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ABSTRACT
Non-autoregressive (NAR) transformer models have achieved
significantly inference speedup but at the cost of inferior ac-
curacy compared to autoregressive (AR) models in automatic
speech recognition (ASR). Most of the NAR transformers
take a fixed-length sequence filled with MASK tokens or a
redundant sequence copied from encoder states as decoder in-
put, they cannot provide efficient target-side information thus
leading to accuracy degradation. To address this problem, we
propose a CTC-enhanced NAR transformer, which generates
target sequence by refining predictions of the CTC module.
Experimental results show that our method outperforms all
previous NAR counterparts and achieves 50x faster decoding
speed than a strong AR baseline with only 0.0 ∼ 0.3 absolute
CER degradation on Aishell-1 and Aishell-2 datasets.

Index Terms— non-autoregressive, transformer, ctc

1. INTRODUCTION

Recently, the self-attention based encoder-decoder frame-
work, called transformer [1], has achieved very promising
results for automatic speech recognition [2] when comparing
to traditional hybrid models [3] and CTC based models [4].
However, such model suffers from a high latency during the
inference process as it translates a source sequence in an au-
toregressive manner, i.e.(see Fig.1(a)), it generates a target
sentence character by character from left to right and the
generation of t-th token yt depends on previously generated
tokens y1:t−1 and encoded audio representations E(x):

yt = D(y1:t−1, E(x)) (1)

where E(·) and D(·) denote the encoder and decoder part of
the model respectively, x is the input audio features and E(x)
is the output of encoder, i.e., a series of encoded hidden states
at the top layer of the encoder.

To speed up the inference of speech recognition, non-
autoregressive transformers have been proposed [5, 6, 7, 8],
which generate all target tokens simultaneously [5, 6] or iter-
atively [7, 8]. We notice that the encoder of AR transform-
ers and that of NAR transformers are the same thus the dif-
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ferences lie in the decoder. More specifically, instead of us-
ing previously generated tokens as in AR decoders, NAR de-
coders take other global signals derived from either empirical
statistics [5, 8] or encoded speech sequence [6].

For example, the NAR decoders in listen attentively and
spell once (LASO) [5] and listen and fill in missing letter
(LFML) [8] take fixed-length sequence filled with MASK to-
kens as input to predict target sequence:

yt = D(MASK1:L, E(x)) (2)

where L is a constant number that was predefined and used
for all sentences. The settings of this predefined length is
usually based on empirical analysis of durations of audio and
the final output length is determined by the position where the
first end-of-sequence (EOS) token appears. To guarantee the
performance of the model, the predefined length L is often
much longer than the actual length of the target sequence T .
This results in extra calculation cost and affects the inference
speed. In order to estimate the length of the target sequence
accurately and accelerate the inference speed, [6] proposed a
spike-triggered non-autoregressive (ST-NAR) model, which
introduces a CTC module [4] to predict the target length and
takes a copy of encoder hidden states Ê(x) as the decoder
input, and the copy process is guided by CTC spikes, which
represent positions of the state that should be copied. After
that all target tokens are simultaneously predicted:

yt = D(Ê(x), E(x)) (3)

where Ê(x) = (E(x)p1 , E(x)p2 , ..., E(x)pT ′ ) are the copied
encoder states. pi is the position where CTC spike occurs and
T ′ is the number of CTC spikes, it can be seen as the target
length predicted by CTC.

While ST-NAR models significantly reduce the inference
latency, they suffer from large accuracy degradation com-
pared with their AR counterparts. We notice that in AR
models, the generation of t-th token yt is conditioned on pre-
viously generated tokens y1:t−1, which provides target side
context information. In contrast, ST-NAR [6] models gen-
erate tokens conditioned on the copied encoder states Ê(x)
guided by spikes, such information is redundant and indirect
because the copied states are still in the domain of audio
features.



Consequently, the decoder of ST-NAR model has to han-
dle the recognition task conditioned on less and weaker in-
formation compared with its AR counterparts, thus leading to
inferior accuracy. In this paper, we aim to enhance the de-
coder inputs of NAR models so as to reduce the difficulty of
the task that the decoder needs to handle. Our basic idea is
to directly feed greedy CTC predictions ŷ = CTC(E(x)) to
the decoder. We conjecture that the CTC outputs can pro-
vide more closed information to the target-side tokens y, thus
reducing the gap between AR and NAR models. Experimen-
tal results on two corpora demonstrate that our model out-
performs all compared NAR models and exceeds strong AR
baseline by 50x faster speed with comparable performance.

2. METHODOLOGY

2.1. Related Work

Recently, [7] trains a Transformer encoder-decoder model
with both Mask-Predict [9] and CTC objectives (MP-CTC).
As shown in Fig.1(b), during inference, the input of de-
coder is initialized with the greedy CTC prediction ŷ and
low-confidence tokens are masked based on the CTC prob-
abilities. The masked low-confidence tokens yl are then
predicted by the decoder conditioning on the high-confidence
tokens ŷh:

yl = D(ŷh, E(x)) (4)

Fig. 1. Comparison between AR and NAR transformer dur-
ing inference. The blue boxes indicate Transformer Decoder
and the dash-dotted lines inside them indicate the dependency
between tokens. (a) AR Transformer. The dashed line limits
the emission of yt by waiting for the end of generating yt−1.
(b) MP-CTC [7]. (c) proposed NAR Transformer. (d) up-
graded version of LASO [5].

While this approach use CTC predictions as decoder in-
put as we do, the Mask-Predict [9] manner that was orig-
inally proposed for neural machine translation (NMT) task
may not be suitable for ASR as it suffers from two draw-
backs: 1) As pointed out in [10], the observed tokens (high-
confidence CTC predictions) are not always correct and the
masked tokens (low-confidence CTC predictions) are not al-
ways wrong, this may further increase mis-recognitions when
re-decoding low-confidence but correct tokens to wrong to-
kens or making predictions based on high-confidence but in-
correct tokens. 2) Previous works [11, 12] show that the de-
coder is more sensitive to target-side information than source-
side information and ASR is more serious than NMT due to
the different characteristics between the input acoustic sig-
nals and the output linguistic symbols [11]. This suggests
that given the full context of audio features E(x) and the full
context of characters ŷh as in Eq.4, the mask-based character
prediction can be easily filled out only with the target con-
text without using any speech input (i.e., the network only
learns the decoder). In this situation, the training-inference
discrepancy, where the ground truth is used as decoder input
during training and replaced by CTC prediction during infer-
ence, will largely affect the performance and this is verified
by our study in Fig.2.

2.2. Proposed Method

As shown in Fig .1(c), we address the above problems by lim-
iting the target context to the past thus forcing the model to
pay more attention to source-side context E(x):

yt = D(ŷ1:t−1, E(x)) (5)

It is interesting to note that Eq.5 is similar to its AR base-
line described in Eq.1. The difference is that we can get
all target tokens ŷ1:T ′ before the decoder starts to translate
while AR model cannot. This allows us to make the decoding
process fully paralleled while maintaining the AR properties
for each generated token and this is the reason that we can
achieve 50x speedup while capturing the performance of the
AR counterpart.

Here, we propose two concrete methods to train trans-
former model to support the decoding type described in Eq.5:

1. Teacher Forcing (CM): we feed ground truth to the de-
coder during training and CTC prediction during infer-
ence. CM means we use Causal Mask (CM) as decoder
attention mask to discard target-side future context to
obey the left-to-right rule.

2. CTC Sampling (CM): during training, we perform on-
the-fly CTC decoding to get predicted length T ′ and
adjust the decoder input according to it. Specifically, if
|T − T ′| <= 2, we use CTC prediction ŷ, otherwise
we use ground truth as input.



2.3. Variations for Comparison
Beside the Causal Mask, we also replace it with Padding
Mask (PM), which only masks the padded tokens in a mini-
batch and is also used in MP-CTC [7], for CTC Sampling to
remove the context restrictions to validate our conjecture that
the full context of targets may lead to performance degra-
dation due to the sensitivity of decoder towards target-side
information. This can be formalized as:

yt = D(ŷ1:T ′ , E(x)) (6)

To make a thorough comparison, we also proposed an up-
graded version of LASO [5]. As shown in Fig.1(d) and Eq.7,
we replace the predefined length L in Eq.2 with CTC pre-
dicted length T ′:

yt = D(MASK1:T ′ , E(x)) (7)

During training, ground truth is used as decoder input and
all target tokens are replaced with MASK. In this case, target-
side information only contains the length information and the
semantic context can be retrieved only from the source-side
information E(x) [5]. We name this strategy as Mask Forc-
ing (PM). Note that during inference, the length information
will be provided by CTC.

3. EXPERIMENTS

In this work, all experiments are conducted using ESPnet
tranformer [13]1 with CTC joint training [2]. The model
and experiment setups are the same as [2] except that we
use SpecAugment [14] and set total training epoch = 200
for all experiments. Due to space limitations, the details are
omitted and interested readers can refer to [2].

3.1. 178-hours Corpus: AISHELL-1
We first conduct experiments and analyses on a public man-
darin speech corpus AISHELL-1 [15]. As shown in Table 1,
our best strategy speeds up the AR baseline (beam=10) by
50x times with only 0.0 ∼ 0.2 absolute CER degradation
and achieves 5x faster speed than the greedy result (beam=1)
with even better CER. We find that both Teacher Forcing
(CM) and MP-CTC (PM) perform better then Mask Forc-
ing (PM), this is partly because the latter one cannot provide
efficient target-side information. Besides, we also find that
strategies with CM always outperform those with PM, i.e.,
Teacher Forcing (CM) and CTC Sampling (CM) work better
than MP-CTC (PM) and CTC Sampling (PM), respectively.
This suggests that given the full context of speech features
E(x), target-side context should be limited to avoid excessive
reliance on it. Such reliance is caused by the aforementioned
sensitivity of decoder and we validate it in Fig.2, where we

1 https://github.com/espnet/espnet
2 We re-implement MP-CTC [7] using official code retrieved from

https://github.com/espnet/espnet/pull/2070 and set the number of total decod-
ing iterations to 5 as suggested in [7].

Table 1. The character error rate (CER) of the systems on
AISHELL-1. Real-time factor (RTF) is computed as the ratio
of the total inference time to the total duration of the dev set.
Inference is done with batchsize = 8, on an NVIDIA Tesla
P40 GPU.

Training Strategy Decode Type Beam Dev / Test RTF

Autoregressive Transformer

Baseline [2] (with Fig.1(a) & Eq.1 1 5.6 / 6.6 0.0186
CTC Joint Training) 10 5.6 / 6.1 0.1703

Non-autoregressive Transformer

CTC Sampling (PM) - - & Eq.6 - 6.4 / 7.2 0.0037
CTC Sampling (CM) Fig.1(c) & Eq.5 - 6.0 / 6.8 0.0037
Mask Forcing (PM) Fig.1(d) & Eq.7 - 6.0 / 6.8 0.0037
MP-CTC (PM) [7] 2 Fig.1(b) & Eq.4 - 6.0 / 6.6 0.0134

Teacher Forcing (CM) Fig.1(c) & Eq.5 - 5.6 / 6.3 0.0037

change the decoder input during inference to see the perfor-
mance gap between ideal and reality, i.e., feed ground truth
or CTC prediction to the decoder respectively. By comparing
CTC Sampling (CM) and CTC Sampling (PM) in Fig.2, we
can clearly see that PM based decoder is more sensitive to
the input. As for MP-CTC (PM) and CTC Sampling (PM),
although both of them use PM as attention mask, the per-
formance of the former one is more affected by the input.
This is because the decoder of MP-CTC (PM) can only see
ground truth during training thus suffers more from training-
inference discrepancy. In contrast, Teacher Forcing (CM),
which limits the target-side context to obey the autoregres-
sive manner, performs more stable and much closer to the
upper bound of the trained model, indicating the effective-
ness of our proposed method and we will use it for all our
following experiments.

Fig. 2. The CER drop when change the decoder input. Note
that for MP-CTC [7], the ground truth is obtained by replac-
ing the non-masked tokens in CTC prediction with the corre-
sponding correct tokens.

To study how CTC contributes to our NAR models, we an-
alyze the predicted length by CTC. As shown in Fig.3, the ac-
curacy of length prediction is higher than 96%, which means
that T ′ is accurate enough to lower the computation cost when
we upgrade Eq.2 to Eq.7

Besides, we also provide a comparison between CTC pre-
diction and NAR Decoder prediction in Table 2. Due to the



Fig. 3. The analysis of the predicted length on test set. The
histogram record the difference between the target length T
and the CTC predicted length T ′. It will not cause irreversible
effects when the value is less then or equal to zero, as the
decoder is still able to correct the CTC output by predicting
EOS token at the end of sentence.
strong conditional independence assumption, CTC prediction
has a poor performance. However, the decoder can still cor-
rect the input based on both speech context and partial target
context, indicating that the target-side information provided
by CTC is useful and efficient for our NAR decoder.

Table 2. CER comparison between CTC prediction and de-
coder prediction for proposed NAR transformer.

Result Dev / Test

CTC Prediction 6.0 / 6.7
NAR Decoder Prediction 5.6 / 6.3

Lastly, we give a CER comparison with other approaches
in Table 3. To make a fair comparison, we also add Speed-
Perturb [16] based augmentation to our training and approxi-
mate the number of parameters based on the description in the
previous studies. It can be seen that our strong AR baseline
reaches the state-of-the-art performance as it outperforms all
previously published results and our proposed NAR model
also beats all previous NAR counterparts. Considering the
50x faster decoding speed, the gap between AR and NAR
Transformer is tolerable.

Table 3. CER comparison with Hybrid and End-to-End mod-
els on Aishell-1 [15]. We use beam=10 for our AR model
and keep it unchanged in our following experiments. N:
SpecAugment [14] is used. �: Speed-Perturb [16] is used.

Model Dev / Test RTF Params

End-to-End Autoregressive

LAS [17] - / 8.7 - ≈ 156 M
Transformer [5] 6.1 / 6.6 - ≈ 58 M

End-to-End Non-autoregressive

CTC [6] N 7.8 / 8.7 - -
ST-NAR [6] N 6.9 / 7.7 - ≈ 31 M

MP-CTC [7] N 2 6.0 / 6.7 0.0134 29.7 M
LASO(big) [5] N� 5.8 / 6.4 - ≈ 105 M

Traditional Hybrid

Kaldi/nnet3 [3] � + LM - / 8.6 - -
Kaldi/chain [3] � + LM - / 7.5 - -

Ours

AR-Transformr N 5.6 / 6.1 0.1703 29.7 M
NAR-Transformer N 5.6 / 6.3 0.0037 29.7 M
AR-Transformer N� 5.2 / 5.7 0.1703 29.7 M

NAR-Transformer N� 5.3 / 5.9 0.0037 29.7 M

3.2. 1000-hours Corpus: AISHELL-2

We then conduct our experiments on AISHELL-2 [18], which
is by far the largest free corpus available for Mandarin ASR
research and contains 1000 hours of reading speech for train-
ing. As far as we know, none of the previous NAR methods
have been tested on such a large dataset thus we are the first to
evaluate the effectiveness of NAR models on industrial level
Large Vocabulary Continuous Speech Recognition (LVCSR).

In Table 4, it is worth noting that the state-of-the-art CER
achieved by CIF [19] model uses nearly three times more pa-
rameters than ours and the AR baseline we used is still com-
petitive since it performs much better than other models. By
comparing the results of AR and NAR transformer, we can
draw a similar conclusion as in Section 3.1 that our NAR
model can achieve much faster decoding speed while main-
taining the performance of its AR counterpart.

Table 4. CER comparison with Hybrid and End-to-End mod-
els on 1000 hours of reading corpus Aishell-2 [18]. N:
SpecAugment [14] is used. �: Speed-Perturb [16] is used.
H: Adversarial-Data-Augmentation [20] is used.

Model IOS / Mic / Android RTF Params

End-to-End Autoregressive

LAS [20] H� 9.2 / 10.3 / 9.7 - -
S2S [21] + LM 8.5 / - - / - - - -

CIF [19] N� + LM 5.8 / 6.3 / 6.2 - 67 M + 22 M

Traditional Hybrid

tri3(LDA+MLLT) [18] � 19.8 / 21.1 / 21.0 - -
Chain-TDNN [18] � 8.8 / 10.9 / 9.6 - -

Ours

AR-Transformer N� 6.8 / 7.7 / 7.8 0.1703 29.7 M
NAR-Transformer N� 7.1 / 8.0 / 8.1 0.0037 29.7 M

4. CONCLUSION

In this paper, we proposed a novel Non-autoregressive Trans-
former with CTC-enhanced decoder input, which generates
a sequence by refining the CTC prediction. The experimen-
tal comparisons demonstrate that on Aishell-1 and Aishell-2
tasks, our method can surpass all previous NAR models and
approach the performance of AR models while achieving 50x
faster decoding speed.
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