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Abstract
Building a voice conversion (VC) system for a new target
speaker typically requires a large amount of speech data from
the target speaker. This paper investigates a method to build
a VC system for arbitrary target speaker using one given ut-
terance without any adaptation training process. Inspired by
global style tokens (GSTs), which recently has been shown to
be effective in controlling the style of synthetic speech, we pro-
pose the use of global speaker embeddings (GSEs) to control
the conversion target of the VC system. Speaker-independent
phonetic posteriorgrams (PPGs) are employed as the local con-
dition input to a conditional WaveNet synthesizer for waveform
generation of the target speaker. Meanwhile, spectrograms are
extracted from the given utterance and fed into a reference en-
coder, the generated reference embedding is then employed as
attention query to the GSEs to produce the speaker embedding,
which is employed as the global condition input to the WaveNet
synthesizer to control the generated waveform’s speaker iden-
tity. In experiments, when compared with an adaptation train-
ing based any-to-any VC system, the proposed GSEs based VC
approach performs equally well or better in both speech natu-
ralness and speaker similarity, with apparently higher flexibility
to the comparison.
Index Terms: voice conversion, one-shot, global speaker em-
bedding, WaveNet

1. Introduction
Voice conversion (VC) is a technique to modify the speech from
source speaker to make it sound like being uttered by target
speaker while keeping the linguistic content unchanged [1] .
Many methods [2, 3, 4, 5] have been proposed for VC. How-
ever, building a VC system for a new target speaker using these
methods typically requires a large amount of target speaker’s
speech data and the process of training the system using the new
data from scratch, which have greatly hindered the widespread
application of VC in practice.

One-shot VC, i.e. converting an arbitrary source speaker’s
voice into an arbitrary target speaker’s voice given only one tar-
get speaker’s utterance, is the ultimate goal of VC. Many re-
search efforts have been devoted to achieving this goal. N8 sys-
tem [6] in the Voice Conversion Challenge 2018 (VCC 2018)
[7] used a multi-speaker dataset to train a WaveNet vocoder
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and then fine-tune the vocoder on the new target speaker’s
data to acquire the target speaker’s characteristic. Though this
method achieved high conversion naturalness and quality, the
fine-tuning process still needs several minutes of speech data
and easily gets overfitting. IVC and SEVC system proposed in
[8] used i-vector extractor and a speaker encoder respectively to
obtain a speaker embedding as control information of a multi-
speaker VC system. IVC and SEVC can both achieve voice
conversion across arbitrary speakers based on a single target
speaker’s utterance without adaptation. However, they require a
separately computing or training process to get the speaker em-
bedding extractor. Other researchers adopted variational auto-
encoder (VAE) [9] to disentangle the speech into linguistic fea-
tures and speaker identity and achieved good conversion results.
Whereas, they need to use well-designed discriminative loss
functions to drive latent variables to be structured, which in-
creases the training complexity of the system.

Recently, global style tokens (GSTs) [10] have been pro-
posed for modeling the speaking style and have achieved im-
pressive results in controlling the style of synthetic speech of
Tacotron [11], a state-of-the-art end-to-end speech synthesis
system. Inspired by GSTs, in this paper, we propose the use of
global speaker embeddings (GSEs) to model the speaker char-
acteristic and embed it into the recently proposed conditional
WaveNet [12] based VC system [13]. The proposed method
has the ability to extract speaker identity information from a sin-
gle utterance and control the VC system to produce the desired
speaker’s voice. The speaker identity embedding part are jointly
trained within the VC system, there is no need for a separately
trained speaker encoder. It’s quite easy to train the proposed
system since all parameters are updated under the guide of the
waveform’s generation and no discriminative losses are needed
to train the GSEs. The proposed system after optimization can
be directly employed for an arbitrary unknown speaker without
any adaptation training process.

2. Model Architecture
In this section, we will first introduce an any-to-one VC sys-
tem’s architecture. Then as the comparison method, we intro-
duce an adaptation training method to fast fit the any-to-one
VC system to new target speakers. Finally, we show how the
GSEs are integrated with the any-to-one VC system to facilitate
any-to-any VC in the proposed method. For the convenience of
writing, we use the abbreviation GSEs-VC for the proposed VC
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Figure 1: (a) Architecture of conditional WaveNet based
Any-to-one VC system; (b) Architecture of ADAP-VC system;
(c)Adaptation training process of the ADAP-VC system for a
new target speaker.

method and ADAP-VC for the comparison method.

2.1. Any-to-one VC system

Figure 1(a) shows the recently proposed any-to-one VC sys-
tem [13]. As shown in the figure, speaker-independent PPGs
[5] are employed as intermediate features to convert the source
speaker’s voice into that of the target speaker. A conditional
WaveNet is used to synthesize the target speaker’s speech wave-
form from PPGs concatenated with logarithm fundamental fre-
quency values (F0s). The condition network is a combination of
bidirectional long short-term memory (BLSTM) units [14] and
self-attention [15] modules. The condition network is believed
to be a good processing block to model multi-scale context in-
formation of PPGs, which can facilitate more accurate speech
synthesis. Different from [13], in which local condition input
was up-sampled by repeat, we employ transposed convolution
[16] to produce a smoother up-sampled local condition input.

During the training phase, the speaker-independent auto-
matic speech recognition (SI-ASR) system is first trained on a
separate multi-speaker corpus to extract PPGs. The other part
of the any-to-one VC system can be trained only on the target
speaker’s speech corpus, with only the target speaker’s PPGs-
waveform pairs. During conversion phase, this method first ex-
tracts PPGs from the arbitrary source speaker’s utterance, mean-
while the F0s are extracted and linearly transformed into the
target speaker’s F0s range using z-score normalization. Then
the PPGs and the transformed logarithm F0s are concatenated
to form the local condition input to the WaveNet synthesizer to
generate the target speaker’s speech waveform.

The aforementioned system can achieve high naturalness of
the converted speech and high similarity with the target speaker.
However, for a new target speaker, the system requires a consid-
erable amount of speech data and training from scratch of the
whole system, leading to the difficulty in practical applications.

2.2. ADAP-VC system

We propose the ADAP-VC method as the comparison method
to GSEs-VC. The ADAP-VC method’s architecture is shown in
Figure 1(b) and 1(c).The main part of ADAP-VC is similar to
the any-to-one VC system introduced in subsection 2.1. The
major improvement is the equipment of trainable speaker em-
beddings to enhance the system’s ability of generalization to
the diversity of speaker identities.

During the training phase, a multi-speaker speech corpus
is used to train the VC system. Each speaker in the training

set corresponds to a trainable speaker embedding. The network
parameters and the speaker embeddings are learned simultane-
ously in the training process. Since the linguistic features and
the F0s contain information specific to an individual speaker,
we’d like these features to be as speaker-independent as possi-
ble so that the speaker identity is modeled only via global con-
ditioning on the speaker embedding. The linguistic features, i.e.
PPGs are ensured to be speaker-independent through the use of
a multi-speaker corpus to train the SI-ASR system. To remove
speaker identity-related information from the F0s, we normal-
ize the logarithm F0s to have zero mean and unit variance sepa-
rately for each speaker [17]. Since the training target is to syn-
thesize different speaker’s speech waveform, it’s expected that
the speaker embeddings can capture the speaker identity infor-
mation and the other part of the system can grasp the phonetic
pronunciation after the training process finishes.

For an arbitrary new target speaker with only one utterance,
we do adaptation training to the pre-trained model to fit the new
target speaker. As shown in Figure 1(c), the trained speaker
embeddings are discarded and a new speaker embedding is ran-
domly initialized for the new target speaker. System parame-
ters (gray blocks in Figure 1(c)) other than speaker embedding
are fixed and only the speaker embedding is updated during the
adaptation training process with the single target speaker’s ut-
terance as the training data.

After the adaptation training finishes, the speaker embed-
ding is fixed for the target speaker. During conversion phase,
for arbitrary source speaker’s utterance, the extracted PPGs and
logarithm F0s are fed as the local condition and the trained tar-
get speaker embedding is fed as the global condition, into the
WaveNet synthesizer to generate target speaker’s waveform.

The ADAP-VC method can be fast adapted to the new tar-
get speaker using a single target speaker’s utterance. How-
ever, the adaptation training process needs careful observation
to avoid overfitting and is cumbersome in practical applications.

2.3. GSEs-VC system

The architecture of the GSEs-VC is shown in Figure 2. To
equip the any-to-one VC system with the ability of conversion
to unknown speakers directly, the proposed method embeds the
GSEs into the any-to-one VC system to generate speaker em-
bedding as global condition. Specifically, the target speaker’s
spectrograms are first encoded into a fixed-length reference em-
bedding by a reference encoder. Following [10], the reference
encoder consists of a stack of 2-D convolution layer and a uni-
directional gated recurrent unit (GRU) [18] layer. The GRU
state of the last time step serves as the reference embedding
and is employed as attention query to the GSEs. The GSEs,
in the form of a matrix, consist of several speaker embeddings
that are random initialized and trained with the whole system.
Scaled dot-product [15] is used as the similarity measure be-
tween the reference embedding and GSEs to compute attention
weights. Multi-head attention [15] is adopted to compute rela-
tions between the reference embedding and GSEs in different
representation subspaces. The attention output is considered as
the speaker embedding containing only speaker identity infor-
mation. To describe the attention computing process in math,
let R represents reference embedding and E represents GSEs.
Since attention with scaled dot-product as similarity measure
can be computed as

Attention(Q,K, V ) = softmax(
QKT

√
n

)V (1)
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Figure 2: Training and conversion process of the GSEs-VC system.

where Q, K, and V are attention queries, keys, and values, re-
spectively. n is the dimension of the query. The multi-head
attention can be computed as

MultiHead(Q,K, V ) = [head1; ...;headh]W
O (2)

where

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (3)

WO , WQ, WK and WV are trainable matrices. Given all the
equations above, the speaker embedding can be computed as

Speaker embedding = MultiHead(R,E,E) (4)

During the training phase, as shown in Figure 2(a), a multi-
speaker corpus (different from the corpus that trains the SI-
ASR) is used to train the GSEs-VC system. Extracted by the
trained SI-ASR, the PPGs and the corresponding logarithm F0s
are concatenated to form the local condition of the WaveNet
synthesizer. Logarithm F0s are z-score normalized for each
speaker to remove speaker identity-related information. Mean-
while, a randomly chosen utterance from the same speaker’s
speech dataset is used as the reference utterance, which ensures
that the speaker embedding is only related to speaker identity
information and has no overlap with the linguistic information,
to provide the speaker identity information.

Conversion phase is shown in Figure 2(b). For an arbitrary
source-target speakers pair, PPGs and logarithm F0s are ex-
tracted from the source speaker’s utterance to provide linguistic
features and prosodic features. The target speaker’s given utter-
ance is used as a reference utterance to provide speaker identity
information. The proposed VC system combines the linguistic
features, prosodic features together with speaker identity infor-
mation to produce the target speaker’s speech waveform.

Similar to how GSTs are explained [10], we try to inter-
pret GSEs as follows. As GSEs are shared for all speaker’s
reference inputs, it can be thought of as a set of base vectors of
the global speaker identity space representing different aspects
of the speaker identity information. The attention operation is a
process to use these base vectors to encode the reference embed-
ding into a representation in the global speaker identity space.
The attention weights can be considered as the coordinates of
the corresponding speaker identity in the global speaker iden-
tity space.

3. Experiments
3.1. Experimental setup

To evaluate the proposed method and the comparison method,
we use a dataset of 102 speakers from VCTK corpus [19] for the

systems’ training. From each speaker’s dataset, we randomly
take 10 out of about 400 utterances as validation sets of the sys-
tems. We use another 4 unused speakers’ datasets from VCTK
as test sets.

For feature extraction, speech waveforms from VCTK are
down-sampled to 16kHz, all acoustic features are extracted with
25-ms window length and 5-ms window shift. The SI-ASR sys-
tem is trained on TIMIT corpus [20], 13-dim Mel-frequency
cepstral coefficients (MFCCs) without energy plus delta and
delta-delta features are extracted as inputs. The PPGs are ex-
tracted as 128-dim data sequence representing probabilities of
each 128 senones, which are clustered using Kaldi[21], on all
time frames of an utterance. F0s are extracted using Reaper [22]
and are concatenated with voiced/unvoiced tags. The number of
Mel bands for extracting Mel-spectrogram is 80.

The conditional WaveNet part of the GSEs-VC method has
the same structure as that of the ADAP-VC method. Wave-
forms are mu-law encoded and quantized into 256-dimension.
The condition network consists of multi-head self-attention,
BLSTM, multi-head self-attention and BLSTM structure suc-
cessively with numbers of hidden units being 130, 128, 128 and
128 respectively. To evenly divide the hidden units into each
head, numbers of heads of the two self-attention structures are
5 and 8 respectively. The WaveNet structure has two dilation
blocks, each consists of 10 dilated convolution layers with di-
lations from 1 to 512, kernel size of each convolution layer is
2. The numbers of residual and dilation channels are both 128,
and the number of skip channels is 256.

For the GSEs-VC method, all convolutional layers in the
reference encoder have 3 × 3 kernels and 2 × 2 strides. Out-
put channels for 6 convolutional layers are 32, 32, 64, 64, 128
and 128 respectively. The GRU layer also has a 128-unit out-
put. The GSEs consist of 10 global speaker embeddings each
with 128-dimension. The multi-head attention has 8 heads and
128-dimension outputs, which means that the output speaker
embedding is 128-dimension. For the ADAP-VC method, to
ensure that the model complexities for the proposed GSEs-VC
method and the comparison ADAP-VC method are the same,
the dimension for the speaker embedding is also 128.

3.2. Subjective evaluations

To evaluate the GSEs-VC method and the ADAP-VC method,
we conduct VC experiments on 4 speakers from VCTK corpus:
P225 (female), P315 (male), P340 (female) and P363 (male),
none of these speakers’ data has appeared in the training set. In
the experiments, P340 and P363 are used as source speakers and
P225 and P315 are used as target speakers. Two source speakers
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and two target speakers form 4 conversion pairs: male-to-male
(P363 to P315), male-to-female (P363 to P225), female-to-male
(P340 to P315) and female-to-female (P340 to P225). 5 utter-
ances are converted for each conversion setting so that 20 utter-
ances are evaluated in total1. 15 subjects have participated in
the evaluation.

We conducted Mean Opinion Score (MOS) listening test
for naturalness and preference test to compare the two meth-
ods’ performance on target speaker similarity. In naturalness
MOS listening tests, subjects are asked to evaluate the converted
speech samples on a scale from 1 (completely unnatural) to 5
(completely natural). In preference tests on similarity, subjects
are presented with utterances converted by the two methods and
asked to decide which utterance is more similar to the refer-
ence utterance in speaker identity or no preference. All con-
verted samples are provided to subjects in random orders along
with the source speaker’s speech and target speaker’s reference
speech.

3.3. Experimental results

The subjective evaluation results can be viewed in Figure 3 and
Figure 4. Figure 3 shows the naturalness MOS while Figure 4
shows the speaker similarity preference tests results. As we can
see, both the GSEs-VC method and the ADAP-VC can achieve
good naturalness of the converted speech while the GSEs-VC
method slightly outperforms the ADAP-VC method in aver-
age. As for similarity to target speakers, GSEs-VC method and
ADAP-VC achieved comparable performance while the GSEs-
VC method is slightly better in average.

We also visualize the cosine similarity distances between
global speaker embeddings in the GSEs to get more intuitions
about how the GSEs work. As we can tell from Figure 5, co-
sine similarity distances between different global speaker em-
beddings are close to 0, which means that they are almost or-
thogonal to one another. The fact partly supports the assump-
tion that different embeddings in GSEs should represent differ-
ent aspects of speaker identity.

1Samples are available on https://daidongyang.github.io/vc-eval/
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Figure 5: Cosine similarities between global speaker embed-
dings in GSEs. The coordinates represent the corresponding
indices of the global speaker embeddings in the GSEs.

4. Conclusions and Discussions
In this paper, we propose an one-shot VC system with GSEs.
The proposed method embeds the GSEs, a set of global speaker
embeddings representing different aspects of speaker character-
istics learned during training phase, into the recently proposed
conditional WaveNet based VC system to control the conver-
sion target. The proposed method has the following advantages:
(1) The whole system after training can be directly employed to
arbitrary new target speakers given only one utterance of the
target without any adaptation training process. (2) The GSEs is
jointly learned with the other part of the system under the op-
timization goal of the target speaker’s waveform generation, no
extra discriminative loss functions needed to train the GSEs. (3)
The speaker embedding process is embedded in the VC system,
there is no need to train a separate speaker encoder.

In experiments, we compared the GSEs-VC method with
the ADAP-VC method, which is an adaptation training based
method for one-shot VC. The GSEs-VC method performs
slightly better in average than the ADAP-VC in both the natu-
ralness of the converted speech and the speaker similarity. Since
the synthesis part of both methods are the same, their converted
speech should not differ too much in naturalness. As for speaker
similarity, we try to explain the slight advantage of GSEs-VC
method as follows. We can think of GSEs as a global memory
block which learns the diversity of speaker characteristics and
memorizes important aspects of the speaker identity. However,
the ADAP-VC system has no memory block for speaker iden-
tity information at all, so it needs an adaptation training pro-
cess to learn the target speaker’s identity while the GSEs-VC
system checks its memories for information to “imitate” the tar-
get speaker’s characteristic. Apparently, it’s easier for a system
with memory to grasp the target speaker’s characteristic.

However, for better use of the memory block, i.e. GSEs
to facilitate one-shot VC, there are still much left for further
study, such as the size of the GSEs, the structure of the attention
for better similarity measure, the structure of reference encoder
for better speaker identity representation and the way speaker
embedding and the linguistic features combine. We leave these
to our future work.
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