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Abstract

Recent researches have shown superior performance of apply-
ing end-to-end architecture in text-to-speech (TTS) synthesis.
However, considering the complex linguistic structure of Chi-
nese, using Chinese characters directly for Mandarin TTS may
suffer from the poor linguistic encoding performance, result-
ing in improper word tokenization and pronunciation errors. To
ensure the naturalness and intelligibility of synthetic speech,
state-of-the-art Mandarin TTS systems employ a list of com-
ponents, such as word tokenization, part-of-speech (POS) tag-
ging and grapheme-to-phoneme (G2P) conversion, to produce
knowledge-enhanced inputs to alleviate the problems caused by
linguistic encoding. These components are based on linguistic
expertise and well-designed, but trained individually, leading
to errors compounding for the TTS system. In this paper, to
reduce the complexity of Mandarin TTS system and bring fur-
ther improvement, we proposed a knowledge-based linguistic
encoder for the character-based end-to-end Mandarin TTS sys-
tem. Developed with multi-task learning structure, the proposed
encoder can learn from linguistic analysis subtasks, providing
robust and discriminative linguistic encodings for the follow-
ing speech generation decoder. Experimental results demon-
strate the effectiveness of the proposed framework, with word
tokenization error dropped from 12.81% to 1.58%, syllable
pronunciation error dropped from 10.89% to 2.81% compared
with state-of-the-art baseline approach, providing mean opinion
score (MOS) improvement from 3.76 to 3.87.

Index Terms: end-to-end text-to-speech system, knowledge-
based learning, linguistic encoding, multi-task learning

1. Introduction

Text-to-speech (TTS) system, as an important component in hu-
man computer interaction (HCI) frameworks, aims to generate
natural speech from given text [1]. Conventional TTS systems
employ complicated pipelines for speech generation [2], sep-
arated with linguistic feature generation component, duration
prediction component, acoustic feature prediction component
and a vocoder for speech synthesis. These components are well-
designed and investigated to complete the respective subtasks in
the speech generation pipelines, but developed and trained sep-
arately, resulting in errors compounding in steps [3, 4].

With the development of end-to-end architectures in deep
learning field, end-to-end TTS techniques are also proposed to
integrate the components in conventional TTS systems [4, 5].
By merging different components into one trainable framework,
end-to-end based systems can benefit from the joint training and
alleviate the problems caused by errors compounding, provid-
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ing more robust prediction performance while requiring less la-
borious feature engineering. These end-to-end TTS techniques,
such as Tacotron [4] and Deep Voice 3 [6], are mainly developed
on encoder-decoder structure [7], using encoder to produce lin-
guistic encodings and decoder to directly generate raw spectro-
gram. Specially, attention mechanism [8] is applied with de-
coder, such as location-sensitive attention in [9], learning align-
ment between the given text and output spectrogram. Trainable
vocoder is also proposed to use in end-to-end TTS framework
[5], further improves the overall performance by replaying the
complex signal-processing-based vocoder with learning-based
generation model. To avoid the information bias after multiple
recurrent processing in the recurrent neural networks (RNNs)
and its memory enhanced variants LSTM [10] and GRU [7]
in training the encoder-decoder structure based TTS models,
Transformer [11] based framework is further proposed to use
[12] to make better use of wider contextual information, which
achieves better generation performance.

End-to-end structure based TTS models have been success-
fully implemented in various languages [4, 5, 13, 14, 15], pro-
viding superior performance in generating natural speech with
high quality. However, researchers still employ linguistic fea-
ture generation pipelines rather than the genuine end-to-end
structure in constructing Mandarin TTS systems[12, 16, 17, 18].
Related to the complex linguistic structure of Chinese, using
Chinese characters directly can lead to poor linguistic encod-
ings, resulting in improper word tokenization and pronuncia-
tion errors. To ensure the naturalness and intelligibility of syn-
thetic speech, state-of-the-art Mandarin TTS systems employ a
list of components, such as word tokenization, part-of-speech
(POS) tagging and grapheme-to-phoneme (G2P) conversion, to
produce knowledge-enhanced inputs to alleviate the problems
caused by linguistic encoding. These components are based on
linguistic expertise and well-designed, but trained individually,
leading to errors compounding for the TTS system.

In this paper, to address the challenges in developing
character-based Mandarin end-to-end TTS system, we proposed
a knowledge-based linguistic encoder. Compared with conven-
tional encoders, the proposed linguistic encoder is trained in a
multi-task learning framework, using a list of linguistic anal-
ysis subtasks to enhance the performance of linguistic encod-
ings generation. These linguistic analysis subtasks, including
word tokenization, POS tagging and G2P conversion, wording
embedding and stop token prediction, are well-designed and
closely related to the Chinese linguistic syntax. Trained with the
multi-task framework, the linguistic encoder can produce robust
and discriminative linguistic encodings to the following TTS
decoder, dramatically reduce the mispronunciations in synthetic
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Figure 1: The architecture of the proposed Chinese character-based end-to-end TTS system and the architecture for training the
knowledge-based linguistic encoder. * After trained, the knowledge-based linguistic encoder is transferred to the Chinese character-

based end-to-end TTS system.

speech and further improve the overall performance of Man-
darin TTS systems. Experimental results demonstrate the ef-
fectiveness of the proposed framework, with word tokenization
error dropped from 12.81% to 1.58%, syllable pronunciation
error dropped from 10.89% to 2.81% compared with state-of-
the-art baseline approach, providing mean opinion score (MOS)
improvement from 3.76 to 3.87.

2. Methodology

Our work consists of two components, shown in Figure 1:
(a) a Chinese character-based end-to-end Mandarin TTS system
which directly converts Chinese character sequence to mel spec-
trograms with the knowledge-based linguistic encoder, and then
synthesizes the speech by the Griffin-Lim algorithm; (b) a mul-
ti-task learning framework for training the knowledge-based
linguistic encoder to learn the rich-knowledge linguistic em-
beddings from raw Chinese characters with the help of different
natural language processing (NLP) tasks.

2.1. Chinese character-based end-to-end Mandarin TTS

The backbone of the proposed Chinese character-based end-to-
end Mandarin TTS system is an encoder-decoder model with
attention [8], consisting of a knowledge-based linguistic en-
coder and a TTS decoder. The knowledge-based linguistic en-
coder takes Chinese character sequence as input and produces
knowledge-rich linguistic encodings, then the TTS decoder
takes the linguistic encodings as input and produces mel spec-
trograms that are then converted to waveforms by the Griffin-
Lim algorithm.

The knowledge-based linguistic encoder is a neural network
which has the same architecture as the Tacotron 2 encoder [5].
Input Chinese characters are represented by the learned 512-
dimensional character embeddings, and then are passed through
a stack of 3 convolutional layers each containing 512 filters with
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shape 5 x 1 and ReLU activations. The output of the final
convolutional layer is passed into a single bi-directional LSTM
layer containing 256 units in each direction to generate the lin-
guistic encodings.

We employed the Tacotron 2 decoder [5] as the TTS de-
coder in the proposed system to converted the linguistic encod-
ings to mel spectrograms along with the stop token. Then the
Griffin-Lim algorithm is used to synthesize speech from the mel
spectrograms.

Although both the encoder and decoder used in the pro-
posed system have the same architecture as those used in
Tacotron 2, the knowledge-based linguistic encoder is trained
in another network and then transferred into the proposed sys-
tem, providing richer linguistic information than the encoder in
Tacotron 2.

2.2. Knowledge-based linguistic encoding

To provide rich linguistic information in the encodings for Chi-
nese character-based end-to-end Mandarin TTS, we proposed
a multi-task learning framework to train the knowledge-based
linguistic encoder. Tasks closely related to the Chinese linguis-
tic analysis and popularly researched in the NLP field are used
as the sub-tasks in the multi-task learning framework to allevi-
ate the syllable pronunciation error and word tokenization er-
ror and improve the naturalness and intelligibility in the synthe-
sized speech.

To alleviate the syllable pronunciation error in the synthe-
sized speech, we include G2P as the first sub-task for train-
ing the knowledge-based linguistic encoder, which converts the
input sequence of Chinese characters to the corresponding se-
quence of phonemes. And to alleviate the word tokenization er-
ror, we include word tokenization as the second sub-task, which
predicts the BMES (Begin, Middle, End, Single) tokenization
tags [19] for each character. To improve the performance of the
first two sub-tasks and enrich the semantic knowledge in the lin-



guistic encodings, POS tagging and word embedding are also
included in the multi-task learning framework. The POS tag-
ging sub-task predicts the POS tags for input characters which
are duplicated from the corresponding POS tags of words. And
the word embedding sub-task predicts the word vectors for in-
put characters which are also duplicated from the corresponding
word vectors of words. Here the target word vectors are embed-
ded from a well-trained Word2Vec model trained on the Chi-
nese Wikimedia corpus [20]. The stop token predicting used in
Tacotron 2 is also included as the last sub-task in the multi-task
decoder.

The backbone of the proposed multi-task learning frame-
work is also an encoder-decoder model with attention, consist-
ing of a knowledge-based linguistic encoder and a multi-task
decoder. The knowledge-based linguistic encoder also takes
Chinese character sequences as input and produces linguistic
encodings, then the multi-task decoder takes the linguistic en-
codings as input to produce predictions for the sub-tasks.

For the multi-task linguistic decoder, the linguistic encod-
ings are consumed by the location-sensitive attention to sum-
marize the full encodings as a fixed-length context vector for
each decoder output step with location features computed using
32 1-dimensional convolution filters of length 31. The predic-
tion from the previous time step is passed through a stack of 2
fully connected layers of 256 hidden ReLU units which is also
known and employed as the pre-net in Tacotron 2. The output
of the pre-net and attention context vector are concatenated and
passed through a stack of 2 uni-directional LSTM layers with
1024 units and zoneout probability 0.1. Then the LSTM output
and the attention context vector are concatenated and projected
through a linear transform to a 512-dimensional linguistic vec-
tor. For the tasks of G2P, word tokenization and POS tagging,
the linguistic vector is projected through 3 different linear trans-
forms followed by softmax activations, to predict the probabil-
ities for phoneme tags, BMES tags and POS tags respectively.
For the task of word vector prediction, the linguistic vector is
projected through a linear transforms followed by linear activa-
tion to predict the word vectors. While for the stop token pre-
diction task, the stop token is predicted by the same architecture
used in Tacotron 2 [5], by projecting down the concatenation of
the LSTM output and attention context vector to a scalar and
passing through a sigmoid activation.

In common with the conventional multi-task learning
framework, the linguistic encoder can be trained by minimiz-
ing the global loss expressed as a weighted sum of the losses
from all the sub-tasks. In practice, the weights of sub-tasks are
equal. Cross entropy is used as the loss function for the G2P,
word tokenization, POS tagging and stop token predicting sub-
tasks, and mean squared error (MSE) is used as the loss function
for word embedding sub-task.

The convolutional layers and the pre-net in the network are
applied with dropout probability 0.5. The LSTM layers are ap-
plied with zoneout probability 0.1. We also apply L2 regular-
ization with weight 1075,

2.3. Transfer the knowledge-based linguistic encoder to the
Chinese character-based end-to-end Mandarin TTS system

After the knowledge-based linguistic encoder is trained, it is
frozen and transferred to the proposed Chinese character-based
end-to-end Mandarin TTS system. With the rich linguistic in-
formation from the knowledge-based linguistic encoding, the
proposed end-to-end TTS system is able to directly synthesize
speeches from Chinese characters with lower syllable pronun-
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ciation error and word tokenization error.

3. Experiments
3.1. Training setup

Our training process involves first training the knowledge-based
linguistic encoder on large-scale text data, followed by training
the proposed end-to-end Mandarin TTS system independently
with the transferred pre-trained knowledge-based linguistic en-
coder.

We use the multi-level annotated China Daily dataset [21]
to train the linguistic encoder. The ground-truths for word tok-
enization and POS tagging have been manually annotated in the
dataset. The ground-truth for G2P is generated by pypinyin [22]
and split_pinyin_sp [23]. The ground-truth for word embed-
ding is generated by a Word2Vec model trained by gensim [24]
on the Chinese Wikimedia corpus [20]. After pre-processing,
the corpus contains 19, 358 sentences. 18,910 sentences are
used for training and 448 sentences are used for validation.
The learning rate is 10~* exponentially decaying to 10~° af-
ter 1, 000 iterations.

‘We then train the proposed end-to-end Mandarin TTS sys-
tem on a public Chinese female corpus [25] which contains 10-
hour professional speech. After pre-processing, the corpus con-
tains 9, 998 utterances, from which 9, 550 utterances are used
for training and 448 utterances are used for validation. Mel
spectrograms are computed through a short time Fourier trans-
form (STFT) using a 50 ms frame size, 12.5 ms frame hop, and
a Hann window function. We transform the STFT magnitude
to the mel scale using an 80 channel mel filterbank spanning
125 Hz to 7.6 kHz, followed by log dynamic range compres-
sion. The filterbank output magnitudes are clipped to a min-
imum value of 0.01. The learning rate is 10~ exponentially
decaying to 10~% after 40, 000 iterations.

We train a vanilla Tacotron 2 [5] also using Chinese char-
acter sequences as input and the Griffin-Lim algorithm as the
vocoder as the baseline approach.

All the neural networks used in the experiments are pro-
grammed based on an open source TensorFlow implemention
of Tacotron 2 [26]. We train all the models for 100, 000 itera-
tions on 2 NVIDIA TITAN X (Pascal) with a batch size of 64
on a single GPU.

3.2. Evaluations

Mel-cepstral distortion (MCD) is calculated on the validation
set of the Chinese female corpus. MCD is defined as the Eu-
clidean distance between the predicted mel spectrogram and the
that of target speech, which can be formalized as:

10 al )

MCDI[dB] = —,|2 ( o é_‘y’nthesized) |

48] = pig 22 (=] M
synthesized

where ¢; and c; refer to the i-th coefficient of the
ground-truth and the predicted mel spectrogram frame and NV
is the dimension of mel spectrogram.

We randomly select 92 sentences from a high school lec-
ture as the test set. Speech files generated on this set are rated
by 5 listeners on a scale from 1 to 5 with 0.2 point increments,
from which a subjective mean opinion score (MOS) is calcu-
lated. Syllable pronunciation error and word tokenization error
are also flagged by listeners and calculated from the speech files
generated on this set.



Table 1 shows a comparison of the proposed system against
the baseline. In the objective evaluations, the proposed end-to-
end Mandarin TTS system outperforms the baseline approach,
greatly decreasing the syllable pronunciation error and word to-
kenization error in the synthesized speech, with MCD dropped
from 3.85 to 3.53 on validation set, word tokenization error
dropped from 12.81% to 1.58%, and syllable pronunciation er-
ror dropped from 10.89% to 2.81% on the test set. In the sub-
jective evaluation, the proposed system receives a MOS of 3.87
while the baseline approach receives a MOS of 3.76.

Table 1: Performance comparison between the baseline and
proposed approaches.

Baseline Proposed
MCD (on validation set) 3.85 3.53
word tokenization error 12.81% 1.58 %
syllable pronunciation error 10.89% 2.81%
MOS 3.76 £0.05 3.87 +0.05

3.3. Analysis and discussion

The attention alignment learned when training the knowledge-
based linguistic encoder is shown in Figure 2 (a). Comparing
with the attention alignments in conventional end-to-end TTS
systems, more non-zero weights are shown in the lower tri-
angular of the attention matrix, revealing the context informa-
tion used to generate the linguistic encoding. Also the atten-
tion alignment learned in the proposed TTS system is shown in
Figure 2 (b). We can reveal that the decoder has successfully
aligned to the linguistic encoding, providing the interpretability
of our proposed model.
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Figure 2: Attention alignments (a) learned when training the
knowledge-based linguistic encoder (b) learned in the proposed
TTS system.

Decoder Timestep

(a)

Also a mel spectrogram comparison on a test case is shown
in Figure 3. The baseline approach has word tokenization error
around the 3-rd character, resulting in pause deletion between
the 2-nd and the 3-rd characters and improper pause insertion
between the 3-rd and 4-th characters. The baseline approach
also has syllable pronunciation error at the 8-th character, in-
correctly predicting the pronunciation of the character from y:2
to yi4. Meanwhile the proposed system has synthesized the
speech with expected pronunciations and pauses, demonstrat-
ing the effectiveness of the proposed framework.

4. Conclusion and future research

To reduce the complexity of Mandarin TTS system and improve
performance by including linguistic information, we proposed
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Figure 3: Mel spectrogram comparison on the test case “Xu
Wen please share your answer with us”. The baseline approach
has word tokenization error around the name “Xu Wen” and
has syllable pronunciation error at the 8-th character.

a knowledge-based linguistic encoder for the character-based
end-to-end Mandarin TTS system. With the same architecture
as the encoder used in the state-of-the-art end-to-end TTS sys-
tems, the proposed encoder is multi-task learned from linguis-
tic analysis sub-tasks including G2P, word tokenization, POS
tagging and word embedding, providing robust and discrimi-
native linguistic encodings for the following speech generation
decoder. Comparing with the state-of-the-art end-to-end Man-
darin TTS approach, the proposed system can greatly alleviate
the syllable pronunciation error and word tokenization error and
improve the naturalness and intelligibility in the synthesized
speech. Experimental results demonstrate the effectiveness of
the proposed framework in both objective and subjective evalu-
ations.

There is still much to be investigated in our framework. In-
volving more kinds of linguistic knowledges may further im-
prove the performance. And the architectures for the pro-
posed system and the knowledge-based linguistic encoder con-
tain many early design decisions and are ripe for improvement.
For example, Transformer is also of possible to use in the pro-
posed Mandarin TTS system and the knowledge-based linguis-
tic encoder. We are currently working on a fully attention based
end-to-end Mandarin TTS system with more kinds of linguistic
knowledges involved.
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