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ABSTRACT

Recognition of overlapped speech has been a highly challenging task
to date. State-of-the-art multi-channel speech separation system are
becoming increasingly complex and expensive for practical appli-
cations. To this end, low-bit neural network quantization provides
a powerful solution to dramatically reduce their model size. How-
ever, current quantization methods are based on uniform precision
and fail to account for the varying performance sensitivity at differ-
ent model components to quantization errors. In this paper, novel
mixed precision DNN quantization methods are proposed by apply-
ing locally variable bit-widths to individual TCN components of a
TF masking based multi-channel speech separation system. The op-
timal local precision settings are automatically learned using three
techniques. The first two approaches utilize quantization sensitivity
metrics based on either the mean square error (MSE) loss function
curvature, or the KL-divergence measured between full precision
and quantized separation models. The third approach is based on
mixed precision neural architecture search. Experiments conducted
on the LRS3-TED corpus simulated overlapped speech data suggest
that the proposed mixed precision quantization techniques consis-
tently outperform the uniform precision baseline speech separation
systems of comparable bit-widths in terms of SI-SNR and PESQ
scores as well as word error rate (WER) reductions up to 2.88% ab-
solute (8% relative).

Index Terms— Neural Network Quantization, Mixed Precision,
Speech Separation, Speech Recognition

1. INTRODUCTION

Despite the rapid progress of automatic speech recognition (ASR)
in the past few decades, accurate recognition of overlapped speech
remains a highly challenging task to date. To this end, microphone
arrays and the required multi-channel signal integration technologies
represented by TF masking [1, 2], delay and sum [3, 4] and mini-
mum variance distortionless response (MVDR) [5, 6] play a key role
in state-of-the-art overlapped speech separation and recognition sys-
tems. With the wider application of deep learning based speech tech-
nologies, these speech separation methods have evolved and been
integrated into a variety of DNN based designs based on, for exam-
ple, convolutional time-domain audio separation networks (Conv-
TasNets) [7], dual path recurrent neural networks and transformers
[8, 9] . State-of-the-art speech separation performance require in-
creasingly complex neural architecture designs. For example, the
audio-only and audio-visual speech separation systems introduced
in [10] contain 9.6 and 22 million parameters in total respectively.
However, this not only lead to a large increase in their overall mem-
ory footprint and computational cost when operating on the cloud,
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but also creates difficulty when deployed on edge devices to enhance
privacy and reduce latency.

To this end, one efficient and powerful solution is to use low-bit
deep neural network (DNN) quantization techniques [11, 12, 13, 14],
which has drawn increasing interest in the machine learning and
speech technology community in recent years. By replacing floating
point weights with low precision values, the resulting quantization
methods can significantly reduce the model size and inference time
without modifying the model architectures. Traditional DNN quan-
tization approaches [15, 16, 17, 18, 19] are predominantly based on
uniform precision, where a manually defined identical bit-width is
applied to all weight parameters, for example, during different stages
of quantized model training [15, 16]. This fails to account for the
varying performance sensitivity at different parts of the system to
quantization errors [20, 21, 22, 23, 24]. In practice, this often leads
to large performance degradation against full precision models.

In order to address the above issue, novel mixed precision
DNN quantization methods are proposed in this paper to address
this problem by applying locally variable bit-widths settings to in-
dividual TCN components of a TF masking based multi-channel
speech separation system [25]. These methods are becoming well
supported by the recent development of mixed precision DNN accel-
eration hardware that allow multiple locally set precision settings to
be used [20]. The resulting flexibility can provide a better trade-off
between compression ratio and accuracy performance target. The
optimal local precision settings are automatically learned using three
techniques. The first two approaches utilize quantization sensitivity
metrics based on either the mean square error (MSE) loss function
curvature that can be approximated efficiently via matrix free tech-
niques, or the KL-divergence measured between full precision and
quantized separation models. The third approach is based on mixed
precision neural architecture search.

Experiments conducted on the Lip Reading Sentences based
on TED videos (LRS3-TED) corpus [26] simulated overlapped
speech data suggest that the proposed mixed precision quantization
techniques consistently outperform the uniform precision baseline
speech separation systems of comparable quantization bit-widths.
Consistent performance improvements in terms of both SI-SNR and
PESQ based speech enhancement metrics and speech recognition
word error rate (WER) up to 2.88% absolute (8% relative) were
obtained. The 8-bit KL mixed precision quantized system achieved
a “lossless” quantization over the full precision 32-bit baseline while
incurring no statistically significant WER increase.

The main contributions of this paper are summarized as fol-
lows. First, this paper is the first work to apply mixed precision
quantization methods to speech separation tasks. In contrast, previ-
ous researches on low-bit quantization within the speech commu-
nity largely focused on the back-end recognition system [19, 27]
and language models [23, 28]. In addition, prior researches on light
weight speech enhancement approaches were based on neural struc-
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tural sparsity compression [29] rather than the proposed mixed pre-
cision low-bit quantization methods. Second, the proposed 8-bit
KL mixed precision quantized speech separation system achieved
a “lossless” quantization over the full precision 32-bit baseline in
terms of speech recognition accuracy.

2. MULTI-CHANNEL SPEECH SEPARATION

This section introduces the TF masking based multi-channel speech
separation framework used in this paper.

2.1. Audio inputs

As is illustrated in Figure 2, three types of audio features includ-
ing the complex spectrum, the inter-microphone phase differences
(IPDs) [30] and location-guided angle feature (AF) [31, 32] are
adopted as the audio inputs. The complex spectrum of all the micro-
phone array channels are first computed through short-time Fourier
transform (STFT).
IPDs features were used to capture the relative phase difference be-
tween different microphone channels and provide additional spatial
cues for TF masking based multi-channel speech separation. These
can be computed as follows:

IPD
(m,n)
t,f = ∠(ymt,f/y

n
t,f ) (1)

where ymt,f and ynt,f denote the STFT’s TF bins of mixed speech at
time t and frequency bin f on m-th and n-th microphone channels,
respectively. The operator ∠(·) outputs the angle between them.
Angle features that are based on the approximated direction of ar-
rival (DOA) were also incorporated to provide further spatial fil-
tering constraint. In this work, the approximate DOA of a target
speaker, θ, is obtained by tracking the speaker’s face from a 180-
degree wide-angle camera, as is shown in the left hand side of Figure
2. This allows the array steering vector corresponding to the target
speaker to be expressed as follows:

G(f) =
[
e−jφ1 cos(θ), e−jφr cos(θ), ..., e−jφR cos(θ)

]
(2)

where φr = 2πfd1r/c and d1r is the distance between the first
(reference) and rth microphone (d11 = 0). c is the sound veloc-
ity. Based on the computed steering vector, the location-guided AF
feature introduced in [31, 10] are also adopted to provide further dis-
criminative information for the target speaker as follows:

AF(t, f) =
∑
{(m,n)}

〈
vec
( Gn(f)
Gm(f)

)
, vec

( ymt,f
yn
t,f

)〉
∥∥vec

( Gn(f)
Gm(f)

)∥∥ · ∥∥vec
( ym

t,f

yn
t,f

)∥∥ (3)

where ‖ · ‖ denotes the vector norm, 〈·, ·〉 represents the inner prod-
uct and {(m,n)} denotes the selected microphone pairs. vec(·)
transforms the complex value into a 2-D vector, where the real and
imaginary parts are regarded as the two vector components.

2.2. Conv-Tasnet block

Following previous researches on audio-visual multi-channel speech
separation [7, 25], the temporal convolutional network (TCN) archi-
tecture, which uses a long reception field to capture more sufficient
contextual information, is adopted in our separation front-ends. As
shown in Figure 1, each TCN block is stacked by 8 Dilated 1-D Con-
vBlock with exponentially increased dilation factors 20, 21, ...., 27.
As shown in Figure 2, the log-power spectrum (LPS) features of the
reference microphone channel were initially concatenated with the
IPDs and AF features before being fed into a stack of several TCN
blocks to estimate the complex TF mask.

Fig. 1. An example temporal convolutional network (TCN). Each di-
lated 1-D ConvBlock consists of a 1×1 convolutional layer, a depth-
wise separable convolution layer (D–Conv) [33], with PReLU [34]
activation and normalization added between convolution layers, and
skip connections added between dilated 1-D ConvBlocks.

2.3. TF masking based speech separation
Previous researches suggest that the complex ratio masks (CRMs)
outperform both the binary masks (BMs) and real-value ratio masks
(RMs) on speech separation [35, 36] and enhancement [37] tasks.
For this reason, the complex ideal ratio mask (cIRM) mt,f of the
target speech is estimated in the separation module. The estimated
target speech complex spectrum is obtained as:

xt,f = mt,fy
r
t,f (4)

where mt,f ∈ C is the cIRM of the target speaker, yrt,f is the ref-
erence channel complex spectrum of mixed speech (without loss
of generality, the first channel is selected as the reference channel
throughout this paper). Given the estimated complex spectrum, the
time-domain separated speech can be computed by the inverse short-
time Fourier transform (iSTFT) and the SI-SNR cost function is used
to optimize the separation neural networks.

3. NEURAL NETWORK QUANTIZATION

For a standard n-bit quantization problem of neural networks, we
consider a full precision weight parameter Θ and find its closest
discrete approximation from the following quantization table Q ∈
{0,±1,±2, . . . ,±(2n−1 − 1)} as

f(Θ) = arg min
Q
|Θ−Q| (5)

while one bit is reserved to denote the sign. With further simplifica-
tion, low bit quantization, for example, binarization {1,−1} [38, 13]
and ternary {−1, 0, 1} [39], can be produced.

When applying quantization to all weight matrices in the model,
we can use a more general format in equation (5) to represent the
quantization for each parameter. Let Θ

(l)
i be the ith parameter within

any of the lth weight cluster, for example, all weight parameters of
the same Conv-Tasnet layer,

f(Θ
(l)
i ) = arg min

Q
(l)
i

|Θ(l)
i −Q

(l)
i | (6)

The locally shared lth quantization table is given by

Q
(l)
i ∈ {0,±α

(l), . . . ,±α(l)(2nl−1 − 1)} (7)

where α(l) is a full precision scaling factor used to adjust the dy-
namic range of all the unquantized weights in the cluster. It is shared
locally among weight parameters clusters. A special case, when the
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Fig. 2. Illustration of the proposed quantized audio-visual multi-channel speech separation networks, where yrt,f is the complex spectrum of
each channel. For the channel integration approach TF masking, mt,f denotes the complex mask of the target speaker and Re(mt,f ) and
Im(mt,f ) are the real and imaginary part. The quantized TCN blocks are marked light grey in the figure.

local quantization table in equation (7) is shared across all the lay-
ers, leads to the traditional uniform precision quantization approach.
The only remaining factor affecting the system performance is the bit
length nl which is also globally set to be 1, 2, 4, 8, 16 etc. The quan-
tized DNN parameters together with the scaling factors α(l) can be
learned using alternating direction methods of multipliers (ADMM)
based optimization [18, 23].

4. MIXED PRECISION QUANTIZATION

This section presents three approaches to automatically learn the op-
timal local precision settings for the quantization of our TF-masking
based multi-channel speech separation system.

4.1. KL Divergence Based Mixed Precision Quantization

Taking a L-layer NN for example, for any quantization f(·) being
applied to the full precision parameters Θ, the KL divergence based
quantization sensitivity measure is computed over the input spectrum
of T frame length as,

ΩKL =

L∑
i=1

ΩKL
i =

L∑
i=1

DKL(P (σ(h),Θi)||P (σ(h), fni(Θi)))

(8)

=

L∑
i=1

T∑
t=1

P (σ(ht),Θi) ln
P (σ(ht),Θi)

P (σ(ht), fni(Θi)

where Θi denote the full precision parameters of the ith layer, and
fni(Θi) is ni-bit quantized parameters given a particular local pre-
cision bit width ni and ht is the TCN separator output vector com-
puted at frame t. When computing the KL metric in Eqn. (8), ht

is fed into a Sigmoid gate (Figure 2, middle right) first to produce
normalised, probability like outputs between 0 and 1. Given a target
model size constraint (e.g. average 4-bit precision), the KL metric
for each precision setting of each layer is computed and minimized
to select the optimal local bit-width while satisfying the constraint1

4.2. Curvature Based Mixed Precision Quantization

The second approach minimizes the performance sensitivity to quan-
tization by examining the local training data SI-SNR separation er-
ror loss function curvature. Under mild assumptions such that the
parameters of a DNN is twice differentiable and while converging

1A minimum 2-bit precision is also enforced for all layers during this
layer by layer quantization precision optimization to filter out invalid set-
tings. Based on the performance sensitivity ranking measured by either the
KL metric of Eqn. (8), or the curvature metric of Eqn. (9), the optimal local
bit-widths combination that is closet to the target average quantization pre-
cision, e.g. 4-bit, while producing the minimum KL or curvature measured
performance sensitivity, will be selected.

to a local optimum, it is shown in [20, 21] that the separation per-
formance sensitivity to quantization, when using a given precision
setting, can be expressed as the squared quantization error further
weighted by the parameter Hessian matrix trace. For any quantiza-
tion f(·) being applied to the parameters Θ of the L-layer Conv-
Tasnet separation model, the total performance sensitivity is given
by the sum of Hessian trace weighted squared quantization error, to
be minimized under a target model size constraint.

ΩHes =

L∑
i=1

ΩHes
i =

L∑
i=1

Tr(Hi) · ||f(Θi)−Θi||22 (9)

Direct computation of the Hessian matrix H l
i,j =

∂(LSI−SNR)

(∂Σl
i∂Σl

j)
re-

quired in Eqn. (9) is not computationally feasible for large DNNs,
for example, the Conv-Tasnet speech separation models considered
in this paper that contain millions of parameters. To this end, an ef-
ficient stochastic linear algebra approach based on the Huchinson’s
Algorithm [40] is used to approximate the Hessian matrix trace with-
out explicitly computing the Hessian matrix itself.

Tr(H) ≈ 1

m

m∑
i=1

z>i Hzi (10)

where the matrix multiplication between H and zi can be avoided,
and efficiently computed using Hessian-free approaches [21]. zi is
a random vector sampled from a Gaussian DistributionN (0,1).

4.3. Architecture Search Based Mixed Precision Quantization

The third solution to automatically learn the optimal local quanti-
zation precision settings is to use mixed precision based neural ar-
chitecture search (NAS) [41, 42] approaches. The super-network is
constructed by first separately training the speech separation system
using uniform precision, e.g. 2-bit, 4-bit, 8-bit and 16-bit, before
connecting these uniform precision quantized models at each layer.

In order to avoid the trivial selection of the longest, most gener-
ous quantization bit width, these precision selection weights learning
can be further constrained by a model complexity penalty term with
respect to the number of bits retained after quantization, in order to
obtain a target average quantization precision, for example, 4-bit,

ΩNAS = LSI−SNR(Θ) + β
∑
(n,l)

aln ·
√
n (11)

where LSI−SNR(Θ) is the scale-invariant signal to noise ratio (SI-
SNR) objective function. aln denotes the architecture weights using
n-bit quantization for the l-th cluster of weight parameters. β is a
scaling factor empirically set as 0.5 in all experiments of this paper.
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Table 1. Performance of the baseline full precision, uniform precision quantized and mixed preciison quantized TF-masking based speech
separation systems with local precision settings automatically learned from HES/KL/NAS introduced in section 4 on LRS3-TED corpus. WERs
measured both on average and across subsets of test data with varying between speaker angles from 0-15 to 90-180 degrees. ?, † and ‡ denote
no statistically significant WER difference obtained over baseline systems (sys.1,3,4). Evaluation time in seconds per hour of speech.

Sys quant. param. prec. quant. #bit SI-SNR(PESQ) WER(%) model eval. time
prec. estim. set method 0-15 15-45 45-90 90-180 0-15 15-45 45-90 90-180 avg. size(MB) (sec./hour)

1 baseline 32 7.13(2.65) 10.22(3.01) 10.94(3.10) 10.83(3.10) 40.55 26.37 23.85 23.82 28.65 35.2 67.79
2

-

2 5.22(2.38) 7.89(2.64) 8.67(2.71) 8.57(2.70) 49.95 37.17 33.25 33.71 38.52 4.6 37.22
3 uniform manual 4 6.43(2.52) 9.05(2.80) 9.86(2.88) 9.62(2.86) 44.88 32.16 29.49 29.86 34.10 6.6 36.54
4 prec. define 8 7.10(2.62) 9.94(2.94) 10.65(3.02) 10.46(3.01) 41.16 28.09 25.16 25.58 30.00? 10.7 36.98
5 16 7.11(2.64) 10.22(3.01) 10.91(3.09) 10.81(3.09) 40.81 26.00 23.95 23.87 28.66? 18.9 54.74
6 Post-training

{2, 4, 8, 16}

Hes 4 6.66(2.56) 9.60(2.89) 10.29(2.96) 10.09(2.95) 42.91 28.90 26.47 27.17 31.36‡ 6.7 44.28
7 Offline 8 7.21(2.65) 10.15(3.00) 10.85(3.08) 10.76(3.09) 40.31 26.50 24.71 24.23 28.94?‡ 10.8 48.99
8 mixed Quant [19] KL 4 6.89(2.59) 9.61(2.89) 10.35(2.97) 10.17(2.96) 42.01 29.49 26.42 26.95 31.22‡ 6.7 43.61
9 prec. 8 7.20(2.65) 10.20(3.00) 10.87(3.08) 10.75(3.08) 40.28 26.62 23.97 23.17 28.51 10.8 47.85

10 NAS 4 6.54(2.54) 9.22(2.83) 9.95(2.92) 9.86(2.90) 44.46 31.00 27.89 28.26 32.90† 6.7 44.47
11 8 7.08(2.61) 10.13(2.99) 10.82(3.07) 10.73(3.08) 41.11 26.63 24.29 24.52 29.14?‡ 10.8 49.10

5. EXPERIMENTS

LRS3 Corpus and overlapped speech simulation: We adopt the
Lip Reading Sentences based on TED videos (LRS3-TED) [43],
which contain both the talking faces and subtitles. The original
LRS3-TED corpus is divided into three subsets: Pre-train, Train-val
and Test set. The 141-hour training data set contains 4320 speakers.
It is constructed by merging the 28-hour Train-val set with an ad-
ditional randomly selected 113-hour data drawn from the Pre-train
set. Details of the simulation process is similar to [25]. A 15-channel
symmetric linear array with noneven inter-channel spacing is used in
the simulation process. Reverberation is also added in the simulated
data by convolving the single channel signals with the Room Impulse
Responses (RIRs) generated by the image-source method. The aver-
age overlapping ratio of the simulated utterances is around 85% and
SIR is around 0dB. The simulated data is divided into three subsets
for training (141h), validation (2h) and evaluation (0.85h).
Implementation details: Details of the IPD, AF features and hyper-
parameter settings of the LF-MMI CLDNN based audio-visual
recognition back-end can be found in [25, 44]. A recognition back-
end is trained on clean speech data. For each TCN block of the sepa-
ration front-end, the number of channels in the 1x1 Conv-layer is set
to 256 for every Dilated 1-D ConvBlock. For all the D-Conv layers,
the kernel size is set to 3 with 512 channels. The implementation
used to evaluate the mixed precision quantization methods of this
paper is based on the existing low-bit quantized precisions that are
already natively supported by the NVidia Tesla V100 GPU. These
include the use of the Boolean and masking operators to implement
1-bit quantization, and the INT8 data type used to implement 2, 4
and 8-bit quantization. In case of 2-bit and 4-bit quantization, extra
padded bits of zero were also included. Uniform precision models
were ADMM [18, 23] pre-trained before local optimal bit-widths are
determined at different layers for mixed precision systems before
they are fine-tunined to convergence. Statistical significance test
was conducted at level ρ = 0.05 based on matched pairs sentence
segment word error (MAPSSWE) for WER performance analysis.
Experiment results: Table 1 presents the SI-SNR, PESQ perfor-
mance and word error rates (WERs) of the baseline full precision,
uniform and mixed precision quantization TF-masking based multi-
channel speech separation systems on the LRS3-TED corpus simu-
lated overlapped speech data. There are several trends can be found.
First, given the same quantization precision, for example, 4-bit,
all the mixed precision quantized models proposed in Section 4,
curvature based HES (sys.6), KL (sys.8) and mixed precision NAS
(sys.10) outperform the 4-bit uniform quantized model (sys.3). The
4-bit and 8-bit HES (sys.6, 7), and KL (sys.8, 9) quantized systems

consistently outperform the uniform precision baseline of compa-
rable bit-widths in terms of SI-SNR and PESQ scores, as well as
WER reductions up to 2.88% absolute (sys.8 vs. sys.3, 8% relative).
Second, among all the mixed precision quantization methods, the
best WER performance for 8-bit quantization is also obtained using
KL (sys.9), producing a compression ratio of 3.3 over the baseline
full precision model (sys.1) and no WER increase, while uniform
precision quantization requires 16-bit (sys.5) to give a similar WER.

The local precision settings of the 4-bit KL mixed precision
quantized system (sys.8, Table 1) is shown in Figure 3, where the
first and last two TCN layers generally require longer precision than
those of the intermediate layers.

Fig. 3. Local #bits used in avg. 4-bit KL mixed precision quantized
separation TCN blocks (Figure 2, centre right in black, also as sys.8
in Table 1). TCN layer indexing m-n denotes mth TCN block’s nth

dilated 1-D ConvBlock, whose 7 sublayers in Figure 1 shown in dif-
ferent colours together with number of parameters in brackets. ”m-
n to p-q” denote consecutively positioned layers using same #bits.

6. CONCLUSIONS
This paper presents novel mixed precision quantization methods
for TF-masking based overlapped speech separation systems. Lo-
cal precision settings are automatically learned to provide better
trade-off between speech separation model compression ratio and
performance loss. Experiments conducted on the LRS3-TED cor-
pus suggest mixed precision quantization consistently outperform
uniform precision quantization using comparable bit-widths. Fu-
ture researches focus on improving hardware implementation and
integration with back-end speech recognition systems.
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