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Abstract
Dementia is a severe cognitive impairment that affects the
health of older adults and creates a burden on their fami-
lies and caretakers. This paper analyzes diverse features ex-
tracted from spoken languages and selects the most discrimina-
tive features for dementia detection. The paper presents a deep
learning-based feature ranking method called dual-net feature
ranking (DFR). The proposed DFR utilizes a dual-net archi-
tecture, where two networks (called operator and selector) are
alternatively and cooperatively trained to simultaneously per-
form feature selection and dementia detection. The DFR in-
terprets the contribution of individual features to the predic-
tions of the selector network using all of the selector’s param-
eters. The DFR was evaluated on the Cantonese JCCOCC-
MoCA Elderly Speech Dataset. Results show that the DFR
can significantly reduce feature dimensionality while identi-
fying small feature subsets with comparable or superior per-
formance than the whole feature set. The selected features
have been uploaded to https://github.com/kexquan/
AD-detection-Feature-selection.
Index Terms: Dementia detection, feature ranking, feature se-
lection, explanatory neural networks

1. Introduction
Dementia is a severe cognitive impairment that seriously affects
the health and daily lives of the afflicted individuals.1 The most
common form of dementia is the Alzheimer’s Disease (AD).
Fortunately, with effective detection of early dementia, disease-
modifying medications and interventions are possible [1].

Dementia can be diagnosed through several means, includ-
ing neuropsychological assessments, brain scans, blood tests,
etc. Dementia also manifests itself as spoken language deficits
[2]. Studies have found that dementia-induced language impair-
ment could be found in patients years before the disease was
diagnosed [3]. Research also showed that individuals with pro-
gressive cognitive decline exhibit subtle linguistic impairment
even in the pre-symptomatic stages of the disease [4]. These
findings suggest that dementia can be detected using spoken
language processing (SLP) techniques.

Recently, automatic detection of dementia through speech
and language analyses has gathered attention in the research
community. Several studies investigated the relevance of var-
ious spoken-language features for dementia detection. For ex-
ample, Weiner et al. [5] extracted features from biographic in-
terviews to predict the development of AD after 5 years. They
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Figure 1: Network architectures for interpreting the contribu-
tions of individual features (input nodes) to the network’s pre-
diction. (a) A 1-layer network with linear output is equivalent
to the linear regression model. (b) Feature importance can be
obtained from the weights of a multi-layer network. See Sec-
tion 2.1 for details.

reduced the dimensionality of the original feature set by nested
forward feature selection (FS) and found that FS can signifi-
cantly improve prediction performance. Weiner et al. [6] also
used nested forward FS to identify the most frequently selected
features during cross-validation for the state screening of AD.

In this paper, we investigate various FS methods for de-
mentia detection. We also propose a novel deep-learning based
feature-ranking method called dual-network feature ranking
(DFR) to rank and select features. The proposed DFR utilizes a
dual-net architecture, where two networks (called operator and
selector) are alternatively and cooperatively trained to simulta-
neously perform feature selection and dementia detection. De-
spite the complex relationship between the network’s output and
its input variables, the DFR can interpret the contribution of the
input variables to the network’s prediction. The DFR is evalu-
ated on a Cantonese corpus called JCCOCC-MoCA [7].

2. Dual-net Feature Ranking
2.1. Variable Selection in Deep Neural Networks

We consider the usual linear regression model. Given d predic-
tor variables x = (x1, . . . , xj , . . . , xd)

T, the response variable
f(x) is predicted by

f(x) ≈ f̂(x) = β̂0 + β̂1x1 + · · ·+ β̂jxj + · · ·+ β̂dxd, (1)

where f̂(x) is a linear model and β̂1, . . . , β̂j , . . . , β̂d are its pa-
rameters. Since there is a one-to-one correspondence between
the model parameters and the predictor variables, the effect of a
given predictor xj on the model f̂(x) can be evaluated through



the value of β̂j [8]. In particular, when the model parameter
β̂j � 0, the predictor xj may have a significant positive effect
on the model. When β̂j ≈ 0, we may say that xj contributes
little to the prediction of f̂(x), and it can be removed from the
model.

A 1-layer fully-connected network with one linear out-
put node (Fig. 1(a)) is equivalent to the linear regres-
sion model. Given a d-dimensional input vector x =
(x1, . . . , xj , . . . , xd)

T, the network’s output y is (omitting the
bias for simplicity):

y = wTx = w1x1 + · · ·+ wjxj + · · ·+ wdxd, (2)

where w = (w1, . . . , wj , . . . , wd)
T is the network’s weight

vector. As Eq. (2) is equivalent to Eq. (1), we can also interpret
the effect of a given input variable xj on the prediction of the
network through the value of wj . In particular, when wj � 0,
we may say that xj has a significant positive effect on the net-
work’s output. When wj ≈ 0, we may say that xj is irrelevant
to the network’s output and can be removed from the network.
We formulate a one-to-one correspondence between the input x
and the network’s weight vector w:

diag{x}w = (w1x1, . . . , wjxj , . . . , wdxd)
T, (3)

where diag{x} is a diagonal matrix with {xj} in its diagonal.
By setting x = 1 in Eq. (3), we obtain the feature importance
vector c:

c = diag{1}w = w = (w1, . . . , wj , . . . , wd)
T. (4)

Eq. (4) suggests that the bigger the value of wj , the more im-
portant the input variable xj . Therefore, we can select the im-
portant input variables according to c.

Fig. 1(b) depicts a 2-layer network with the hidden layer
having l1 nodes and the output layer having one node. Sup-
pose W (1) is a d × l1 weight matrix connecting the input x to
the hidden layer and b(1) ∈ Rl1 is the corresponding bias vec-
tor. Also, suppose w(2) = (w

(2)
1 , . . . , w

(2)
i , . . . , w

(2)
l1

)T is the
weight vector of the output layer and b(2) is the bias. Given a
d-dimensional input vector x, the output of the hidden layer is
(omitting the bias for simplicity):

o(1) = g

((
W (1)

)T
x

)
∈ Rl1 , (5)

where g(·) is a non-linear activation function, e.g., sigmoid.
And the output of the network is:

y = (w(2))To(1) = (w(2))Tg

((
W (1)

)T
x

)
. (6)

Comparing Eq. (2) and Eq. (6) and following Eq. (3), we can
also formulate a one-to-one correspondence between the input
x and the network’s parameters:

g
(

diag{x}W (1)
)
w(2) = (v1x1, . . . , vjxj , . . . , vdxd)

T .

(7)

Again, by setting x = 1, we can obtain the feature importance
vector:

c = g
(

diag{1}W (1)
)
w(2) = g

(
W (1)

)
w(2) ∈ Rd. (8)

Note that c is also a d-dimensional vector with cj correspond-
ing to the input variable xj . Similar results can be extended
to an L-layer neural network with weight matrices {W (i), i =

1, 2, . . . , L − 1} for the hidden layers and weight vector w(L)

for the output layer. The feature importance vector c for the
L-layer network is:

c = g
(
g
(
g
(
W (1)

)
W (2)

)
· · ·W (L−1)

)
w(L) ∈ Rd. (9)

2.2. Learning Algorithm

In Section 2.1, we formulate a d-dimensional feature impor-
tance vector c that reflects the feature importance of the input
variables. We use c to determine the contribution of the input
variables to the output of a deep neural network. Specifically,
the input variable xj with a larger cj will have a greater con-
tribution to the output. Based on the feature importance vector
c, we propose a deep-learning-based FS method called dual-net
feature ranking (DFR). It comprises two deep neural networks
(called operator and selector), as shown in Fig. 2. During train-
ing, the operator and selector are trained alternately.

Suppose M = {X ,Y} is a mini-batch comprising |M|
pairs of x and y, where x ∈ X is a feature vector of size d, and
y ∈ Y is the corresponding target. The learning algorithm of
DFR is defined in Eq. (10), where LO (M,Z;ψ) is the oper-
ator’s objective, l(x � z,y;ψ) is either the cross-entropy loss
for classification or the mean squared error (MSE) loss for re-
gression, and ψ denotes the operator’s parameters. LS (Z;ϕ)
is the selector’s objective, fS(z, ϕ) is the selector’s output, and
ϕ = {W (1),W (2), . . . ,W (L−1),w(L)} contains the selec-
tor’s parameters. The training procedure of DFR is depicted in
Fig. 2.

Operator. The operator is trained on the features selected
by the selector to reduce the loss LO (M,Z;ψ). The feature
mask vector z in the feature mask subsetZ indicates which fea-
tures have been selected. For each iteration, given the feature
mask subset Z from the selector, the selected features {x �
z}x∈X ,z∈Z are fed to the operator, and the operator’s learning
performance based on the selected features is obtained. Given
the selected features x � z, 1

|M|
∑

(x,y)∈M l(x � z,y;ψ) is
the learning performance of the operator on the mini-batchM.
Then, we pass the operator’s learning performance to the selec-
tor as a feedback indicating how well the operator performs on
the selected features.

Selector. The selector learns to predict the operator’s learn-
ing performance using the selected features. The mean absolute
error between fS(z, ϕ) and 1

|M|
∑

(x,y)∈M l(x � z,y;ψ)

requires that the selector accurately predicts the operator’s
learning performance. At the beginning of each iteration,
the selector produces the feature mask subset Z using the
following steps: (1) Retain the best feature mask vector. We
retain the best feature mask vector z1 that achieves the best
learning performance (e.g., the smallest cross-entropy loss)
in the last iteration. (2) Determine an optimal feature mask
vector. We compute the feature importance vector c using
Eq. (9) based on the selector’s parameters ϕ. According to the
feature importance vector c, we generate an optimal feature
mask vector z2 by assigning the top s features with mask
1 and the rest of d − s features with mask 0. (3) Generate
candidate feature mask vectors. To increase the diversity
of the feature mask vectors, we generate several candidate
feature mask vectors {z3, . . . , z|Z|} by randomly flipping p
masks in z2. (4) Produce the feature mask subset. Finally, we
produce the feature mask subset Z = {z1,z2,z3, . . . , z|Z|}.

Operator’s objective: LO (M,Z;ψ) =
1

|Z||M|
∑
z∈Z

∑
(x,y)∈M

l(x� z,y;ψ) (10a)

Selector’s objective: LS (Z;ϕ) =
1

|Z|
∑
z∈Z


∣∣∣∣∣∣fS(z;ϕ)− 1

|M|
∑

(x,y)∈M
l(x� z,y;ψ)

∣∣∣∣∣∣
 (10b)
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Figure 2: The dual-net architecture and training procedure of
DFR. At the beginning of each iteration, the selector’s parame-
ters ϕ are used to compute the feature importance vector c.

Table 1: The characteristics of the JCCOCC-MoCA dataset.
HCs: healthy controls.

Spoken languages Cantonese
Tasks Fluency tests (animals, fruits, and vegetables)
Number of participants 43 HCs and 43 possible dementia
Number of samples 129 HCs and 129 possible dementia
Manual transcriptions provided Yes

3. Feature Engineering
3.1. Cantonese JCCOCC-MoCA Elderly Speech Dataset

The JCCOCC Montreal Cognitive Assessment (MoCA) Can-
tonese Speech corpus was collected by the CUHK Jockey Club
Centre for Osteoporosis Care and Control. A MoCA test was
given to each participant for assessing their cognitive capability.
According to the assessment results and MoCA scores, the par-
ticipants were divided into four groups: (1) 205 healthy older
adults (HCs); (2) 16 older adults having mild neurocognitive
disorders (mild NCD); (3) 17 older adults suffering from mild
cognitive impairment (MCI); and (4) 10 older adults suffering
from major NCD.

For detecting dementia, we combined the mild NCD, MCI,
and major NCD into the possible dementia category and ran-
domly picked 43 healthy participants from the HCs. From the
speech recording of each participant, after excluding the asses-
sor, we extracted three 1-minute fluency tests (animals, fruits,
and vegetables), resulting in 3 samples for each participant. The
transcriptions corresponding to the fluency tests were also ex-
tracted. The data used for dementia detection are shown in Ta-
ble 1.

3.2. Feature Extraction

We differentiate two categories of features: transcription-based
and speech-based. The transcription-based features are ex-
tracted from the manual transcriptions, which capture the se-

Figure 3: An example of 1-minute transcription tagged with
pauses ‘<PAU>’.

Table 2: The 5 statistical characteristics of pauses that are ex-
tracted from 6 duration groups.

Statistical characteristic Description

#p Number of pauses per minute
%p/word ratio Pause-to-word ratio
p duration Total duration of pauses per minute
p mean duration Mean duration of pauses
%p duration/word duration Pause-duration-to-word-duration ratio

mantic, syntactic, and lexical aspects of the speaker’s spoken
language. The speech-based features are extracted from the cor-
responding speech recordings, which contain a variety of acous-
tic characteristics of the speakers.

3.2.1. Transcription-based Features

(1) Lexical features. Based on the transcriptions, the following
lexical features were extracted:2 the number of sentences per
minute and the average number of words per sentence. Then,
the pycantonese library was utilized to parse the transcriptions.3

After that the following features were appended to the feature
set: part-of-speech (POS) counts per minute, POS ratio, the ra-
tio of pronoun to noun, and the ratio of noun to verb.

(2) ELECTRA features. We consider the ELECTRA model
[9] pre-trained on a large Cantonese corpus as a feature ex-
tractor.4 More specifically, we fed the transcriptions to the
pre-trained ELECTRA model and extracted the representations
from the last layer of the model. Similar pre-trained language
models for other languages, e.g., pre-trained BERT models,
have also been used for dementia detection [10].

(3) Pause features. In [11], the authors demonstrated that
pauses can function as word-finding, as planning at the word,
phrase, and narrative levels, and as pragmatic compensation
when other interactional and narrative skills deteriorate. Thus,
we included the pause features for dementia detection. In the
JCCOCC-MoCA dataset, pauses and their durations have been
tagged. An example of 1-minute transcription tagged with
pauses is shown in Fig. 3. We divided the pauses into six groups
according to their durations: G1 (pauses between 0.05s–0.5s),
G2 (pauses between 0.5s–1s), G3 (pauses between 1s–2s), G4

(pauses between 2s–3s), G5 (pauses between 3s–4s), and G6

(pauses longer than 4s). We used the statistical characteristics
of the pauses as the pause features, as illustrated in Table 2. For
each duration group, we extracted the 5 statistical characteris-
tics.

3.2.2. Speech-based Features

(1) Acoustic features. We follow the standard pipelines in the
COVFEFE toolbox [12] to extract the acoustic features, which
include formants, loudness, pitch, zero-crossing rate, etc.

(2) COVAREP features. COVAREP features [13] are com-
prehensive acoustic features, which include prosodic features

2The lexical features were extracted using the toolbox:
https://github.com/SPOClab-ca/COVFEFE.

3https://pycantonese.org/
4https://huggingface.co/toastynews/electra-hongkongese-base-

discriminator



Table 3: Classification performance of different feature types on
the JCCOCC-MoCA dataset. The numbers in the brackets are
the sizes of the feature sets.

Feature set 5 repetitions of leave-n-subject-out CV
ACC PRE REC F1

Lexical (113) 0.541 0.555 0.556 0.532
ELECTRA (768) 0.572 0.576 0.577 0.557
Pause (30) 0.550 0.557 0.560 0.539
Acoustic (30) 0.481 0.486 0.488 0.463
COVAREP (518) 0.389 0.409 0.419 0.376
IS10 (1582) 0.519 0.535 0.539 0.508
Emobase (988) 0.531 0.544 0.551 0.518
eGeMAPS (88) 0.533 0.545 0.548 0.522
All features (4117) 0.584 0.590 0.591 0.566

(fundamental frequency and voicing), voice quality features,
and spectral features. Rohanian et al. [14] used the COVAREP
features from the audio modality for multi-modal cognitive im-
pairment detection.

(3) INTERSPEECH 2010 Paralinguistic Challenge Fea-
tures (IS10). IS10 is a feature set useful for emotion recogni-
tion [15] and bipolar disorder recognition [16], which include
PCM loudness, eight log Mel-frequency bands, eight line spec-
tral frequency pairs, F0 envelope, voicing probability, jitter, and
shimmer [17].

(4) Emobase. The Emobase feature set [18] comprises
mel-frequency cepstral coefficients (MFCC), fundamental fre-
quency (F0), F0 envelope, line spectral pairs (LSP), etc. Wang
et al. [19] used the Emobase features in a multi-modal attention
network for AD Detection.

(5) eGeMAPS. The Geneva Minimalistic Acoustic Param-
eter Set (eGeMAPS) [20] contains 88 features that are se-
lected based on their potential for characterizing physiological
changes in voice production.

4. Experiments and Results
4.1. Performance of Different Feature Types

We first evaluate the recognition performance of all the fea-
tures before FS on the JCCOCC-MoCA dataset. We adopted a
leave-n-subject-out cross-validation (CV) in which the samples
of the same speakers are grouped into either the training parti-
tion (TR) or the test partition (TS) for each fold. We adopted a
Gaussian SVM with a box constraint of 1 to identify the possi-
ble dementia and the HCs. We repeated the leave-n-subject-out
CV 5 times and averaged the results, as shown in Table 3. Ta-
ble 3 shows that the transcription-based features generally out-
perform the speech-based features and that combining all the
feature sets achieves the highest detection accuracy.

4.2. Applying DFR for Dementia Detection

This subsection reports the performance of DFR and some
strong supervised feature ranking methods on the JCCOCC-
MoCA dataset. These supervised feature ranking methods in-
clude deep feature selection (DFS) [21], dropout feature rank-
ing (DropoutFR) [22], dual dropout ranking (DDR) [23], deep
feature importance ranking (DeepFIR) [24], and random forest
(RF) [25]. We combined all the feature sets listed in Section 3.2
to form 4117-dimensional feature vectors and applied a leave-n-
subject-out CV on the feature vectors. On the training partitions
(TR) of individual folds, we applied the feature ranking meth-
ods described above to rank and select features. The selected
features were then used to train a Gaussian SVM with a box
constraint of 1 to identify the possible dementia and the HCs.
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Figure 4: Classification performance under different number of
selected features on the JCCOCC-MoCA dataset.

Table 4: Classification performance of the selected feature sub-
sets on the JCCOCC-MoCA dataset. The numbers in the brack-
ets are the sizes of the feature subsets.

Method Highest accuracy Average accuracy

DFS [21] 0.593 (110) 0.581
DropoutFR [22] 0.583 (1970) 0.569
DDR [23] 0.591 (270) 0.581
DeepFIR [24] 0.590 (1830) 0.577
RF [25] 0.583 (1970) 0.566
DFR 0.601 (290) 0.583

Considering that the feature dimensionality is very high, filter-
ing methods were utilized to reduce the feature dimensionality
before applying the strong supervised feature ranking methods.
On the TR of individual folds, we utilized mutual information
(MutInfo) to reduce the feature dimensionality from 4117 to
2000.

We used the same network architecture “2000–512–128–
32–2” and their default hyper-parameters for all the deep
learning-based feature ranking methods. For the DFR, DDR,
and DeepFIR that have the dual-net architecture, we adopted
the architectures “2000–512–128–32–2” for the operator net-
work and “2000–512–128–32–1” for the selector network. We
repeated the leave-n-subject-out CV 5 times and averaged the
results of all folds under different numbers of selected features,5

as shown in Fig. 4. Fig. 4 shows that the average accuracy ex-
hibits a curve that initially ascends and then becomes stable
when the number of selected features increases. The average
accuracy of all the feature subsets and the highest accuracy that
can be achieved by the methods are reported in Table 4. Ta-
ble 4 shows that DFR identifies some small feature subsets that
achieve the highest accuracy among the methods investigated.
These small feature subsets also achieve comparable or superior
performance compared with the full, default feature set.

5. Conclusions
We presented a deep-learning based feature ranking method and
evaluated the method on the Cantonese JCCOCC-MoCA El-
derly Speech Dataset. The method interprets the contribution
of the input variables to the prediction of the deep neural net-
work using the network’s parameters. The discriminative fea-
tures selected by the method achieve comparable or superior
performance compared with the full feature set. Future work
may investigate the biological aspects of the selected features.

5We created different sizes of feature subsets by including features
in the order of their rankings.
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