stochastic process such as speech waveform, instead of the Eu-
clidean distance. We also train a parallel WaveNet to speed
up the generating process to real-time. In the experiments,
we perform speech super-resolution by increasing the sampling
rate from 4kHz to 16kHz on the VCTK corpus. The proposed
method can achieve the improvement of ∼ 2dB over the base-
line deep residual convolutional neural network (CNN) under
the Log-Spectral Distance (LSD) metric.
Index Terms: speech super resolution, bandwidth extension,
Wavenet, parallel Wavenet, auto-regressive model

1. Introduction
Speech super-resolution is an inverse problem trying to increase
the temporal resolution of speech signals. In frequency domain,
speech super-resolution is also known as bandwidth extension
with the purpose to restore the high-frequency part of the speech
signal from the distorted observation with low sampling rate.
Speech super-resolution has applications in many fields, such as
telephony communication, speech audio compression and text-
to-speech synthesis [1].

Recently, data-driven approaches, especially deep neural
networks (DNNs), are very popular in lots of fields including in-
verse problems. Because super-resolution has little dependence
on very far contexts, convolutional neural networks (CNNs) are
frequently used in both image and audio super-resolution task
[1, 2, 3]. Besides fast training, CNNs also provide stability to
small geometric deformations and provide features with smaller
variance [2]. The most popular objective used in these models is
the (squared) Euclidean distance [1, 3, 4]. However, for super-
resolution task, the mapping from the distorted observation to
the ground truth is highly unstable and even multi-valued. The
Euclidean distance objective often leads to low perceptual qual-

ity, because it allways tries to resgress to mean. Auto-regressive
models can relieve this problem by condtioning the output on
the past outputs. Moreover, using a distribution to model the
target data gives us a variable variance over time instead of a
constant one [5], which is important to model raw time-domain
signals such as speech data.

Due to the above reason, in this paper, we propose the use of
WaveNet model [6] as the auto-regressive model for the speech
super-resolution task, where WaveNet is used to predict the
high-resolution signal while being conditioned on the distorted
audio signal. For fast sampling, we use the parallel version of
WaveNet [7]. We also evaluate two kinds of conditioning ap-
proaches for the WaveNet, conditioning the sampling process
on the distorted audio signal directly, or on the log-scale mel-
spectrogram of the distorted observation. Experiments indicate
that the former approach would generate lots of noise, while the
latter one can generate much better result. The results show the
feasibility and effectiveness of our approach.

2. Related Work
For a speech signal, its high-frequency part is considered
highly dependent on its corresponding low-frequency coun-
terpart. Speech super-resolution tries to recover such high-
frequency part from the low-frequency observations of the low
resolution audio samples. To construct the zoomed-up sam-
ples, deep CNNs are used by directly conditioning on the dis-
torted version in time domain [1]. A general mean squared er-
ror (MSE) loss is used to perform the point-wise estimation [1].
Frequency domain modeling is also adopted to get better re-
sults [4], where spectral fusion is used to reconstruct signals
by retaining magnitude from frequency branch and using phase
from time branch. Some researchers use a custom SampleRNN-
like model to do this task [8]. However, to make sure real-time
synthesis, their model is not auto-regressive. For image super-
resolution task, instead of using a naive point-wise MSE loss,
researchers also propose to use as conditional model a Gibbs
distribution, where its sufficient statistics are given by deep
CNNs [2].

To avoid the intrinsic limitations of the Euclidean distance
objective, auto-regressive models can be used. WaveNet is a
high-quality neural vocoder, which is a typical auto-regressive
model directly modeling raw signals in the time domain [6]. In
the original paper, they use linguistic feature and fundamental
frequency as local condition to synthesize meaningful audios.
Recently, log-scale mel-spectrogram is found a good acoustic
feature to be the local condition of WaveNet [9]. In spite of



the high-quality of synthesized audio, the sampling process is
computationally expensive, resulting in a very slow generating
speed. Excitingly, a parallel version of WaveNet is proposed to
speed up the generating process 2000x faster in a single GPU
[7]. In this work, we use parallel WaveNet to perform speech
super-resolution.

3. Approach
The general super-resolution task aims to estimate a high-
dimensional vector

→
y ∈ RH given a distorted low-resolution

observation
→
x ∈ RL. Common mapping functions have the

following form:
U :
→
x 7→ →

y (1)

No matter what model chosed as the mapping function, that
mapping form often leads to a point-wise Euclidean distantance
objective [1, 3, 4]:

L =
1

NH

N∑
i=1

H∑
j=1

(yi,j − U(
→
xi)j)

2 (2)

where N is the number of samples in the training set.
Moreover, since the high-dimensional vector

→
y only con-

ditions on the low-dimensional observation
→
x , that mapping is

highly unstable and even multi-valued [2].
In this work, we consider using auto-regressive models to

do speech super-resolution.

3.1. Speech Super-Resolution with WaveNet

The auto-regressive mapping functions have a totally different
form. For simplicity, we represent the mapping as a probability
density function:

p(
→
x) =

T∏
t=1

p(xt|
→
x<t) (3)

For speech super-resolution task, this equation can be rep-
resented more specifically:

p(
→
y |→x) =

T∏
t=1

p(yt|
→
y<t,

→
x) (4)

where
→
x stands for the low-resolution audio,

→
y the high-

resolution counterpart.
A common practice for this task is to predict the high-

frequency residuals (
→
y res) using the raw low-frequency signals

(
→
x ) [1, 2]:

p(
→
y res|

→
x) =

T∏
t=1

p(yres,t|
→
y res,<t,

→
x) (5)

We also try to directly predict the high-resolution audio by
conditioning WaveNet on the log-scale mel-spectrogram of the
low-resolution version, since mel-spectrogram is proved to be a
good intermediate feature representation for WaveNet to gener-
ate high-fidelity audios [5]. The approach can be formulated as
follows, where φ(

→
x) is the log-scale mel-spectrogram of low-

resolution signal
→
x :

p(
→
y |φ(→x)) =

T∏
t=1

p(yt|
→
y<t, φ(

→
x)) (6)

φ(
→
x) = lnMelfilter(|STFT (→x)|) (7)

Naively sampling from the auto-regressive model is unac-
ceptably time-consuming, since only one sample can be gen-
erated at each sampling step. Although there are many tech-
niques to speed up this process, almost all of them can only
linear speed up it. In this work, we use parallel WaveNet to
speed up the sampling process:

p(yt|
→
z<t) = L(yt|µ(

→
z<t), s(

→
z<t)) (8)

Equation 8 shows the logistic distribution outputted by
the parallel WaveNet. µ(

→
z<t) and s(

→
z<t) are Inverse Auto-

Regressive Flows (IAFs). For simplicity, we omit the condition
symbols and weights.

→
z is drawn from L(0, I). Since yt now

is not conditioned on
→
y<t, the sampling process can be paral-

lelized.
The loss functions used in the original parallel WaveNet

paper are the KullbackLeibler divergence (DKL) between the
student (PS) and teacher (PT ) distribution, the power loss
(Lpower) and two others. We found that usingDKL andLpower

is sufficient to train a good parallel WaveNet model conditioned
on log-scale mel-spectrogram.

DKL(PS ||PT ) = H(PS , PT )−H(PS) (9)

To calculate the H(PS , PT ) loss term, in our implementa-
tion, we use the reparametrize trick, commonly used in Vari-
ational Auto-Encoders (VAEs), to generate lots of samples at
each time step, and then evaluate them under the distribution
outputted by the teacher WaveNet.

H(PS , PT ) =

T∑
t=1

E
pS(

→
y <t)

H(pS(yt|
→
y<t), pT (yt|

→
y<t))

(10)

=

T∑
t=1

E
pS(

→
y <t)

E
pS(yt|

→
y <t)

− ln pT (yt|
→
y<t)

(11)

H(PS) = Ez∼L(0,1)[

T∑
t=1

ln s(
→
z<t)] + 2T (12)

Lpower is very crucial to train a good student network.
However, it is not an easy work to make good use of it to train
the model.

Several forms of loss functions can be adopted to avoid
the student from collapsing to a WaveNet mode [7], such as
the (squared) Euclidean distance between |STFT (→y gen)| and
|STFT (→y gt)|, and the distance between the log-scale spectro-
gram. Whereas, although these loss functions are much more
stable, they would decrease the quality of the synthesized au-
dio. We also tried to preprocess the raw signal by µ-law and
pre-emphasis, however, both of them would also decrease the
quality of the generated audio. Hence, in this work, we used
the power loss proposed in the parallel WaveNet paper [7], and
didnt average ψ(

→
y ) over time before taking the Euclidean dis-

tance:
Lpower = ||ψ(→y gen)− ψ(

→
y gt)||

2
2 (13)

ψ(
→
y ) = |STFT (→y )|2 (14)

where
→
y gen stands for the generated high-resolution audio,

→
y gt

the ground-truth.



3.2. Model Specifications

The standard setup of the WaveNet teacher consists of 30 layers,
grouped into 3 dilated residual blocks of 10 layers. To speed up
convergence, we scale the waveform targets by a factor of 127.5
as suggested in [5]. The learning rate was set as 2 × 10−4 and
never changed during training. The teacher network was trained
for 140,000 steps with Adam optimizer [10], with a minibatch
size of 4 audio clips, each containing 10,000 timesteps. When
training the teacher, we added uniform noise to dequantize the
audio signals as suggested in [11].

The WaveNet student consists of 4 flows with 10, 10, 10,
30 layers respectively. We generated 100 samples per timestep
to calculate the H(PS , PT ) loss term. To calculate Lpower , the
number of FFT dots and frame shift length we used are 1024
and 272 respectively. We also scale the target of the student
by a factor of 127.5, which we found much helpful to speed
up convergence. The student network was trained for 200,000
steps.

The spectrogram is calculated with Hann windowing, with
the window length of 800, shift length of 200, and FFT dots of
1024. A two-layer, with strides of 10 and 20 respectively, trans-
posed convolutional neural network is used to map the log-scale
mel-spectrogram to a new time series with the same resolution
as the audio signal [5].

4. Experiments
4.1. Datasets

We evaluate our approach with single-speaker speech super-
resolution task. We chose 2 speakers, a female and a male,
from the VCTK dataset [12] for experiments. The speech data
for each speaker are about 30 minutes. The sampling rate of the
original speech signal is 48 kHz. We down-sampled the signal
to 16kHz as the high-resolution ground-truth, and then further
down-sampled the signal to 4kHz as the low-resolution obser-
vation. We tested our model on 8 held-out records for each
speaker.

4.2. Comparing Methods

In the conducted experiments, four methods for speech super-
resolution are compared, including two baselines and two pro-
posed WaveNet based approaches with different setups.

• Spline: The method increases the temporal resolution by
cubic B-spline interpolation of waveform samples in the
time domain.

• DRCNN: A deep residual CNNs used for audio super-
resolution proposed in [1]. We instantiated the model
with 4 down-sampling blocks and 4 up-sampling blocks.
The model was trained for 120 epochs with Adam op-
timizer on audio clips, each containing 6,000 timesteps.
The learning rate was 1× 10−4. We used the codes pro-
vided by the authors1.

• PWR: Parallel WaveNet for speech super-resolution. It’s
conditioned on raw low-resolution audios and predicts
residuals.

• PWM: Parallel WaveNet for speech super-resolution. It’s
conditioned on mel-spectrograms of low-resolution sig-
nal and directly predicts high-resolution version.

1https://github.com/kuleshov/audio-super-res

(a) PWR

(b) PWM

Figure 1: Parallel WaveNet for speech super-resolution.

4.3. Metrics

We use the Log-Spectral Distance (LSD) [13] to measure the
reconstruction quality.

LSD(x, y) =
1

L

L∑
l=1

√√√√ 1

K

K∑
k=1

(Xgen(l, k)−Xgt(l, k))2

(15)
X = ln |STFT |2 (16)

l is used to index frames, and k is to index frequencies. We used
a frame length of 2048 to calculate the LSD.

Table 1: LSD evaluation of audio-super resolution methods (in
dB) at upscaling ratios r = 4 from sampling rate 4kHz to 16kHz.

Female (p225) Male (p226)

Spline 8.41 8.46
DRCNN 4.03 4.52

PWR 2.51 2.38
PWM 2.14 2.10

4.4. Results and Analysis

The LSD evaluation results of the four comparing methods are
illustrated in Table. 1. As can be seen, our proposed PWM
method shows an improvement of ∼ 2dB over the DRCNN
model proposed in [1]. More audio samples are available 2 for

2Audio samples are available at http://t.cn/RB539Wp



(a) Original

(b) DRCNN / 4.27dB

(c) PWR / 2.64dB

(d) PWM / 2.17dB

Figure 2: Log-scale spectrograms of super-resolution examples
generated with different methods (b, c, d) and the original high-
resolution signal (a).

listening. The log-scale spectrograms of examples generated by
different methods are shown in Fig. 2.

When listening to these generated audios, we found that
the audios generated by the baseline neural network lacked the
high-frequency part of the original high-resolution version, al-
though the high-frequency part of their spectrogram seems nor-
mal. Besides that problem, the generated audios had artificial
noises. The possible explanation is that the very high-frequency
part of human speech is highly stochastic, although some miss-
ing high-frequency bands have a much more deterministic cor-
relation to the low-frequency bands. Since the standard Eu-
clidean distance is suffered from the regression to mean prob-
lem, such highly stochastic signals are very hard to predict using
that objective function.

Although the audios generated by parallel WaveNet are bet-
ter than the baselines, there are still background noises. In our
experiments, we found that directly conditioning the generat-
ing process on the (bicubic-upsampled) raw distorted audios
(i.e. the PWR method) would generate lots of noises, while us-
ing mel-spectrogram as local condition (i.e. the PWM method)
gave us much cleaner audios. A possible explanation is that
the STFT function is just like a non-trainable convolutional net-
work with a big reception field. By using spectrogram as the
local condition, the generating process could even use the fu-
ture information of the low-resolution signals. We suspect that
a trainable CNN module with a big reception field may perform
equally well and even better.

5. Conclusions
In this paper, we demonstrate the feasibility and effectiveness of
using parallel WaveNet to do speech super-resolution task. Our
method greatly outperforms the baselines under the LSD metric.
We found that using spectrogram as the local condition of the
WaveNet model is better than raw signal. In the future work,
we plan to find a better local condition, for example, using a
trainable CNN module to replace the STFT calculation, because
spectrogram only has magnitude information of the distorted
signal. The noise in the generated audio is a problem, we will
try to tackle it in our future work.
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