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Abstract

Pitch features have long been known to be useful for recogni-
tion of normal speech. However, for disordered speech, the sig-
nificant degradation of voice quality renders the prosodic fea-
tures, such as pitch, not always useful, particularly when the
underlying conditions, for example, damages to the cerebellum,
introduce a large effect on prosody control. Hence, both acous-
tic and prosodic information can be distorted. To the best of
our knowledge, there has been very limited research on using
pitch features for disordered speech recognition. In this paper,
a comparative study of multiple approaches designed to incor-
porate pitch features is conducted to improve the performance
of two disordered speech recognition tasks: English UASpeech,
and Cantonese CUDYS. A novel gated neural network (GNN)
based approach is used to improve acoustic and pitch feature
integration over a conventional concatenation between the two.
Bayesian estimation of GNNss is also investigated to further im-
prove their robustness.

Index Terms: pitch, disordered speech, speech recognition

1. Introduction

Pitch, as a perceptual measurement of fundamental frequency
(FO) of speech signals [1], is a powerful prosodic cue for audi-
tory perception. Pitch features have long known to be useful for
recognition of normal speech, especially for tonal languages,
such as Mandarin [2, 3, 4], Cantonese [5, 6], Vietnamese [7, 8]
and Thai [9, 10], since pitch can serve as an informative
source to distinguish different tones in tonal languages [11].
In non-tonal languages, for instance, English [12, 13, 14] and
Japanese [15, 16], it is also feasible to treat pitch as an auxiliary
information by concatenating with acoustic features to improve
speech recognition performance.

However, for disordered speech, the deterioration on voice
quality renders the prosodic features, such as pitch, not always
useful. Medical conditions, for example, damages to cerebel-
lum in the Ataxic dysathria [17], can cause uncoordinated mus-
cle movements of articulation organs to affected patients, intro-
ducing a large effect on prosody control [18]. Another example
is the Spastic dysarthria, which is caused by damages to the
pyramidal tract [17]. In this case, a low pitch with pitch breaks
often occurs. Therefore, an appropriate integration of acous-
tic and pitch features under such harsh acoustic conditions is a
pressing need for disordered speech recognition.

Speech recognition for disordered speech is a challeng-
ing task in general [19]. Acoustic features play a major
role in early and recent studies of disordered speech recogni-
tion [20, 21, 22, 23]. To the best of our knowledge, the vast
majority of speech recognition systems using pitch features are
conducted on normal speech, very limited research incorporat-
ing pitch features has been found for disordered speech. In this
paper, we investigate multiple approaches to explore a robust
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integration of pitch features to improve the performance of two
disordered speech recognition tasks: English UASpeech [24]
and Cantonese CUDYS [25]. A novel gated neural network
(GNN) [26] is used to improve the integration of acoustic and
pitch features over the conventional feature concatenation be-
tween the two. A more advanced form, Bayesian gated neural
network (BGNN) using Bayesian estimation of GNNs [27], is
also investigated to further improve their robustness.

The main contributions of this paper are summarized below.
First, as far as we know, this is the first work that incorporates
pitch features for disordered speech recognition. Second, this
paper presents the first attempt to leverage GNN and BGNN
approaches for prosodic feature selection to improve the perfor-
mance of disordered speech recognition and speech recognition
systems in general. Experiments conducted on the two corpus,
UASpeech and CUDYS, suggest that a selection mechanism is
needed for a robust integration of acoustic and pitch features for
disordered speech recognition tasks.

The rest of the paper is structured as follows. Section 2
and section 3 describe the pitch extraction algorithm and the
models investigated in this paper. The details of experimental
setup, results and analysis are described in section 4. The last
section concludes the paper.

2. Pitch Extraction

There has been a long history developing the pitch extraction al-
gorithm in previous research [28, 29, 30, 31, 32]. In this paper,
we apply the Kaldi pitch tracker [32] in the Kaldi speech recog-
nition toolkit [33] to obtain pitch and Probability of Voicing
(POV) features for the experiments conducted on the aformen-
tioned two disordered speech recognition tasks. The Kaldi pitch
tracker is a highly modified version of getf0 (RAPT) algorithm
introduced in [29]. Unlike the original getfO algorithm where
a hard decision has to be made to determine whether a given
frame is voiced or unvoiced, the Kaldi pitch tracker assigns a
pitch to all the frames. The algorithm also produces a quantity
that can be used as a probability of voicing measure, which is
based on the normalized autocorrelation measure. The detailed
computational steps of the pitch features can be found in [32].

Framel level Normalized Cross Correlation Function
(NCCF) values are further processed to obtain POV features.
The resulting pitch features are normalized by the short-time
mean subtraction approach [34] with POV weighting. Then
the delta-log-pitch features computed directly from the un-
normalized log pitch is added to the POV and normalized pitch
features to form a 3-dimension pitch feature vector, which was
used throughout the experiments of this paper.

3. Incorporating Pitch Feature

In our neural network acoustic models, we concatenate 40-
dimension filter banks (FBKs) with 3-dimension pitch feature
vectors, then further concatenate them with their first order dif-
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ferential parameters to obtain 86-dimension feature vectors as
the network input, shown in Fig. 1 and Fig. 2. Given an in-

put vector z{' ™) from (I — 1)-th layer at ¢-th frame, a standard

DNN system computes the output hEl) (zgl_l)) of the i-th node
in the [-th layer using Eqn. (1).
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Figure 1: The framework of the standard DNN based architec-
ture. Acoustic and pitch features are concatenated with their
first order differential parameters at the input layer before they
are fed into the subsequent hidden layers.

Afbk 43 Apitch

Acoustic and pitch features are concatenated at the input
layer, where z{*) = [x? & x?,1]. x¢ and x? are the acoustic
and pitch feature vectors of ¢-th frame, respectively. & denotes
the vector concatenation operation. The output layer targets are
tied triphone state labels.

In this paper, we focus on the incorporation of distorted
pitch features to improve speech recognition robustness, hence
the gated control is only applied to the pitch features. The gated

input layer outputs ZEO)

are computed as:
zy =[x{, 1]
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where the gating layer is denoted as the O-th hidden layer. ®
and @ denote the element-wise multiplication and vector con-
catenation, respectively. The activation function ¢ (-) is a sig-
moid function, whose outputs vary between 0 and 1. The pitch
and Apitch shown in Fig. 2 share the same gating parameters.

The investigated Bayesian gated neural network (BGNN)
proposed in [27], which was also submitted to interspeech 2019,
is described in Fig. 2. A more detailed model description can be
found in this submitted paper [27]. Compared to standard DNN
system, a gating layer is placed at the input layer to dynamically
weight the contributions from pitch features. A posterior distri-
bution over the gating parameters is also applied to model the
uncertainty given limited and variable disordered speech data.

The general form of the hidden output with Bayesian learn-
ing is as follows:
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where p(@il)) = p(BE” | {x¢,¥+}) denotes the node dependent
activation parameter posterior distribution to be learned from
training data {x,y:} (x¢,y: are the input data and its corre-
sponding triphone state label at ¢-th frame). In our scenario, we
only perform Bayesian learning on the gating parameters, hence
the Eqn. (3) can be rewritten as the specialized form Eqn. (4).
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Figure 2: A Bayesian gated DNN based system architecture. In
contrast to the conventional gated DNN, a posterior distribution
(top right corner) over the gating parameters is used to model
the uncertainty given limited and variable pitch data.

To estimate the hyper-parameters of p(GfO) ), two addtional
steps need to be included in the standard back-propagation algo-
rithm. One is to calculate the variational lower bound approxi-
mate over the integration of the model parameters, the other is
to perform a sampling step on the first term of the lower bound
to obtain the gradient statistics required for updating the hyper-
parameters. These changes allow all layers including the gating
layer of the network to be updated using back-propagation. The
variational inference approach [35] is used to approximate the
integration in Eqn. (4). For notation simplicity, we consider the
parameters 6 = 01@ as the gating parameters at the i-th gating
layer node. By applying Jensen’s inequality, we calculate the
evidence lower bound of the cross-entropy criterion, or equiv-
alently the log-likelihood (see Eqn. (5)) of tied HMM state se-
quence Y given input acoustic feature vector sequence X, with
pitch features optionally appended.

log P(Y | X):log/P(Y|0,X)Pr(9)d0

> [a(®)108P(Y |6, X)d6 - KL@®)|P,(0) = £ ©
—,_/

£ £
where T is the total number of frames in the training data. P,(6)
denotes gating parameters prior distribution, ¢(0) is the varia-
tional approximation of gating parameters posterior distribution
p(0). We assume that the variational distribution ¢ and the prior
distribution P, are both Gaussian distributions, following [36],
ie. P.(0) =N(ur,02), ¢(0) =N (u,0). KL(q||P,) is the
Kullback-Leibler (KL) divergence between q and P;.

The equations for updating the hyper-paramters of the pos-
terior distribution are as in [37]:
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where T3 is the number of frames in a minibatch [38]. Back-
propagation method can be applied to the calculation of the two
gradient terms 2:°2% %ykl;’k‘e’“) and 81%1’5;,"_"“'@) for updating
hyper-parameters p, 0. During model evaluation, the mean of
the gating parameter p of the posterior distribution p(8) is used
as the drawn sample to compute the gating layer outputs.

Table 1: Performance of baseline DNN systems without (w/o)
pitch features v.s. other NN systems with (w/) pitch features
on the UASpeech control (healthy) and dysarthric speakers
with audio data available. The abbreviations CP and SP in
the Dysarthria column represent Cerebral Palsy and Spastic.
Mixed means two symptoms were both detected for the speaker.

WER%
ID w/o Pitch w/ Pitch Dysarth
DNN DNN | GNN | BGNN

Control 7.3 7.3 7.0 6.7 -

M10 11.2 10.6 9.7 9.4 Mixed

Mi12 65.8 643 | 63.3 64.1 Mixed
F04 29.2 27.0 | 28.7 28.2 CP
Ml11 32.4 29.2 | 29.5 29.7 CP
F02 49.6 46.1 45.8 43.9 SP
FO3 55.4 51.4 51.9 50.9 SP
FO5 9.7 7.6 8.1 7.2 SP
MO1 84.7 74.8 | 70.6 72.1 SP
Mo04 87.1 85.8 | 87.2 87.4 SP
MO05 26.6 21.1 20.9 22.4 SP
MO06 33.1 32.9 35.8 32.7 SP
MO07 24.1 23.9 23.0 229 SP
MO8 11.6 10.6 10.4 10.1 SP
M09 11.9 10.0 10.0 10.0 SP
M14 20.3 16.8 17.0 16.5 SP
M16 29.5 27.7 26.1 25.9 SP
Avg 33.8 314 314 31.0 -

4. Experiments
4.1. UASpeech Corpus
4.1.1. Experimental Setup

The UASpeech is an isolated word recognition task including
16 dysarthric speakers. All speakers were required to repeat 455
distinct words, comprising of 155 common words and 300 un-
common words. These words were distributed into three blocks.
Block 1 (B1) and block 3 (B3) were treated as the training set,
leaving the block 2 (B2) as the test set.

The feed forward DNN based acoustic model without using
pitch features is determined as the baseline system, since more
advanced forms of neural networks based acoustic models such
as time delayed neural networks [39] and long short-term mem-
ory recurrent neural networks [40] did not produce lower WER
over feed forward DNN on the UASpeech recognition task [23].
All the investigated neural network models on the UASpeech
corpus were built in Pytorch [41].
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In the experiments, a 9-frame context window was used in
both standard feed forward DNN systems and pitch incorpo-
rated neural network (NN) systems. Acoustic features are §0-
dimension filter banks (FBKs)+A features. Pitch features con-
sist of POV, normalized pitch and delta-log-pitch and their first
derivatives. The fusion of acoustic and pitch features are shown
in section 3. Target tied triphone state labels were produced by
speaker dependent GMM-HMM models. Speaker dependent
neural network acoustic models have 5 hidden layers with 500
neurons in each hidden layer. This is applicable for all the ex-
perimented NN models. For the gated NN and Bayesian gated
NN systems incorporating pitch features, an additional hidden
layer (or gating layer) was added to perform dynamic selection
on pitch features. Layer-wise pretraining was applied to the
training process, following a fine-tune for the whole network
using SGD optimization with a NEWBOB learning rate sched-
uler. All the models were trained from scratch. The frame level
output probability tables were fed to HDecode [42] to obtain
recognition outputs for performance evaluation.

1o

POV

Figure 3: The pitch feature selection pattern using GNN model

=

Pitch

MlogPitch  APOV  APitch - A2jogpitch

on the 16 UASpeech dysarthric speakers

02

0.0

M2 [ |

ML 08
F03

F0S 06
Mo4

Mos I 04

POV

Pitch

AlogPitch  APOV

APitech - A2jogpitch

02

0.0

Figure 4: The pitch feature selection pattern using BGNN model
on the 16 UASpeech dysarthric speakers

4.1.2. Results and Analysis

The performance of baseline DNN systems without pitch fea-
tures and other NN systems with pitch features is shown in Ta-
ble 1. We first briefly study the systems’ performance on con-
trol (healthy) speakers. We can see that Bayesian gated NN
works the best. In general, for dysarthric speakers as well, the
BGNN systems with pitch features outperform baseline DNN
systems with and without pitch features and GNN systems with
pitch features on average WER. The BGNN systems provide
a2.8%" absolute (8.3% relative) WER reduction over baseline
DNN systems without pitch features. Compared to DNN and

I The average WER of the DNN ASR systems [23] built by HTK on
the 16 speakers is 33.9%. The authors of [23] provide the speaker level
WERSs. Our baseline DNN ASR systems produced a competitive result.



GNN systems with pitch features, the BGNN systems produce
a 0.4% absolute (1.3% relative) WER reduction. Considering
the individual speakers’ performance, although inconsistent re-
sults are observed (see speakers FO4, M11 and M04), the selec-
tion mechanism on the pitch features still work for most of the
speakers, especially for speakers FO2 and MO1.

To further investigate the selection mechanism of the gat-
ing layer on pitch features for both GNN and BGNN systems,
we draw heatmaps (see Fig. 3 and Fig. 4) using the activation
values extracted from the gating layer’s sigmoid function out-
puts. A polysyllabic word is randomly selected from B2 ac-
cross all 16 dysarthric speakers. The frames of the word of each
speaker are fed to its corresponding trained GNN and BGNN
models to obtain m * n activation value matrices, where m is
the frame number of the word and n is the dimension of pitch
features. By column averaging, we finally get the average acti-
vation value vectors of the selected word for each speaker. From
Fig. 3 and Fig. 4, we observe that for BGNN models, the first
two dimensions of pitch features are more heavily used than the
GNN models. In this case study, using pitch features, the recog-
nition performance of BGNN models is better than DNN and
GNN models according to the word recognition result. There-
fore it indicates that for this selected word, the BGNN model al-
lows more 0-th order pitch information to flow into the network
to improve integration between acoustic and pitch features, and
ultimately recognition performance.

Table 2: Performance of baseline DNN systems without (w/o)
pitch features v.s. other NN systems with (w/) pitch features
on the control and CUDYS dysarthric speakers with audio data
available. The abbreviations SCA and CP in the Dysarthria
column represent Spinocerebellar Ataxia and Cerebral palsy.

WER%
ID w/o Pitch w/ Pitch Dysarthria
DNN DNN | GNN

Control 17.8 16.8 | 16.5 -
S0006 3.4 22 2.2 SCA
S0013 53 4.6 7.5 SCA
S0015 83.8 85.5 84.2 Cp
S0019 0.5 0.5 1.1 SCA
S0027 22 1.6 1.1 SCA
S0030 32.7 238 | 22.9 SCA
S0031 76.2 74.8 | 68.9 CP
S0034 63.3 70.0 | 66.5 Cp

Avg 29.7 29.0 | 28.2 -

4.2. CUDYS Corpus
4.2.1. Experimental Setup

CUDYS [25] corpus is a Cantonese Dysarthric speech corpus
collected by the Chinese University of Hong Kong. This cor-
pus contains three tasks, which are words, sentences and para-
graphs. In this paper, we only consider the word-level task.
In order to improve the recognition performance on disordered
speech, an extra large Cantonese normal speech corpus (Spee-
chOcean, 205.8 hours from 500 healthy subjects) was incor-
porated and mixed with CUDYS (3.3 hours) to train our ASR
system. The training set contains 23 speakers from CUDY'S and
441 speakers from SpeechOcean while the test set contains 10
speakers from CUDYS and 29 speakers from SpeechOcean.
Maximum Likelihood Linear Transform (MLLT) estima-
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tion [43] was used to train the GMM-HMM system on top
of Heteroscedastic Linear Discriminant Analysis (HLDA) [44]
transformed Perceptual Linear Prediction (PLP) coefficients.
The input 39-dimension PLP features include differential pa-
rameters up to the second order. Approximatedly 7000 triphone
states were tied according to the phonetic decision tree on the
speaker independent GMM-HMM models.

The neural network acoustic model training on the mixed
data set is the same as described in Section 4.1.1, except that the
speaker independent neural network acoustic models was used
consisting of 6 hidden layers with 2000 neurons in each hidden
layer. The input acoustic features are 80-dimension filter banks
(FBKs)+A features. For the GNN and BGNN acoustic models
with pitch features, an additional hidden layer (or gating layer)
was added to perform dynamic selection on the pitch features.

Table 3: Performance of baseline DNN systems without (w/o)
pitch features v.s. other NN systems with (w/) pitch features on
the 10 CUDYS dysarthric speakers with audio data available.
The abbreviations SCA and CP in the Dysarthria column repre-
sent Spinocerebellar Ataxia and Cerebral palsy.

WER%
Dysarthria | w/o Pitch w/ Pitch
DNN DNN | GNN
SCA 9.8 71 7.5
Cp 75.2 772 | 73.9

4.2.2. Results and Analysis

In this subsection, we compare the performance of baseline
DNN systems without pitch features and other NN systems with
pitch features on the CUDYS word-level task’. The results of
control (SpeechOcean) and disordered speakers are shown in
Table 2 and Table 3. Experiments in Table 2 show that the GNN
systems outperform the DNN systems with (without) pitch by
0.8% (1.5%) absolute WER reduction on average for disordered
speakers. For recognition performance of speakers with Cere-
bral palsy in Table 3, we see a performance degradation in DNN
systems with pitch features since the pitch information is inac-
curate. Then by dynamically selecting pitch features for CP in
GNN system, 1.3% absolute WER reduction was obtained over
the DNN systems without pitch features. However, we did not
see the same conclusion from the speakers who have SCA.

5. Conclusion

To the best of our knowledge, this paper presents the first work
using pitch features for disordered speech recognition. In ad-
dition, this is the first attempt to use GNN and BGNN mod-
els on exploring robust integration of pitch features to improve
recognition performance of disordered speech. Experiments
conducted on two disordered recognition tasks, UASpeech and
CUDYS, suggest that a selection mechanism on pitch features
is required for disordered speech recognition tasks.
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