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Abstract—Prosodic structure prediction is a key part of the text
analysis front-end of the text-to-speech (TTS) system. It predicts
prosodic boundary tags given the input text context, which is
essential to the naturalness of synthesized speech. Conventional
methods such as conditional random fields (CRF) and recurrent
neural network (RNN) have been successfully applied to this
task. However, the lack of modeling temporal dependencies
at different scopes (the short-term dependency as well as the
long-span dependency across the entire sentence) limits their
performance. In this paper, we propose a self-attention network
with semantic features extracted by a pre-trained bidirectional
encoder representations from Transformers (BERT) model to
predict the prosodic structure. Experimental results show that the
proposed approach outperforms the strong baseline CRF model
with an absolute improvement of 3.4% in total accuracy.

I. INTRODUCTION

For a typical Chinese TTS system as shown in Fig.1.
Chinese word segmentation and POS tagging are first un-
dertaken to tokenize the input Chinese sentence into lexical
words with part-of-speech (POS) information that are fur-
ther fed into prosodic structure prediction module to predict
prosodic boundaries including prosodic word (PW), prosodic
phrase (PPH), intonational phrase (IPH). Fig.2 depicts an
example of prosodic structure hierarchy commonly used in
Chinese. Grapheme-to-phoneme conversion is performed after
the prosodic structure prediction to determine the pronunci-
ation of each word. Those front-end processing results are
used to predict the acoustic parameters which can be fed to
vocoder to synthesis the speech signals. Prosodic structure
prediction plays an important role in TTS system. It affects
the naturalness of the synthesized speech.

A variety of methods have been proposed to predict prosodic
boundaries. In the early time, simple rule-based methods are
proposed. With the development of machine learning technolo-
gies, many statistical methods have been applied to predict
prosodic boundaries, including classification and regression
tree (CART) [1], hidden Markov model (HMM) [2], maxi-
mum entropy model (ME) [3] and conditional random fields
(CRF) [4]. Among these models, CRF has been reported to
achieve the best performance on the task of prosodic structure
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Fig. 1. A typical Chinese TTS system.
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Fig. 2. An example of Chinese prosodic structure hierarchy.

generation [4]. Recently, recurrent neural network (RNN) has
been successfully applied to prosodic structure prediction [5].
However, there still remains a major challenge for both CRF
and RNN to address the interaction between short-term and
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long-term contextual information. Furthermore, the CRF needs
hand-craft indicator features based on expert knowledge.

In this paper, we apply self-attention mechanism to the
task of prosodic structure prediction. It can directly make
the connections between the input features of two arbitrary
words in a sentence, regardless of their distance. Besides, it
can capture the structure information of the sentence due to the
self-attention mechanism that computes a word representation
based on the features of all the words in the sentence.

II. FEATURES

In previous work, word embedding is used to predict
prosodic boundaries through RNN [6]. We adopt pre-trained
contextualized word embeddings obtained from bidirectional
encoder representations from Transformers (BERT) [7] which
has achieved state-of-the-art performance for a wide range of
natural language processing tasks. Previous work has reported
the correlation between the part-of-speech (POS) tag and the
prosodic boundary type [2] [8]. Hence POS information is
incorporated into the input features for prosodic structure pre-
diction in our work. Obviously, punctuation symbols always
indicate prosodic boundaries. Besides, prosodic boundary is
affected by the number of syllables in a lexical word (word
length). A long lexical word often corresponds to a single
prosodic word [9].

Based on the works mentioned above, the input word-level
features are listed as followings:

• Word embedding
• POS
• Word length
• Punctuation symbol after the word
For convenience, we refer to the combination of POS,

word length and punctuation after the word as rich word-level
textual features hereafter.

III. PROPOSED METHOD

A. Self-Attention

Self-attention has been successfully used in many tasks
including natural language inference [10], neural machine
translation [11] and sequence labeling [12]. Our work follows
these applications and applies self-attention mechanism to the
task of prosodic structure prediction.

Attention mechanism can be described as computing the
similarity of a query and each key to get a set of weights which
are used to obtain a weighted sum of corresponding values.
The output weighted sum can be seen as a representation
of that query. There are different functions to calculate the
similarity. Additive attention and dot-product attention are
commonly used functions. In this work, we adopt a scaled
dot-product attention, a variant of dot-product attention [13],
as illustrated in Fig.3.

Attention(Q,K, V ) = softmax(
QKT

√
d

)V (1)

where Q, K and V are attention queries, keys and values
respectively. d is the dimension of the query.

MatMul
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Fig. 3. The computation graph of scaled dot-product attention.

Self-attention is a attention mechanism [11] that only needs
a single input sequence X to compute its representation,
i.e. Q = K = V = X . Multi-head attention projects
the queries, keys and values to different subspaces through
linear transformation, and then performs the scaled dot-product
attention at each subspace in parallel. Each output of dot-
product attention is dv-dimensional value. All the outputs are
concatenated to form a h×dv dimensional value and projected
linearly to yield the output Y , as depicted in Fig.4.
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Fig. 4. Multi-head self-attention mechanism.

The mathematical representation of multi-head attention can
be depicted as follows:

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (2)

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W (3)

where WQ
i ∈ Rd×dk ,WK

i ∈ Rd×dk ,WV
i ∈ Rd×dv are

the transformations parameters of queries, keys and values
respectively for i-th head. W ∈ Rhdv×d is the transformation
matrix for the last linear transition. In our work, we set the
head number as h = 8. For each head, we use d = 256,
dk = dv = d/h = 64.

B. Nonlinear sub-layer

1) Feed-forward sub-layer: Feed-forward network (FFN)
sub-layer can be used along with self-attention sub-layer to
transform the input nonlinearly from the bottom layers. It
consists of two linear transformations with a ReLU activation
[14] in the middle.

FFN(X) = ReLU(XW1)W2 (4)

where W1 ∈ Rd×d, W2 ∈ Rd×d are the parameters to learn.
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2) RNN sub-layer: Prosodic structure prediction can be
viewed as a sequence prediction task. RNN is appropriate
for sequence modeling. Long Short-Term Memory (LSTM)
[15] is a RNN unit with introduced gate mechanism. Gated
recurrent unit (GRU) [16], a variant of LSTM, has simpler
structure. They are widely applied to sequence modeling
tasks. We explore three kinds of RNN sub-layers, including
unidirectional GRU sub-layer, bidirectional LSTM (BLSTM)
sub-layer and bidirectional GRU (BGRU) sub-layer in our
work.

C. Residual connection

Residual connection has been reported an effective way to
train very deep neural network. We apply residual connection
to each sub-layer as follows:

Y = X + Sub-Layer(X) (5)

where X , Y is the input and output of each sub-layer respec-
tively. It is implemented by a shortcut connection and element-
wise addition. Layer normalization [17] is also performed after
the shortcut connection to obtain more stable hidden-to-hidden
dynamics in deep neural network.

D. Position encoding

Although the self-attention mechanism can learn the de-
pendencies between the words in a sentence at any distance,
it can’t exploit the relative position information of the words.
There are many approaches to encode the position information.
Timing signal [11] is a convenient way that can be generated
through the following formulation:

timing(t, 2i) = sin(t/100002i/d) (6a)

timing(t, 2i+ 1) = cos(t/100002i/d) (6b)

where t is the time-step index, 2i and 2i+1 is the channel
index. Each dimension of positional encoding corresponds to
a sinusoid.

E. Model architecture

As Fig.5 shows, the input to our model is the word-level
features sequence. The word embedding ei added with posi-
tional encoding is concatenated with rich word-level textual
features ri, at i-th time step, to form the features fed into
front dense layer. That dense layer outputs the fused features
which are further fed into N identical blocks to learn the
deep representation and dependencies between different time-
steps. Each block consists of a nonlinear sub-layer and a
self-attention sub-layer. The last softmax layer outputs the
probabilities of all prosodic boundary types at each time step.

IV. EXPERIMENTS

A. Experimental setup

1) Dataset and preprocessing: Our corpus contains 41,483
sentences with prosodic structure boundaries labeled by a
professional annotator. We randomly select 37,483 sentences
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Concat

Nonlinear sub-layer

Dense layer: 256 units

Positional 
Encoding 

Add & Norm
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N  ×

Fig. 5. The architecture of deep self-attention neural network.

for training, another 2,000 sentences for validation, the rest
2,000 sentences for test.

Word segmentation and POS tagging are carried out by a
front-end preprocessing tool. We can easily get the punctuation
symbol after each lexical word and the number of syllables
within each lexical word by means of text analysis.

2) Settings and regularization: The size of each hidden
layer is set to 256. The number of heads h is set to 8. Adam
is adopted as the optimizer of our model. The initial learning
rate is set to 0.0001. The training batch size is set to 256.
Dropout [18] layer with keep probability of 0.8 are applied
before each sub-layer. Label smoothing is a regularization
mechanism that makes the model learn to be more unsure but
improves performance [19]. In our work, it is applied with a
smoothing value of 0.1 during training.

B. Evaluation Metrics

In our work, we mainly use total accuracy (T-ACC) to com-
pare the performance of different models, F1 scores of PW,
PPH, IPH are also recorded to ensure the models performance
on these measurements. T-ACC can be calculated as:

T -ACC =
Ncorrectly predicted samples

Ntotal samples
(7)

where Ncorrectly predicted samples is the number of correctly
predicted samples, Ntotal samples is the number of total sam-
ples. The F1 measure considers both precision and recall.
For example, the F1 score for predicting intonational phrase
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boundaries can be calculated as followings:

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(8)

Precision =
Ncorrectly predicted IPH

Npredicted IPH
(9)

Recall =
Ncorrectly predicted IPH

Nground truth IPH
(10)

where Ncorrectly predicted IPH is the number of correctly
predicted IPH samples, Npredicted IPH is the number of
predicted IPH samples, Nground true IPH is the number of
ground truth IPH samples.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Results of different model configurations
In this section, we discuss the main factors that influence

our model performance.
Nonlinear sub-layer After we set the model depth N to

6, we have tried different nonlinear sub-layers, including FFN
sub-layer, GRU sub-layer, BLSTM sub-layer and BGRU sub-
layer. The results are presented in Table I, from which we
can see that the choice of BGRU sub-layer achieves best
performance. The model with FFN sub-layer shows less total
accuracy, but it trains faster than the model with recurrent
sub-layers.

TABLE I
THE RESULTS OF DIFFERENT NONLINEAR SUB-LAYER.

Nonlinear sub-layer FFN GRU BLSTM BGRU
T-ACC 0.8089 0.8158 0.8185 0.8241

Model Depth In deep self-attention network, we have
stacked N identical blocks (each block contains a nonlinear
sub-layer and a self-attention sub-layer). After we set the
nonlinear sub-layer to BGRU, we have tried different number
of identical blocks in order to evaluate how the depth of model
affects the performance. As Table II shows, our model achieves
best performance with N=6.

TABLE II
THE RESULTS OF DIFFERENT SETTINGS OF MODEL DEPTH.

N Blocks 2 3 4 5 6 7
T-ACC 0.8188 0.8205 0.8237 0.8221 0.8241 0.8208

B. Confusion matrix for prediction results
The prosodic structure tags, which are labeled by a profes-

sional annotator, serve as ground truth. The prediction results
of our model can be evaluated by confusion matrix. The
matrices for the baseline CRF and our model are presented
in Table III and Table IV. Compared with CRF, the correctly
predicted PW, PPH samples of our model are significantly
increased. Our model are likely to confuse PPH with PW. One
possible reason is that PPH has the least samples among those
four prosodic boundary types in our data set, which makes it
more subtle than other boundary types. In total, those results
indicate that the deep self-attention neural network provides
improvement over the baseline CRF.

TABLE III
CONFUSION MATRIX FOR CRF.

Actual
Predicted NB PW PPH IPH

NB 4142 702 123 0
(83.39%) (14.13%) (2.48%) (0.00%)

PW 526 5714 843 16
(7.41%) (80.49%) (11.87%) (0.23%)

PPH 122 1240 1553 86
(4.07%) (41.32%) (51.75%) (2.87%)

IPH 17 111 147 3397
(0.46%) (3.02%) (4.00%) (92.51%)

TABLE IV
CONFUSION MATRIX FOR DEEP SELF-ATTENTION NETWORK.

Actual
Predicted NB PW PPH IPH

NB 4333 590 43 1
(87.24%) (11.88%) (0.87%) (0.02%)

PW 406 6035 649 9
(5.72%) (85.01%) (9.14%) (0.13%)

PPH 56 1193 1679 73
(1.87%) (39.75%) (55.95%) (2.43%)

IPH 8 85 182 3397
(0.22%) (2.31%) (4.96%) (92.51%)

C. Comparison with related models

We have implemented the following models for comparison.
CRF Conventional CRF model with lexical words, POS

tagging labels, word length and post-word punctuations as
input.

BLSTM-EMB The model consists of a BLSTM layer and
a output layer. It predicts the prosodic structure boundary type
using word embedding. The word embedding is same as that
of our model.

BGRU-RICH The model architecture consists of a dense
layer followed by six BGRU-RNN layers, the last softmax
layer outputs the probabilities of all prosodic boundary types.
The input features are same as our model’s input features as
described in Section II.

SELF-ATT Our proposed approach for prosodic structure
prediction as illustrated in Fig.5. The nonlinear sub-layer is
set to BGRU and the number of identical blocks is set to 6.

TABLE V
EXPERIMENTAL RESULTS OF RELATED MODELS.

Model PW F1 PPH F1 IPH F1 T-ACC
CRF 0.7687 0.5481 0.9474 0.7901
BLSTM-EMB 0.7751 0.5254 0.8477 0.7767
BGRU-RICH 0.7988 0.5984 0.9496 0.8193
SELF-ATT 0.8046 0.6046 0.9499 0.8241

Experimental results are presented in Table V. Comparing
CRF with SELF-ATT, the latter achieves better performance
with an absolute improvement of 3.4% in total accuracy.
Compared with BLSTM-EMB, our model achieves much
better performance on all measurements. It also shows that
word embedding is not a sufficient feature for the task of three-
level prosodic structures prediction. With the self-attention
mechanism, our model provides a minor improvement by
0.48% compared with BGRU-RICH, indicating self-attention
sub-layers along with BGRU sub-layers help to learn the
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latent dependencies of words in the sentence, resulting in best
performance compared with related models.

VI. CONCLUSIONS

In this paper, we have applied self-attention mechanism to
the task of prosodic structure prediction. Experimental results
show that the proposed approach outperforms the compari-
son systems. The application of self-attention mechanism to
prosodic structure prediction task can help learn the latent
dependencies information between the words in the sentence.
In the future, we will investigate a hierarchical neural network
that can help to learn the hierarchical relations between
prosodic structures.
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