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Abstract
Recently, End-to-End (E2E) models have achieved state-of-
the-art performance for automatic speech recognition (ASR).
Within these large and deep models, overfitting remains an im-
portant problem that heavily influences the model performance.
One solution to deal with the overfitting problem is to increase
the quantity and variety of the training data with the help of
data augmentation. In this paper, we present SpecSwap, a sim-
ple data augmentation scheme for automatic speech recognition
that acts directly on the spectrogram of input utterances. The
augmentation policy consists of swapping blocks of frequency
channels and swapping blocks of time steps. We apply Spec-
Swap on Transformer-based networks for end-to-end speech
recognition task. Our experiments on Aishell-1 show state-of-
the-art performance for E2E models that are trained solely on
the speech training data. Further, by increasing the depth of
model, the Transformers trained with augmentations can out-
perform certain hybrid systems, even without the aid of a lan-
guage model.
Index Terms: end-to-end speech recognition, data augmenta-
tion

1. Introduction
End-to-end approaches have been applied successfully to Auto-
matic Speech Recognition (ASR), where many works focus on
designing deeper and larger network architectures, for example,
Deep CNN [1], Deep RNN [2] and Deep Attention [3]. How-
ever, the authors in [4] have recently pointed out that overfitting
is the most crucial issue when training those models on popular
benchmarks.

To improve the robustness of the models and avoid overfit-
ting, data augmentation has been proposed for ASR to produce
additional training data by increasing the quantity and variety
of the existing data [5, 6, 7]. Augmented data usually comes in
two forms: unsupervised data and deformed data. For example,
in [8], the unsupervised data was adopted by recognising it with
an existing ASR system and re-training the system on both su-
pervised and unsupervised training data. As for deformed data,
simulated far-field speech [9] and clean-noisy superimposed
speech [10] have been explored to supplement close-talk speech
recognition. Besides, the perturbation of vocal tract length [11]
and raw audio speed [12] have also been used to help ASR
models to be more robust to speaker variations. More recently,
borrowing the idea from computer vision [13, 14], SpecAug-
ment [4] proposed a mask-based argumentation method that
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simply operates on the log-mel spectrogram of the input audio,
rather than the raw audio itself. By masking blocks of consec-
utive time steps or mel frequency channels with zero values,
they have achieved a large gain in performance of end-to-end
networks.

Since SpecAugment [4] treats the log-mel spectrogram as
an image and directly performs masking on it, no additional
data is needed and it can be applied online during training. In-
spired by this view, in this paper, we propose SpecSwap, a novel
augmentation strategy which also deforms data at spectrogram-
level. SpecSwap consists of two kinds of deformations of
the log-mel spectrogram, namely time swapping and frequency
swapping. The key idea, swapping blocks of consecutive fea-
ture vectors, comes from our previous work. In [15], we
proposed an unsupervised acoustic model pretraining scheme
by reconstructing frames from a permuted speech feature se-
quence. The permutation strategy in [15] has been proved
to help the self-attention networks (SANs) generalize better.
However, such permutation is achieved by modifying the at-
tention structure and constructing special attention mask, thus
it is highly bound to SANs and is difficult to adapt to other
models. In addition, the SANs in [15] need to be fine-tuned
after pre-training, which is more time-consuming than that of
one-pass training. Given the above shortcomings, one natural
question that arises is whether we can untie the model structure
and permutation strategy so that the improvement of the gen-
eralization properties brought by the permutation operation can
be transferred to other models at zero cost. In this paper, we
address this question by applying permutation directly on spec-
trogram, i.e., swapping blocks of features either in time-domain
or frequency-domain.

While this approach is simple, it is remarkably effective
and allows us to train end-to-end ASR networks, called Trans-
former [16], to surpass more complicated hybrid systems even
without the use of Language Models (LMs). On Aishell-
1, we obtain 7.60% Character Error Rate (CER) on the test
set, achieving competitive result when training an end-to-end
framework solely on the speech training data.

2. SpecSwap Policy
We aim to construct an augmentation policy that directly acts on
the input sequences, which improves the generalization of the
log-mel spectrogram encoder. A SpecSwap policy is obtained
by composing two basic augmentations—frequency swapping
and time swapping. Both deformations are computationally
cheap and can be applied online and optimized simultaneously.

We denote the time and frequency dimensions of the spec-
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trogram as µ and τ respectively. A policy is made up by the
following choices:

1. Frequency swapping with parameter F : A block size f
is chosen from a uniform distribution from 0 to F . The
consecutive log-mel frequency channels [f0, f0+f) and
[f1, f1+f)are then swapped, where f0 and f1 are chosen
from [0, τ − 2f) and [f0 + f, τ − f), respectively.

2. Time swapping with parameter T : A block size t is cho-
sen from a uniform distribution from 0 to T . The con-
secutive time steps [t0, t0 + t) and [t1, t1 + t) are then
swapped, where t0 and t1 are chosen from [0, µ − 2t)
and [t0 + t, µ− t), respectively.

Figure 1 shows examples of the individual augmentations
as well as combined augmentation applied to a single input.

Figure 1: Augmentations applied to the base input, given at the
top. From top to bottom, the figures depict the log-mel spectro-
gram of the base input with no augmentation, time swapping,
frequency swapping and all augmentations applied. The red
box and blue box indicate the areas that were swapped in the
original input.

3. Model
In this section, we review Transformer-based networks and in-
troduce some notations to parameterize them. We also introduce
the learning rate schedules we used to train the networks be-
cause they are actually an important factor in determining per-
formance, even more so when augmentation is applied.

3.1. Transformer Network Architectures

As shown in Figure 2, the main components of the Transformer
networks [16] include an encoder, transforming the source se-
quence to generate a high-level representation, and a decoder
generating the target sequence. The decoder models discrete
tokens as a conditional language model by consuming the pre-
viously emitted characters as well as the encoder representation
to calculate the probability of target sequence. Both encoder
and decoder use self-attention to learn the relationship between
the input and output sequence.

Instead of using a CNN for down-sampling the input spec-
trogram, we stack three consecutive feature vectors with a
frame-skipping rate of three after applying the augmentation
methods. The features are then passed through an encoder con-
sisting ofE stacked transformer blocks to yield a series of atten-

Figure 2: Transformer architecture.

tion vectors. The attention vectors are fed into a D-layer trans-
former decoder, which yields the tokens for the transcript. We
use same settings for both encoder blocks and decoder blocks
with a per-block configuration of 4 attention heads, the model
dimension dmodel = 256 and feed-forward inner-layer dimen-
sion dinner = 2048.

3.2. Learning Rate Schedules

The learning rate schedule turns out to be an important factor
in determining the performance of self-attention networks, es-
pecially so when augmentation is present. Here, we first in-
troduce the training schedule that was originally described in
Transformer [16]:

lrate = k ∗ d0.5model ∗min(n−0.5, n ∗ warmup−1.5
n ) (1)

where n is the step number, k is a fixed scalar, and the learning
rate increases linearly for the first warmupn training steps and
decreases thereafter proportionally to the inverse square root of
the step number. The problem with this schedule is that the
learning rate cannot be reduced to a suitable value within a tol-
erable time1, resulting in the model still using a higher learning
rate to update the parameters in the later stages of training.

To address this problem, we adopt a dynamic schedule, in
which the magnitude of the decrease in learning rate can be dy-
namically adjusted according to the performance of the model
on the validation set. Formally, this schedule can be parameter-
ized by three factors (m, v, s)-the model will perform up to m
epochs and the scalar k in Eq.1 will be divided by s if validation
loss doesn’t decrease for v epochs during the training process.

The two dynamic schedules we use are given as the follow-
ing:

1. DQ (Dynamic Quick): (m, v, s) = (200, 4, 10)

2. DB (Dynamic Basic): (m, v, s) = (200, 8, 2)

1 Consider k = 2.3, warmupn = 20000, at least 20G steps need
to be conducted to reduce the learning rate from peak value (1e− 3) to
appropriate value (1e− 6).
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4. Experiments and Analyses
In this section, we describe our experiments on a public Man-
darin speech corpus Aishell-1 [17]. The training set contains
about 150 hours of speech (120,098 utterances) recorded by 340
speakers. The development set contains about 20 hours (14,326
utterances) recorded by 40 speakers. And about 10 hours (7,176
utterances) of speech is used as test set. The output alphabet
of target text consists of 4233 classes, including 4230 chinese
characters and three special tokens, such as <SOS>, <EOS>
and <unk>.

All the acoustic features used in this paper are 40 log-mel
filter-bank features extracted using Kaldi [18] with global cep-
stral mean and variance normalization. Beside the filter-bank
features, we did not employ any auxiliary features. During
training, Adam [19] optimizer (β1 = 0.9, β2 = 0.98, ε =
1e − 9) is used to train our model with a batch size of 10000
frames. We choose warmupn = 140000, k = 11, dropout =
0.2, labelsmooth = 0.2 for all experiments. In order to do
evaluation, we save the model parameters of 5 best epochs ac-
cording to the validation sets and average them at the end of
training. We use character error rate (CER) as the evaluation
metric. The beam search is carried out with a beam size of 15
and length penalty of 0.6. Language model was not used during
decoding.

4.1. Hyperparameter Searching

To determine the best hyperparameters for spectrogram aug-
mentation that satisfies the aforementioned definition, we con-
ducted the following experiments. We use schedule DQ to train
our baseline transformer (E = 12, D = 6), which is denoted
as 12Enc-6Dec, on various settings of swap-related parame-
ters. Figure 3 shows the CER of different maximum length of
frequency-block, F = 4 and F = 7, at different maximum
length T of time-block. We observe that SpecSwap improves
the baseline result (9.98%) in all cases and the best setting
(F = 7, T = 40) is selected for the rest of the experiments.

4.2. SpecSwap and LR Schedule

The experimental results of varying network structures, sched-
ules and policies are shown in Table 1. A shallow configura-
tion (i.e. 4-layer encoder with 2-layer decoder) is not sufficient
for the task. Without using SpecSwap, the CER reduces from
15.36% to 9.11% on the test set as we increase the model depth
from 04Enc-02Dec to 48Enc-24Dec. The improvement is less
significant between 24Enc-12Dec and 12Enc-06Dec (only 3%
relative reduction), which seems to be a symptom of overfitting.
However, when using SpecSwap, we see that augmentation con-
sistently improves the performance of the trained network, and
that the benefit of schedule DB is more apparent with augmen-
tation.

It is worth noting that for all experiments, we use not only
dropout [20] but also label-smoothing [21] to prevent overfit-
ting. The results in Table 1 reveal that SpecSwap is addi-
tive with other regularization techniques (dropout [20], label-
smoothing [21]), which further improved our result to 7.60%
with the 48Enc-24Dec setup.

4.3. Ablation study: SpecSwap Decomposed

So far, we have seen encouraging results. In this section, we
perform an ablation study to explore the effects of each oper-
ation in SpecSwap. We ran model 12Enc-06Dec using train-
ing schedule DB for all settings (Table 2). It turns out that

Table 1: Aishell-1 test CER (%) evaluated for varying network
structures, schedules (Sch) and policies (Pol). SS denotes Spec-
Swap with configuration of F = 7 and T = 40.

Models Size Sch Pol CER (%)

04Enc-02Dec 10.61M DQ None 15.36

08Enc-04Dec 19.02M DQ None 10.83

12Enc-06Dec 27.43M

DQ None 9.98
DQ SS 8.88
DB None 9.88
DB SS 8.59

24Enc-12Dec 52.66M

DQ None 9.68
DQ SS 8.39
DB None 9.61
DB SS 7.85

36Enc-12Dec 68.43M

DQ None 9.24
DQ SS 8.27
DB None 9.25
DB SS 7.71

48Enc-24Dec 103.12M

DQ None 9.11
DQ SS 8.01
DB None 9.08
DB SS 7.60

both swapping operations contribute to performance gain. How-
ever, frequency swapping is less effective compared with time
swappping, which indicates that the major improvement comes
from time-domain.

Table 2: Ablation study of SpecSwap, comparing frequency
swapping (hyperparameter F ) and time swapping (hyperpa-
rameter T ).

F T CER (%)

0 0 9.88

0 40 8.91

7 0 9.61

7 40 8.59

4.4. Composition Study: Integrating Other Methods

The natural next step is to determine whether we can achieve
further improvements when combining other augmentation
methods within a single training, i.e., using audio-level augmen-
tation method, namely Speed Perturb [12], to change the speed
of the audio signals first, and then sequentially applying Spec-
Swap and SpecMask2 for those spectrograms calculated from
perturbed audios.

The results in Table 3 indicate that all methods help the
model to generalize better and can supplement each other. This
also reveals that none of them can completely solve the overfit-
ting problem when using them alone. The End-to-End model

2 Here we denote SpecAugment [4] as SpecMask since we only
adopt time and frequency masking and discard time wrapping as sug-
gested in [4].
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Figure 3: CER results of hyperparameter searching.

needs a more powerful method to fully exploit its potential and
we will leave this to our future work.

Table 3: Results on different augmentation methods. Model
12Enc-6Dec and schedule DB are used for all settings.

Augmentation CER (%)

None 9.88

SpecMask2 (F = 7, T = 40) 8.47

SpecSwap (F = 7, T = 40) 8.59

Speed Perturb (speed = 0.9, 1.0, 1.1) 8.67

Composition 7.87

4.5. Comparison with Hybrid/E2E Models

Lastly, we give a CER comparison with other approaches in Ta-
ble 4. For Hybrid approach, results marked with (*) were kaldi
official results retrieved from the version “c7876a33”, where
speaker adaptation with i-vectors were used to help the model
generalize better to unseen testing speakers. For the end-to-end
approach, we limit the evaluation to systems without any exter-
nal data and language model fusion to examine the effectiveness
of the approach. Besides, we also approximate the number of
parameters based on the description in the previous studies.

In Table 4, our 24Enc-12Dec setup (with DB schedule) get
9.61% CER, which performs much better than LAS model [23]
and Transformer model [24], meaning that our baseline is com-
petitive. With SpecSwap, we further reduce CER to 7.85%,
yielding a 18.3% relative reduction.

When comparing to the best hybrid models, our largest
model outperforms certain systerms even without using lan-
guage model. Given the potential of the models, it is strongly
suggested that better results can be obtained by shallow fu-
sion [25] and joint decoding [25] with external language model.

Table 4: CER comparison with Hybrid and End-to-End models.

Model Augment LM Size CER (%)

Hybrid Approach
kaldi/nnet3 [18] (*) speed perturb n-gram - 8.64
TDNN-HMM [17] speed perturb n-gram - 8.42

TDNN-LFMMI [17] speed perturb n-gram - 7.62
kaldi/chain [18] (*) speed perturb n-gram - 7.45

End-to-End Approach
RNN-T [22] - - - 11.82

LAS [23] - - ≈ 156.1M 10.56
Transformer [24] - - ≈ 48.5M 10.00

SA-T [22] - - - 9.30

Ours
24Enc-12Dec - - 52.66M 9.61
24Enc-12Dec SpecSwap - 52.66M 7.85
48Enc-24Dec SpecSwap - 103.12M 7.60

5. Conclusions and Discussions
SpecSwap greatly improves the performance of ASR networks.
By utilizing swapping techniques, we are able to obtain compet-
itive results on the Aishell-1 test set among End-to-End coun-
terparts, surpassing the performance of certain hybrid systems
even without the aid of a language model. Future work will
evaluate the effectiveness of SpecSwap on industry-level large
vocabulary continuous speech recognition (LVCSR) with tens
of thousands hours of data. Moreover, it is also quite appeal-
ing to explore other augmentation methods to further boost the
performance of End-to-End models.
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