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ABSTRACT 
This paper describes our work in usage pattern analysis and 
development of a latent semantic analysis framework for 
interpreting multimodal user input consisting speech and 
pen gestures.  We have designed and collected a 
multimodal corpus of navigational inquiries.  Each modality 
carries semantics related to domain-specific task goal.  
Each inquiry is annotated manually with a task goal based 
on the semantics.  Multimodal input usually has a simpler 
syntactic structure than unimodal input and the order of 
semantic constituents is different in multimodal and 
unimodal inputs.  Therefore, we proposed to use semantic 
analysis to derive the latent semantics from the multimodal 
inputs using latent semantic modeling (LSM).  In order to 
achieve this, we parse the recognized Chinese spoken input 
for the spoken locative references (SLR).  These SLRs are 
then aligned with their corresponding pen gesture(s).  Then, 
we characterized the cross-modal integration pattern as 3-
tuple multimodal terms with SLR, pen gesture type and 
their temporal relation.  The inquiry-multimodal term 
matrix is then decomposed using singular value 
decomposition (SVD) to derive the latent semantics 
automatically.  Task goal inference based on the latent 
semantics shows that the task goal inference accuracy on a 
disjoint test set is of 99%.  

Author Keywords 
Multimodal input, spoken input, pen gesture, task goal 
inference, latent semantic modeling (LSM), singular value 
decomposition (SVD). 

ACM Classification Keywords 
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1. INTRODUCTION 
This paper describes our initial attempt in developing a 
semantic analysis framework for multimodal user input 
with speech and pen gestures.  Each modality in the 
multimodal user input presents a different abstraction of 
user’s informational or communicative goal as one or more 
input events.  Semantic interpretation of multimodal inputs 
captured with the mobile devices requires syntactic, 
semantics, temporal and contextual information derived 
from multiple modalities.  Previous work in semantic 
interpretation of multimodal input include frame-based 
heuristic integration [1, 2], unification parsing [3, 4], hybrid 
symbolic-statistical approach [5, 6], weighted finite-state 
transducers [7], probabilistic graph matching [8, 9] and the 
salience-driven approach [10].  We leveraged such 
experiences to devise a computationally efficient approach 
based on score-based, cross-modal integration that 
incorporates semantic and temporal information [11].  The 
approach does not present high demands for training data.  
The current work extends cross-modal integration with 
semantic interpretation.  More specifically, our aim is to 
infer the domain-specific task goal(s) of the multimodal 
input.  The task goal is characterized by terms used in the 
spoken modality, as well as particular term co-occurrence 
patterns across modalities.  Previously, we have applied 
Belief Networks [12, 13] for task goal inference based on 
unimodal (speech-only) inputs.  However, previous studies 
[11, 19] that compare the spoken part of multimodal inputs 
with unimodal (speech-only) inputs shows that the former 
generally has simpler syntactic structures, more diverse 
vocabularies and different term ordering.  Therefore, we 
explore the use of latent semantic modeling (LSM) for task 
goal inference, with the objective of uncovering the 
associations between (unimodal or multimodal) terms and 
task goals through a data-derived latent space. 

LSM [14] is a data-driven approach that models the 
underlying semantics of word usages from available 
corpora.  It has been applied unimodally to text or 
transcribed speech for language modeling [15], document 
clustering [16], spoken document retrieval [17], document 
summarization [18], etc.  The objective of our current work 
is to apply LSM in capturing the latent semantics of the 
multimodal user inputs.  In LSM, the associations of 
between terms and inquiries are represented as a term-
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inquiry matrix.  This can be factorized into a term-
semantics and an inquiry-semantics matrix using singular 
value decomposition (SVD) [14].  These two matrices 
associate terms and inquiries through an automatically 
derived space of semantics, instead of directly relating the 
terms with inquiries. 

We represent a multimodal input by means of lexical or 
multimodal terms.  Multimodal terms are decided base on 
cross-modality integration patterns elicited from the user 
inputs.  We then perform LSM to analyze the content of a 
multimodal input.   Each input is associated with every 
latent semantic category by a weight.  The weights are used 
for task goal inference.   There are a total of nine task goals 
in our experimental domain.   

In the following, we introduce latent semantic analysis, 
present the collected multimodal corpus and discuss the 
process of task goal inference and related experimentation. 

2. THE LATENT SEMANTIC ANALYSIS FRAMEWORK 
We apply latent semantic analysis for task goal inference 
based on multimodal input.  The latent semantic model 
(LSM) uses Singular Value Decomposition (SVD) to derive 
a latent semantic space that relates multimodal terms 
(combined lexical and gestural terms) with the users’ 
inputs.  Correlations between cross-modal terms are 
captured from the training data.  During testing, multimodal 
terms are extracted from the input and the vector is 
projected into the latent space.  Thereafter, the task goal is 
inferred based on a combination of latent semantics. 

2.1 Association Matrices 
Associations between terms and inquiries can be 
summarized in a term–inquiry matrix G.  Given M terms 
(details of the multimodal terms will be presented in 
section 4.5) and N inquiries, we form an M × N matrix G.  
Each column represents an inquiry.  The element gm,n, is the 
weight (i.e. normalized term frequency using TF-IDF) for 
the term m in the nth inquiry. 
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κm,n denotes the number of times the term m occurs 
in the nth inquiry, 
λn is the total number of terms in the nth inquiry, 
εm denotes the normalized entropy of term m in the 
data set; and  
τm is the total number of times that term m occurs in 
the training set. 

G may be decomposed into a product of three matrices, 
with methods such as singular value decomposition (SVD), 
probabilistic latent semantic analysis (PLSA) [20] and 
latent Dirichlet allocation (LDA) [21].  We propose to focus 
on the use of SVD of order R, as shown in Equation 2. 
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where U is the left unitary matrix of dimensions M x R,  
           S is the diagonal matrix of singular values sorted in 

descending order with dimensions R x R, 
VT is the right unitary matrix of dimensions R x N,  

           R=min{M, N} is the order of decomposition and  
           T is the transpose of the matrix. 

Each column of U contains the estimated weight of each 
term m that corresponds to the latent semantic category r 
while each column of VT contains the estimated weight of 
each inquiry n that corresponds to the latent semantic 
category r.  Equation 2 projects the space of terms and 
inquiries onto a reduced R-dimensional space which is 
defined by the orthonormal basis given by the column 
vectors um and vn from matrices U and V respectively.  In 
order to collapse the terms that are “semantically similar”, 
we always choose R’<R.  The smaller the value R’, the 
more pronounced is the reduction of semantic redundancy 
in the latent semantic space.  Based on the latent semantic 
space, we may re-construct the space of terms and inquiries, 
denoted as Ĝ  in Equation 3. 

TVSUGG ˆˆ =≈                                                               (3) 

where Ŝ is the reduced diagonal matrix of singular values 
with optimized value of R’. 

We need to find an “optimal” choice of R’ that minimizes 
the distortion between the re-constructed space Ĝ  and the 
original space G, in the implementation of Equation 3 in the 
training procedure.  We plan to optimize R’ through 
empirical analysis of the latent space. 

2.2 Relating Task Goals with Latent Semantics 
In the training procedure, we represent the nth inquiry by the 
column vector gn.  The weights for latent semantic category 
r can then be obtained by a dot product between gn and the 
corresponding column vector of the left unitary matrix U, 
ur. Therefore, from the vector gn, we can obtain a vector of 
weights wn for each latent semantic category by Equation 4: 

Ugw T
nn =                                                                        (4) 

where [ ]',1, Rnnn www = , [ ] T
nMnn ggg  ,,1 =  and 

           wn,r is the weight of latent semantic category r for the 
nth inquiry. 

We use A to denote the total number of task goals 
within the application domain, an to denote the task goal of 
the nth inquiry, and R’ to denote the number of dimensions 
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in the latent semantic space.  We attempt to compute a 
projection matrix F that can transform the vector of weights 
for the latent semantic categories of inquiry n (i.e. wn) into a 
vector of weights for the A task goals (see Equation 5). 

Fwh nn =                                                                           (5) 
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fr,a is the weight of a latent semantic category r that 
would correspond to a task goal a and 

[ ]Annn hhh ,1, =  

where hn,a is the weight of the nth inquiry would correspond 
to a task goal a. 

According to Equation 5, associations between inquiry and 
latent semantic categories can be summarized in an inquiry-
latent semantic categories matrix W (an NxR’ matrix) and 
the associations between inquiry and task goal can be 
summarized in an inquiry-task goal matrix H (an NxA 
matrix).  Therefore, we can obtain Equation 6 as follows. 

WFH =                                                                           (6) 
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Mathematically, the projection matrix F can be found using 
Equation 7. 
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h’n is a vector of manually labeled task goal for nth 
inquiry,  
h’n,a is the manually labeled task goal of inquiry n, in 

which h’n,a={0,1} and 1'
1 , = =

=

Aa

a anh  and 

W-1 is the pseudo inverse of the matrix W. 
Through the projection matrix F and Equation 5, we can 
obtain the weight of each inquiry that would correspond to 
each task goal.  A task goal an* will be assigned as the 
automatic derived task goal for inquiry n where { }  maxarg* ,an

a
n ha = . 

The performance of task goal inference of the training 
data can then be evaluated by comparing an* to the 
manually annotated task goal an. Moreover, we may 
examine the structural relations between latent semantic 
category and task goals in the transformation matrix F. 

In the testing procedure, we also represent the nth 
inquiry by a vector gn.  We obtain the weights for the r 
latent semantic categories by Equation 4 where the left 
unitary matrix U is obtained from the training procedure.  
The vector of weights for each latent semantic category lies 
in the R’-dimensional space.  We transform it to A-
dimensional space and automatically derived task goal an* 
for the nth inquiry using Equation 5.  The task goal 
inference performance can be evaluated by comparing the 
an* assigned and task goal an manually annotated of the nth 
inquiry.  

3. MULTIMODAL CORPUS 
We collected a multimodal corpus with speech and pen 
gestures in the city navigation domain.  We invited 23 
Mandarin-speaking subjects, each of whom was asked 
formulate 66 task-oriented multimodal inputs according to a 
set of instructions.  The tasks are designed based on nine 
task goals including: 
 BUS_INFORMATION 
 CHOICE_OF_VEHICLE 
 MAP_COMMANDS 
 OPENING_HOURS 
 RAILWAY_INFORMATION 
 ROUTE_FINDING 
 TIME_CONSTRAINT 
 TRANSPORTATION_COSTS and 
 TRAVEL_TIME 

 
Figure 1.  Data collection interface of the Pocket PC, 
augmented with soft buttons for logging functions (start/stop) 
and loading the next map. 

Each inquiry may involve up to n (n=6 in this work) 
locations.  They may refer to target locations shown on a 
Pocket PC interface (see Figure 1) by speech and/or pen 
gestures.  Both speech and pen input are recorded directly 
by the Pocket PC.  Captured multimodal inputs involve 
disfluencies in the speech modality (e.g. filled pauses and 
repairs), spurious pen gestures (e.g. repetitive pen gesture 
inputs) and recognition errors in both modalities.  These 

Map 

Next button 

Start button 



 

imperfections have adverse effects on cross-modality 
semantic integration.  Table 1 shows an example task and a 
multimodal input obtained during data collection.  We 
collected a total of 1518 user inquiries, which include 1442 
multimodal and 76 speech-only (unimodal) inputs.  All 
speech and pen data are manually transcribed.  Furthermore, 
subjects were presented with their own multimodal data and 
asked to indicate (based on their original intentions) the 
correspondences between the spoken locative references 
(e.g. here, the nearest station, etc.) and pen gestures.  These 
cross-modality correspondences are referenced as we 
annotate the cross-modal integration patterns.  We divided 
the 1,442 multimodal inputs randomly into disjoint training 
and test sets in a 7:3 ratio.  Hence we have 999 inputs as the 
training set and 443 inputs as the test set.  As a first step, we 
apply the task goal inference framework to the manual 
transcriptions of speech (which is equivalent to having 
perfect speech recognition) and will defer handling speech 
recognition errors to a later step. 

Information category: TRAVEL_TIME  

Task: 
告知系統你所在的位置，查詢從那裡到另外四所大學需要多

長時間。 
“Specify your current location.  Find the time it takes to travel to 
four universities of your choice.” 
Multimodal input: 
S: 我在 北郵  從 這裡 出發到 這四個大學 要多久？ 

P:               (a point)                           (four points) 
“I’m at BUPT.  From here, I want to visit these four universities.  
How long will it take?” 

Table 1.  Example of a multimodal input with speech (S) and 
pen gestures (P).  Translations are provided in italics and 
corresponding SLRs are underlined. 

4. CHARACTERIZING AND ANNOTATING CROSS-
MODAL INTEGRATION PATTERNS 
A navigational inquiry in the multimodal corpus may 
include one or more SLRs and/or pen gestures that indicate 
specific locations on the map.  As will be explained later, 
there is no straightforward correspondence between SLRs 
and pen gestures.  Therefore, we need to understand the 
characteristics of each modality and their temporal 
relationships, in order to appropriately obtain cross-modal 
integration patterns. 

4.1 Spoken Locative References 
An SLR can be a direct (full name, abbreviated name or a 
contextual phrase such as “my current location”) or an 
indirect one [11].  It may also be a singular, aggregated, 
plural reference or unspecified on number: 
 A singular reference can be a direct reference with a 

full name or an abbreviated name.  It may also be a 
singular indirect reference (e.g. 這個這這 “this park”), 
which may optionally include information about the 
location type (i.e. a park in the given example). 

 An aggregated reference is an indirect reference with 
a specific numeric value (which is greater than 1) and 

an optional location type feature (e.g. 這四個這這 
“these four locations”). 

 A plural reference is an indirect reference with the 
numeric feature set to plural (i.e. NUM=plural), as well 
as an optional location type feature (e.g. 這這大學 
“these university”). 

 An unspecified reference is an indirect reference with 
unspecified numeric and location type features 
(e.g. 這裡 “here”). 

Analysis of the training set shows that it contains 2442 
SLRs among the 999 multimodal inputs.  Their distribution 
is shown in Figure 2.  

aggregrated
references

2%

plural
references

3%

unspecified
references

31%

singular
references

64%

 
Figure 2.  Distribution of the types of SLRs in the training set. 

Spoken Terms Regularization 
Analysis of the spoken inputs also shows that there are 
many synonymous terms and aliases.  For example, the 
word “route” in Chinese consists of two characters (i.e. 
路路), which may also be reversed (as 路路) and the 
meaning of the word remains the same.  Similarly, SLRs 
may have synonymous terms.  For example, the full name 
北北郵北大學 (i.e. Beijing University of Post and 
Telecommunications) may be abbreviated as 北郵 (i.e. 
BUPT).  There is also a variety of verbalization to express 
the contextual phrase of “current location”, including: 
目目的所在這 當目的位置, , 所在的這這 , 所在這, etc.  
Other contextual phrases may differ by a “measure word” 
which is characteristic of Chinese, e.g.  這間大學 and 
這所大學 both mean “this university”.  In order to simplify 
processing, synonymous terms and aliases are collapsed 
into a single category.  In other words, we have created a 
category for each group of semantically equivalent terms.  
It is conceivable that this categorization may be 
implemented through the use of SVD if sufficient data is 
available.  Since we only have limited training data for the 
time being, we choose to design regularization rules (56 
rules in all) for categorization.1  As such, we have reduced 

                                                           
1 This step forms equivalence classes that group together terms 
with the same meaning.  We expect that this step should help task 
goal inference because it reduces term diversity given the limited 
amount of training data.  We plan to perform an analogous 
experiment without term regularization for comparison. 
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the number of lexical terms2 significantly.  Since we also 
have pen gestures with their corresponding SLRs, we are 
able to form “multimodal terms”.  Each is a 3-tuple 
consisting of an SLR, the corresponding pen gesture and 
their temporal relationship.  We will elaborate on this later. 

The statistics of the lexical and multimodal terms in the 
training set are shown in Table 2.  After regularization, the 
number of multimodal terms can be reduced by around 
66%.  The number of (SLR and pen) multimodal terms is 
fewer than expected.  There are 22 multimodal terms that 
contain only an SLR with no pen gesture.  This is because 
of an anaphoric reference (which can be resolved with 
contextual information).  There are also 6 multimodal terms 
that contain pen gestures only and no SLR, due the use of 
ellipsis. 

 Before term 
regularization 

After term 
regularization 

# of Multimodal terms 
(SLR and pen) 
(SLR only) 
(Pen only) 

456 
407 
43 
6 

261 
233 
22 
6 

# of Lexical terms 260 216 
Total number of terms 716 477 

Table 2.  Statistics of the lexical and multimodal terms (count 
by type). 

4.2 Pen Gestures 
A pen gesture can be recognized as a point, circle or stroke.  
Using these three types of pen gestures, subjects can 
indicate different semantics such as a single location, an 
area with multiple locations or a route (see Table 3).  There 
can be up to n (=6) locations in an inquiry and the mapping 
between SLRs and pen gestures may be one-to-many or 
many-to-one.  Analysis of the training set shows that it 
contains 2480 pen gestures.  95% of the multimodal inputs 
contain a single pen gesture, i.e. POINT, CIRCLE or STROKE.  
The remaining multimodal inputs (i.e. 5%) contain multiple 
pen gestures, to which we refer as MULTI-POINT, MULTI-
CIRCLE and MULTI-STROKE.  Table 3 shows examples of pen 
gestures and their semantics. 

4.3 Correspondence between Spoken Locative 
References and Pen Gestures 
We derive the correspondence between SLRs and pen 
gestures based on temporal ordering and semantic 
compatibility.  Analysis of the training data shows that in a 
multimodal input, SLR and pen gesture that (jointly) refer 
to the same intended location may not always overlap in 
time.  Hence our approach only enforces the temporal 
ordering of SLRs and pen gestures when deriving their 
associations. 

Additionally, the association between SLRs and pen 
gestures also enforce semantic compatibility.  Our approach 
checks the numeric value (NUM) of an SLR and ensures that 
                                                           
2 A lexical term refers to a tokenized Chinese word from the 
speech modality but which is not an SLR.  Examples include: 
開開時間 “opening hours”, 路路 “route”, 從  “from”, etc. 

it is associated with a compatible number of pen gestures.  
For the case of one-to-many mapping between the SLR and 
its associated pen gestures, the pen gestures are considered 
together as a group (i.e. MULTI-POINT, MULTI-CIRCLE or 
MULTI-STROKE) in cross-modality integration.  The reverse 
is also true when mapping a pen gesture to multiple SLRs.  
Furthermore, our approach also checks for agreement in the 
location type features (LOC_TYPE) in the cross-modality 
association.  

Semantics Gesture type Illustration(s) 
POINT 

 
CIRCLE 

 

A single 
location 

STROKE 
 

An area / 
multiple 
locations 

CIRCLE (a big 
circle) 

MULTI-POINT  
(four points 
correspond to one 
SLR) 

 
MULTI-CIRCLE 

(four circles 
correspond to one 
SLR) 

Multiple 
locations 

MULTI-STROKE 

(three strokes 
correspond to one 
SLR) 

 
STROKE (a stroke 
indicates the start 
and end points)  

A route 

MULTI-STROKE (a 
long stroke with 
one or more 
turning points 
indicate a route) 

Table 3.  Examples of different pen gesture types and their 
semantics. 

4.4 Temporal Relationships 
Temporal integration patterns [19] between corresponding 
SLRs and pen gestures, as observed in our training set, 
include two main types: simultaneous (SIM) and sequential 
patterns (SEQ).  Simultaneous SLRs and pen gestures have 
temporal overlap.  Sequential associations do not.  A 3-
tuple that consists of corresponding SLR(s) and pen 
gesture(s), together with their temporal relationship, i.e., 
<SLR | pen_gesture_type | temporal_relationship> is 
referred as a multimodal term.  Among the 2261 
multimodal terms found in the training set, 74% are 
simultaneous and 26% are sequential.  For example, 
consider the multimodal expression: 



 

從 我所在的這這  到 這裡  可可可可可？ 
                      

“How can I go from my current location to here?” 
Its multimodal terms include <我所在的這這|POINT |SIM> 
and <這裡|MULTI-POINT|SIM>. 

Speech 
(as parsed 
SLR) 

Pen 
(as transcribed 
gesture) 

Temporal 
Relationship  
(SIM / SEQ) 

Count

SIM 
(1024/1417, 72.3%)

1024 Single 
(1417/1550, 
91.4%) SEQ 

(393/1417, 27.7%) 
393 

SIM 0 Multiple 
(0/1550, 0%) SEQ 0 

Singular 
(1550/2480, 
62.5%) 

∅ 
(133/1550, 8.6%) 

∅ 133 

SIM 
(7/9, 77.8%) 

7 Single 
(9/56, 16%) 

SEQ 
(2/9, 22.2%) 

2 

SIM 
(25/44, 56.8%) 

25 Multiple 
(44/56, 78.6%) 

SEQ 
(19/44, 43.2%) 

19 

Aggregated 
(56/2480, 
2.3%) 

∅ (3/56, 5.4%) ∅ 3 
SIM 
(12/21, 57.1%) 

12 Single 
(21/75, 28%) 

SEQ 
(9/21, 42.9%) 

9 

SIM 
(35/54, 64.8%) 

35 Multiple 
(54/75, 72%) 

SEQ 
(19/54, 35.2%) 

19 

Plural 
(75/2480, 
3%) 

∅ (0/75, 0%) ∅ 0 
SIM 
(569/715, 79.6%) 

569 Single 
(715/761, 94%) 

SEQ 
(146/715, 20.4%) 

146 

SIM (1/1, 100%) 1 Multiple 
(1/761, 0.1%) SEQ (0/1, 0%) 0 

Unspecified 
(761/2480, 
30.7%) 

∅ (45/761, 5.9%) ∅ 45 
Single 
(34/38, 89.5%) 

∅ 34 ∅ 
(38/2480, 
1.5%) Multiple 

(4/38, 10.5%) 
∅ 4 

 Table 4. Statistics of cross-modal integration patterns in the 
training set.  There are altogether 2480 multimodal terms 
(count by token) in total.  Among them, 2261 contain both 
SLR and pen gesture, 181 contain only SLRs and 38 of them 
contain only pen gestures. 

4.5 Cross-Modal Integration Patterns 
Recall that SLRs may be singular, aggregated, plural and 
unspecified references.  Recall also that an SLR may 
correspond to one or more pen gestures.  We analyze the 
statistics in the training set as shown in Table 4.  From the 

statistics, we observe that users predominantly prefer to use 
a single reference in the SLR (62.5%).  Furthermore, a 
single SLR generally corresponds to a single pen gesture, as 
none were found mapping to multiple pen gestures.  As 
regards aggregated references (e.g., 這四個大學< > or 
<these four universities>), 79% were found to correspond 
with multiple pen gestures to indicate multiple locations.  
The other 16% are used with a circle (i.e. a single pen 
gesture) that encompasses multiple locations.  An example 
is the multimodal term 這四個大學< |CIRCLE|SIM> or 
<these four universities |CIRCLE|SIM>.  For plural references, 
72% are used with multiple pen gestures to indicate 
multiple locations.  The remaining 28% are used with a 
single pen gesture, with the majority (19/21) being circles 
and the remaining two are points.  SLRs with an 
unspecified numeric features should correspond to both 
single and multiple pen gestures.  Within the training set, 
however, an unspecified reference predominantly (94%) 
occurs in association with a single pen gesture. 

User input with deictic and anaphoric references 
(the second “here” is an anaphora to the first “here”): 

S 我 在:   這裡 從   這裡  到   這裡  要 多久  
P:                                                   
“I’m now here. How much time will it take to go from 
here to here?” 
Annotated user input with multimodal terms: 

我 在  這裡< |POINT|SIM> 從  這裡< |∅|∅> 到  
<這裡|CIRCLE|SEQ> 要 多久    
“I’m now at <here|POINT|SIM>.  How much time will it 
take from <here|∅|∅> to <here|CIRCLE|SEQ>?” 
User input with elliptic locative references 
(the SLR is omitted in speech): 

S:          開開時間  “Opening hours?” 
P:   
Annotated user input with a multimodal term: 

<∅|MULTI-POINT|∅> 開開時間 
“<∅|MULTI-POINT|∅> Opening hours?” 

Table 5.  Examples on 3-tuple multimodal term annotation 
with speech (S) and pen gesture (P).  Translations are italicized 
and quoted. 

The above refers to SLRs that are deictic or anaphoric 
expressions.  Deictic expressions need to be interpreted 
jointly with the associated pen gestures.  Anaphoric 
references are interpreted based on contextual information 
and do not correspond to any pen gestures.  The first row in 
Table 5 presents examples of these two types of expressions.  
Additionally, there are also elliptic expressions, where the 
SLR is completely omitted but the pen gesture is present.  
For such cases, the cross-modal temporal relationship is 
irrelevant (and indicated by “∅”).  Table 5 shows some 
examples. 

The number of multimodal terms is much fewer than 
the exhaustive combinations between SLRs and pen 
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gestures.  Some of the terms are not available in the corpus, 
while others may be implausible combinations, such as:  

A singular reference with multiple pen gestures 
(e.g. 這個大學< |MULTI-POINT|SIM> “<this university 
|MULTI-POINT|SIM>”) – a singular SLR refers to one location 
and corresponds to one pen gesture.  Multiple pen gestures 
should correspond to an aggregated or plural reference.  
Therefore, this combination involves incompatibility in the 
numeric feature. 

An aggregated reference with a single point or a single 
stroke (e.g. 這這個這這< |POINT|SIM> “<these three places 
|POINT|SIM>”) – an aggregated SLR refers to multiple 
locations and should correspond to multiple pen gestures or 
a circle.  Again, this combination involves incompatibility 
in the numeric feature. 

An unspecified reference with multiple circles or strokes 
這裡(e.g. < |MULTI-STROKE|SIM> “<here|MULTI-STROKE 

|SIM>”) – empirically, we have found that about 94% of the 
unspecified references are used to indicate a single location 
(as shown in Table 4).  A possible reason may be that 
unspecified SLRs have short durations, during which the 
subjects may find it difficult to gesture multiple circles or 
strokes simultaneously. 

5. TASK GOAL INFERENCE  
In the previous section, we examined the associations 
between SLRs and pen gestures, leading to the definition of 
a multimodal term that captures cross-modal integration 
patterns and their temporal relationships.  In this section, 
we present a framework for inferring the task goal based on 
an input inquiry.   

As a reference baseline, we apply the vector-space 
model [22] for task goal inference.  For each task goal a, we 
consider all of its training expressions and their multimodal 
terms.  We create a vector ja of weights, using the 
normalized term frequency TF-IDF of the multimodal 
terms.  For an input multimodal expression, we create a 
vector gn, similar to the column vector of G in Equation 1.  
The similarity between an inquiry gn and task goal vector ja 
is calculated as the inner product of the two vectors.  Long 
inquiries contain more terms.  Since the dot product favors 
long inquiries by generating higher similarity scores, we 
apply cosine normalization (see Equation 8) to reduce the 
adverse effect of term repetition.  

na

na
na gj

gj
gjSimilarity

 
),(cosine

⋅
=                              (8) 

where ja is the weight for all terms in the ath task goal and 
           gn is the weight for all terms in the nth inquiry. 
The input expression is assigned to the task goal an* which 
has the maximum similarity score, as shown in Equation 9. 

{ }),( maxarg* cosine na
a

n gjSimilaritya =                      (9) 

Experiments show that vector-space model can correctly 
infer task goals for 85% and 90% of the inquiries in training 
and test sets respectively. 

Recall that the proposed approach using LSM involves 
setting up a term-inquiry matrix G.  We include both lexical 
(unimodal, speech only) terms and multimodal terms with 
speech and pen gestures.  There are a total of 216 unimodal 
terms and 261 multimodal terms in our training corpus.  
Hence the non-negative matrix G (in Equation 1) is of 
dimensions 477x999.  As described in Section 2, we apply 
SVD to G and factorize it into U, S and V. 
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Figure 3. A plot of the cumulative percentage of the singular 
values against the order of SVD approximation. 
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Figure 4.  A plot of task goal inference accuracy of multimodal 
inputs in training set against the order of SVD approximation. 

5.1 Optimization of R’ 
Recall that the total number of lexical and multimodal 
terms sum to R=477.  We may consider that the original 
semantic space to be determined by these terms and attempt 
to determine the optimal number of dimensions for the 
latent space.  We may choose the order of SVD 
approximation (R’) with reference to the percentage of the 
cumulative sum of retained singular values over the 
maximum at R’=477.  We plot the percentage of the 
cumulative sum of preserved singular values over the total 
sum of all singular values (i.e. at R’=477).  In Figure 3, we 
show the R’ values corresponding to the cumulative sum of 
singular values, at multiples of 10%. 
We also perform task goal inference on the multimodal 
inputs in the training set at the different values of R’ (see 
Figure 4).  The performance of task goal inference increases 
with R’.  The rate of increase slowed down as R’ becomes 



 

higher, reaching saturation approximately at R’=286 with a 
performance of task goal inference at 99% correct.  The 
choice of R’=286 as the dimensionality of the latent space 
implies a reduction of 40% with respect to the original 
space. 
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Figure 5.  Performance of task goal inference for each of the 
nine task goals in the application domain.  Results are based 
on the latent space with 286 dimensions. 
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Figure 6.  Percentage of multimodal inputs that belong to 
different latent semantic categories, within two task goals 
BUS_INFORMATION and OPENING HOURS.  The numbers inside 
the bars are the labels (indexed by r) of the latent semantic 
categories. 

5.2 Performance Evaluation 
Overall performance in task goal inference for the training 
and test sets are 99%3 and 99.1%4 respectively.  Detailed 
analyses of the results are shown in Figure 5.  The test set 
lacks inqueries that fall under the task goal of 
CHOICE_OF_VEHICLE (i.e., asking the user what type of 
vehicle he/she wishes to take).  Performance of task goal 
inference remains high for all the other task goals (at 98% 
or above). 

                                                           
3 Improvements in task goal inference accuracies brought about by 
LSM is statistically significant from 85% to 99% (α=0.01, one-
tailed z-test). 
4 Improvements in task goal inference accuracies brought about by 
LSM is statistically significant from 90% to 99.1% (α=0.01, one-
tailed z-test). 

5.3 Analysis of the Latent Semantic Space 
5.3.1 Sub-categorization of task goals 
Analysis of the latent semantic space shows that it has sub-
divided some of the task goals into logical sub-types.  For 
example, the task goal BUS_INFORMATION contains two 
latent semantic categories (see Figure 6): 
 The latent semantic category (r=13) refers to 

BUS_INFORMATION along a street; e.g. 經過 <這條大街

|STROKE|SEQ> 的 所有 這交 路路 是 哪這 “what are 
the bus routes that pass through <this 
street|STROKE|SEQ>?” 

 The category (r=19) refers to BUS_INFORMATION 
within an area; e.g. 告訴我  所有  在  <這個範圍

|CIRCLE|SIM> 行可 的 這交路路 “please tell me all the 
bus routes in <this area|CIRCLE|SIM>.” 

Another example is the task goal OPENING_HOURS, which 
contains six latent semantic categories: 
 The latent semantic category (r=11) refers to 

OPENING_HOURS of one location; e.g. 我想知道 <這個

這這|POINT|SIM> 的 開開時間 “I would like to know 
the opening hours of <this park|POINT|SIM>.” 

 The category (r=46) refers to OPENING_HOURS of 
multiple locations using ellipsis; e.g. <∅|POINT|∅> 開
開時間 “<∅|POINT|∅> opening hours.” 

 The categories (r=7 and 29) refer to  OPENING_HOURS 
of multiple locations using multiple singular SLRs; e.g. 
我想知道  < 這個市場 |POINT|SIM> < 這個廣場

|POINT|SIM> <這個購物中心|POINT|SIM> 的 開放時間 
“I would like to know the opening hours of <this 
plaza|POINT|SIM>, <this plaza|POINT|SIM> and <this 
shopping center|POINT|SIM>.” 

 The category (r=9) refers to OPENING_HOURS of 
multiple locations using one aggregated SLR; e.g. 勞駕

你告訴我 <這三個地方|MULTI-POINT|SEQ> 的 營業時

間 “Please tell me the opening hours of <these three 
locations|MULTI-POINT|SEQ>.” 

 The category (r=12) refers to OPENING_HOURS of 
multiple locations using one plural SLR; e.g. 我 想 知
道 <這幾個這這|MULTI-POINT|SEQ> 的 營運時間 “I 
would like to know the opening hours of <these 
locations| MULTI-POINT|SEQ>.” 

We observe that latent semantic modeling has produced 
subcategories of specific task goals based on the ways in 
which users compose their inquiries.  This is potentially 
advantageous because finer semantics categorization can 
enhance understanding and will facilitate automatic 
generation of system responses. 
5.3.2 Capturing key terms for task goals 
We examine the term weights in the latent semantic space 
to identify key terms that are indicative of each task goal.  
Illustrative examples include: 
 For the task goal MAP_COMMAND, key terms with the 

highest LSM weights are 開大 (i.e. “zoom in”), 縮縮 
(i.e. “zoom out”), 拉遠 (i.e. “zoom out”), as well as 

Latent semantic 

Percentage of multimodal inputs



 9

related standalone pen gestures expressed as the 
multimodal terms  <∅|POINT|∅> and <∅|CIRCLE|∅>. 

 For the task goal ROUTE_FINDING, key terms with the 
到highest LSM weights are  (i.e. “to” 從),  (i.e. 

“from”), 可樣可 “how to get to”, 最快 “the fastest”, 依
次 “in sequence”, as well as the multimodal terms 
<這裡|POINT|SEQ> (i.e. <here|POINT|SEQ>) and <這個

大學|POINT|SIM> (i.e. <this university|POINT|SIM>). 

5.3.3 Generalizing across related multimodal terms 
Upon further examination of the LSM weights, we observe 
their ability to generalize across related multimodal terms, 
even if the correlations are not directly found in the training 
data.  To describe the underlying mechanism – the LSM 
framework draws upon the co-occurrences between terms A 
and B, as well as the co-occurrences between B and C, in 
order to obtain the correlation between terms A and C.  

As an illustration, we can refer to two multimodal 
inputs by which the user wishes to zoom in on a map: 
 開大 CIRCLE (i.e. the verb phrase “zoom in” followed 

by a circle), corresponding respectively to the lexical 
and multimodal terms 開大 and <∅|CIRCLE|∅>” 

 開大 POINT (i.e. the verb phrase “zoom in” followed 
by a point), corresponding respectively to the lexical 
and multimodal terms 開大 and <∅|POINT|∅>” 

The column vectors of these two input expressions, as 
extracted from the original term-inquiry matrix, are shown 
in Table 7.  We compare these vectors with their 
counterparts in the reconstructed term-inquiry matrix Ĝ  
(with R’=286), as shown in Table 8.  We observe that the 
reconstructed column vector of the multimodal input “開大 
CIRCLE” in Table 8 carry additional weighting (≥0.06) for 
several additional multimodal terms, namely: 
 <這個地方|CIRCLE|SIM> 
 <這個範圍|CIRCLE|SEQ>  
 <這個範圍|CIRCLE|SIM> and 
 <這幅圖|POINT|SIM > 
These additional multimodal terms with non-zero weights 
(see Table 8) did not appear in the original user inputs (see 
Table 7).  But these terms are commly used to convey the 
task goal MAP_COMMAND, according to the training data (13 
out of 40 multimodal inputs).  LSM captures the new 
correlations among <∅|CIRCLE|∅>, 開大 “zoom in”, <這個

地方|CIRCLE|SIM> “this location”, <這個範圍|CIRCLE|SEQ> 
“this area”, <這個範圍|CIRCLE|SIM> “this area” and <這幅

圖 |POINT|SIM > “this map” and put them into correlated 
latent semantics.  The weights in Table 8 reflect that the 
circling action can be used to indicate a single location (這
個地方) or an area (這個範圍). 

Similarly, we also observe that the feature vector of the 
multimodal input “開大 POINT in Table 8 introduces 
additional multimodal terms with non-zero weights (e.g. 
≥0.05) for several additional multimodal terms:  
 <這個地方|CIRCLE|SIM> 
 <這個地方|POINT|SIM> and  
 <這幅圖|POINT|SIM > 

 開大 “zoom in” 
<∅|CIRCLE|∅> 

開大 “zoom in” 
<∅|POINT|∅> 

<∅|CIRCLE|∅> 0.44 0 
<∅|POINT|∅> 0 0.34 
開大 “zoom in” 0.37 0.37 
這個這這< |CIRCLE|SEQ>  

“<this location|CIRCLE|SEQ>”  0 0 
這個這這< |CIRCLE|SIM> 

“<this location|CIRCLE|SIM>” 0 0 
這個這這< |POINT|SEQ> 

“<this location|POINT|SEQ>” 0 0 
這個這這< |POINT|SIM> 

“<this location|POINT|SIM>” 0 0 
這個範圍< |CIRCLE|SEQ> 

“<this area|CIRCLE|SEQ>”  0 0 
這個範圍< |CIRCLE|SIM> 

“<this area|CIRCLE|SIM>” 0 0 
這個範圍< |POINT|SIM> 

“<this area|POINT|SIM>” 0 0 
這個範圍< |STROKE|SEQ> 

“<this area|STROKE|SEQ>” 0 0 

<這幅圖|POINT|SIM > 
“<this map|POINT|SIM>” 

0 0 

Table 7.  An excerpt of the term-inquiry matrix G 
corresponding to two multimodal inputs.  The weights (shown 
up to 2 decimal places) are obtained using Equation 1.  
Translations are in quotes and italics. 

 
開大 “zoom in” 
<∅|CIRCLE|∅> 

開大 “zoom in” 
<∅|POINT|∅> 

<∅|CIRCLE|∅> 0.18 0.11 
<∅|POINT|∅> 0.06 0.28 
開大 “zoom in” 0.51 0.44 
這個這這< |CIRCLE|SEQ> 

“<this location|CIRCLE|SEQ>” 0.00 0.00 
這個這這< |CIRCLE|SIM> 

“<this location|CIRCLE|SIM>” 0.07 0.05 
這個這這< |POINT|SEQ> 

“<this location|POINT|SEQ>” 0.00 0.00 
這個這這< |POINT|SIM> 

“<this location|POINT|SIM>” 0.03 0.05 
這個範圍< |CIRCLE|SEQ> 

“<this area|CIRCLE|SEQ>” 0.07 0.04 
這個範圍< |CIRCLE|SIM> 

“<this area|CIRCLE|SIM>” 0.07 0.04 
這個範圍< |POINT|SIM> 

“<this area|POINT|SIM>” 0.00 0.00 
這個範圍< |STROKE|SEQ> 

“<this area|STROKE|SEQ>” 0.00 0.00 

<這幅圖|POINT|SIM > 
“<this map|POINT|SIM>” 0.06 0.06 

Table 8.  An excerpt of the reconstructed term-inquiry matrix 

Ĝ  corresponding to two multimodal inputs as in Table 7.  The 

estimated weights (shown up to 2 decimal places) of Ĝ  are 
obtained using Equation 3 with R’=286.  Translations are in 
quotes and italics 

These additional multimodal terms with non-zero weights 
(see Table 8) did not appear in the original user inputs (see 
Table 7).  But these terms are commonly used to convey the 
task goal MAP_COMMAND (11 out of 40 multimodal inputs).  
LSM captures the new correlations among <∅|POINT|∅>, 
開大 zoom in, <這個地方|CIRCLE|SIM> “this location”, <這
個地方|POINT|SIM> “this location” and <這幅圖|POINT|SIM > 
“this map” and put them into correlated latent semantics.  



 

The weights in Table 8 reflect that the pointing action can 
be used to indicate a single location (這個地方). 

6. CONCLUSIONS 
This paper describes our work in the usage pattern and 
latent semantic analyses of multimodal user inputs with 
speech and pen gestures.  Our investigation is based on a 
multimodal corpus that we have designed and collected, 
which consists of over a thousand navigational inquiries.  
The inquiries cover nine task goals.  The task goal of each 
multimodal input is hand-labeled as a gold standard.  We 
begin with an analysis of the usage patterns and designed 
the format of a multimodal term to be a 3-tuple, consisting 
of a spoken locative reference, pen gesture(s) and their 
temporal relationship).  Such multimodal terms can 
represent the cross-modality integration patterns adopted by 
the user.  Then, we apply latent semantic analysis for task 
goal inference.  Characteristic cross-modal integration 
patterns are derived from the training set to form 
multimodal terms.  We also derive lexical terms from the 
speech portion of the multimodal expression.  We use a 
non-negative term-inquiry matrix to capture the 
associations between terms (lexical and multimodal) and 
inquiries.  Decomposition of the term-inquiry matrix using 
singular value decomposition captures the associations 
between terms and inquiries through a latent semantic 
space.  We project the latent semantic space into the space 
of task goals through a matrix derived from training data.  
An input multimodal inquiry can be projected into the latent 
semantic space and then into the task goal space.  This 
gives a vector with which we can use the highest weighting 
element to select the inferred task goal.  We experimented 
with this approach based on the multimodal corpus.  
Analysis shows structural relations between latent semantic 
categories for certain task goals.  Furthermore, the weights 
of the lexical and multimodal terms in the latent semantic 
space an also help us identify key terms for specific task 
goals.  The latent semantic approach achieves around 99% 
accuracy in task goal inference, for both the training and 
test sets.  This is significantly higher that the reference 
baseline obtained with a vector-space model, which 
achieves 85% and 90% for the training and test sets 
respectively. 
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