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ABSTRACT

Automatic speech recognition (ASR) of overlapped speech remains
a highly challenging task to date. To this end, multi-channel micro-
phone array data are widely used in state-of-the-art ASR systems.
Motivated by the invariance of visual modality to acoustic sig-
nal corruption, this paper presents an audio-visual multi-channel
overlapped speech recognition system featuring tightly integrated
separation front-end and recognition back-end. A series of audio-
visual multi-channel speech separation front-end components based
on TF masking, filter&sum and mask-based MVDR beamforming
approaches were developed. To reduce the error cost mismatch be-
tween the separation and recognition components, they were jointly
fine-tuned using the connectionist temporal classification (CTC) loss
function, or a multi-task criterion interpolation with scale-invariant
signal to noise ratio (Si-SNR) error cost. Experiments suggest that
the proposed multi-channel AVSR system outperforms the base-
line audio-only ASR system by up to 6.81% (26.83% relative) and
22.22% (56.87% relative) absolute word error rate (WER) reduc-
tion on overlapped speech constructed using either simulation or
replaying of the lipreading sentence 2 (LRS2) dataset respectively.
Index Terms: Overlapped speech recognition, Speech separation,
Audio-visual, Multi-channel

1. INTRODUCTION

Despite the rapid progress in automatic speech recognition (ASR)
in the past few decades, recognizing overlapped speech remains
a highly challenging task. The presence of interfering speakers
creates a large mismatch against clean speech, which leads to a
significant performance degradation in current ASR systems. To
this end, acoustic beamforming techniques integrating sensor data
from multiple array channels are usually adopted. These approaches
“listen” in the speaker’s direction while attenuate the effects of noise
distortions and interfering speakers. The desired speaker signal is
thereby enhanced. Many state-of-the-art ASR systems have used
microphone arrays, often following a traditional speech enhance-
ment based approach. This splits the overall system into two parts:
speech separation and speech recognition. The separation compo-
nents are often realized using conventional beamforming techniques
represented either by time domain delay and sum [|1,2]] or frequency
domain minimum variance distortionless response (MVDR) [3}14]
and generalized eigenvalue (GEV) [5] approaches. The former uses
generalized cross entropy with phase transformation and Viterbi
search to compute the optimal delay and channel weights, while the
latter maximizes the signal to noise ratio (SNR).

The success of deep learning based speech technologies allows
microphone array channel integration methods to evolve into a wide
range of neural network (NN) based designs. These methods can be
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roughly classified into three categories, i.e. TF masking, filter&sum
and mask-based MVDR or GEV. The neural network (NN) based
TF masking approaches [6l/7] predict spectral time-frequency (TF)
masks that specify whether a particular TF bin is dominated by the
target speaker or interfering sources to facilitate speech separation.
The neural filter&sum approaches directly estimate the beamform-
ing filter parameters in either time domain [8-10] or frequency do-
main [11] before applying these to channel integration to produce
the separated output. The more complicated mask-based MVDR
[12417] and related mask-based GEV [18,|19] approaches compute
the power spectral density (PSD) matrices for the target and over-
lapping speakers using spectral TF masks to obtain the beamform-
ing parameters. The NN based beamforming methods allow tight
integration with the recognition back-end to be more conveniently
implemented [[11},{16{17,{19,20]]. The use of microphone array based
multi-channel inputs can greatly improve the performance of over-
lapped speech recognition. However, the performance gap between
overlapped and non-overlapped speech remains large to date.

Human speech perception is bi-modal in nature. The visual
information is inherently invariant to acoustic signal corruption.
Therefore, the visual modality can be used to improve the recog-
nition performance on overlapped speech. Previous research has
successfully incorporated the visual modality into single-channel
overlapped speech separation [21H23] and recognition [24H26].
Recently, audio-visual multi-channel systems designed for speech
separation have been proposed in [27,/28]. However, there has
been very limited previous research on audio-visual multi-channel
recognition of overlapped speech.

In this paper, we proposed an audio-visual multi-channel over-
lapped speech recognition system featuring tightly integrated sepa-
ration front-end and recognition back-end. First, a series of audio-
visual multi-channel speech separation networks based on TF mask-
ing, filter&sum and mask-based MVDR approaches were developed
respectively. Second, in order to reduce the error cost mismatch
between the separation and recognition components, the two com-
ponents are jointly fine-tuned using the CTC loss function, or a
multi-task criterion interpolation with Si-SNR error cost. Experi-
ments suggest that the proposed audio-visual multi-channel recogni-
tion system outperforms the baseline audio-only multi-channel ASR
systems by up to 6.81% (26.83% relative) and 22.22% (56.87% rel-
ative) absolute WER reduction on overlapped speech constructed
using either simulation or replaying of the LRS2 dataset respec-
tively. To the best of our knowledge, this paper is among the first to
use audio-visual multi-channel integration for the overlapped speech
recognition.

The rest of the paper is organized as follows. Section 2 intro-
duces three neural network based multi-channel integration methods.
Section 3 discusses the audio-visual multi-channel speech separation
networks. The integration of the separation and recognition compo-
nents is discussed in section 4. Experimental results are presented
in section 5. Section 6 draws the conclusions and discuss possible



future directions.

2. MULTI-CHANNEL SPEECH SEPARATION

This section introduces the three multi-channel speech separation ap-
proaches used in this paper, i.e. TF masking, filter&sum and mask-
based MVDR.

2.1. TF masking

The TF masking approaches predict spectral TF masks that specify
whether a particular TF bin is dominated by the target speaker or the
interfering sources to facilitate speech separation. Previous research
has shown that the complex mask (CM) [29] outperforms the real-
value ratio mask (RM) in speech separation and recognition tasks
[20]. Therefore, the CM based TF masking approach is adopted
in this work. The complex spectrum of the separated output y; ¢ is
computed as follows:

Yty = mff *TRtf (D

where ’*’ indicates complex multiplication, z g,y is the reference
channel’s complex spectrum TF bin of the overlapped speech (with-
out loss of generality, we selects R = 1 in this paper), and m3; € C
is the CM of the target speaker. Though the TF masking approaches
can provide perceptually enhanced sounds, there is a shared belief
that the processing artifacts created by the masking are detrimental
to the ASR technology [30].

2.2. Filter&sum

The neural filter &sum approaches directly estimate the beamforming
filter parameters in either time domain [8H10|] or frequency domain
[11] in a fully-trainable fashion. In this work, we adopt a frequency
domain filter&sum approach to produce the separated outputs:

Yif = Zwi,tf * Titf. 2

Where w; ;¢ is the complex value beamforming parameters corre-
sponding to the ith channel.

2.3. Mask-based MVDR

The more complicated mask-based MVDR beamforming approach
[12l|31] has demonstrated state-of-the-art performance in noisy and
overlapped speech recognition [[14-16]. Such approach first uses
deep neural networks to estimate the real-value [[14-16]] or complex
[20] TF mask of the target speech m;, and other interfering sources
my; respectively. The PSD matrices corresponding to each source
are then calculated as follows:
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C! is a complex vector containing the TF bins of all I microphone

array channels. ®% and ®7% represent the PSD matrices of the target

and other interfering sources respectively. The time-invariant beam-

forming filter parameters w? of the target speech are then obtained
by the solution of MVDR beamformer as:
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where u = [1,0,...,0]". Finally, the beamforming filters w? are
used to compute the separated spectrum y; 5 as follows:

yrp = (wi)'ziy. 5)

3. AUDIO-VISUAL MULTI-CHANNEL SEPARATION

This section presents our audio-visual multi-channel speech separa-
tion networks.

Audio inputs: As shown in Figure 1, the complex spectrum of all
the microphone array channels are first computed through short-time
Fourier transform (STFT). The inter-microphone phase differences
(IPDs) [[14], which reflect the time difference of arrival (TDOA), are
also used as input features:

IPDE?j) = (g /Tjer), (6)

where x; ;s represents the i-th channel’s complex spectrum of the
mixed signal at time frame ¢ and frequency bin f, and Z(-) outputs
the angle of the input pair of channel specific TF spectrum. Given
the direction of arrival (DOA) of the target speaker, e.g. by tracking
the speaker’s face from a 180-degree wide-angle camera as shown in
Figure 1, a location-guided angle feature (AF) introduced in [[13,27]]
is adopted to provide the target discriminative information:

Ml (.9
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where e = [cos(-),sin(-)], M is the number of selected micro-

phone pairs, pdglf’") represents the phase delay between ¢th and jth
microphone of a plane wave from direction 6, d;; is the distance
between ith and jth microphone, c is the sound velocity, fs is the
sample rate and F' is the number of TF bins.

Visual inputs: The visual inputs are shown in the pink part of Fig-
ure 1. Considering that the visual modality is invariant to acous-
tic corruption, this paper leverages the visual modality containing
speaker-specific information to improve the estimation of masks or
filter parameters. In this work, a LipNet consisting of a 3D convolu-
tional layer and a 18-layer ResNet is used to extract the lip embed-
dings from the lip region of the target speaker. Such LipNet is first
trained on a lipreading task as described in [[32]. The lip embeddings
extracted by the LipNet are sent into the visual block before being
fused with audio modality.

Modality fusion: In this work, we adopt a factorized attention-
based modality fusion method proposed in our previous work [27]],
which has been proven to outperform the concatenation method.
This method firstly factorizes the mixed audio into a set of acous-
tic subspaces, then leverages the target’s information from the visual
modality to enhance these subspace acoustic embeddings with learn-
able weights. Please refer to our previous work [27] for details.

The outputs of the fusion layer are sent into the fusion blocks
to compute the CM masks or beamforming filter parameters. Figure
1 (a) shows the diagram of the TF masking approach, which esti-
mates the CM mask my, of the target speaker. The diagram of the
filter&sum approach is shown in Figure 1 (b), which estimates the
beamforming parameters w; ;y of several microphone array chan-
nels. The mask-based MVDR approach estimates the masks of the
target and interfering sources simultaneously before feeding into a
MVDR solution layer implementing Eq.(4) and (5), as shown in Fig-
ure 1 (c). The Si-SNR loss function is used to train the separation
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Fig. 1: Ilustration of the proposed audio-visual multi-channel speech separation networks, where z; .y is the complex spectrum of each
channel. (a), (b) and (c) represent three options of channel integration approaches: (a) TF masking: mj, represents the complex mask of
the target speaker, where R(m;;) and I(m;) are the real and imaginary part of the mask respectively; (b) Filter&sum: w; ,; denotes the
beamforming filter parameters of the ith channel; (c) Mask-based MVDR: m;; and m;’ are the complex masks of the target and interfering
sources, @3} and ® are the corresponding PSD matrices, w?} is the time-invariant beamforming filter parameters.

networks. Since dereverberation is beyond the scope of this paper,
the reverberant non-overlapped speech signal is used as the supervi-
sion, following [9,27].

4. INTEGRATION OF SEPARATION & RECOGNITION

Traditionally, the speech separation and recognition components are
developed separately and then used in a pipelined fashion [[12H15].
However, two issues arise with such approach: 1) the cost function
mismatch between separation and recognition components cannot
guarantee the separated outputs target to optimal recognition per-
formance; 2) the artifacts created by separation can increase model-
ing confusion of the recognition component and lead to performance
degradation. According to [[19203334], tight integration of the two
components with joint ne-tuning can address above two issues.

Recognition network: The architecture of our audio-visual speech
recognition (AVSR) network is shown in Figure 2. The lip embed-
dings extracted from the LipNet is concatenated with the log filter
bank acoustic features extracted from the separated waveform. The
concatenated features are sent into the convolutional long short-term
memory deep neural networks (CLDNN) to generate the frame level
mono-phone posteriors. The recognition network is optimized using
the CTC loss function.

Integration of separation & recognition: To tightly integrate the
separation and recognition components, here we investigate three
variants of fine-tuning methods: 1) fine-tuning the recognition sys-
tem only on the enhanced signals; 2) jointly fine-tuning the sepa-
ration and recognition components using the CTC cost function; 3)
jointly fine-tuning both systems using a multi-task criterion, which

Fig. 2: Joint fine-tuning: VLcrc and VLs;—snr represent the
gradients of CTC and SI-SNR loss functions respectively, "LFB”
denotes log filter bank acoustic features.

interpolates the CTC and Si-SNR cost function:
L= Lcrc + alsi_snr, (3)
where o is a manually tuned weight of the Si-SNR loss.

5. EXPERIMENT & RESULTS

5.1. Experiment Setup

Simulated overlapped speech: The multi-channel overlapped
speech used in the system development is simulated using the LRS2
dataset [35]. The simulated dataset is split into three subsets with
12.5k, 4.6k and 1.2k utterances respectively for training, validation
and evaluation. The details of the simulation process is described
in [27].

Replayed overlapped speech: To further evaluate the systems’
performance, 1.2k overlapped speech utterances are recorded in a
meeting room of the size 10mx5mx3m. To generate overlapped
speech, two loudspeakers are used to replay different sentences of
the LRS2 test set simultaneously. The structure of the microphone
array used during recording is the same as that used in simula-
tion. The target and interfering speakers are located at following
directions (15°,30°), (45°,30°), (75°,30°), (105°,30°), (30°,60°),
(90°,60°), (120°,60°), (150°,60°) and the distance between the
loudspeakers and microphones ranges from 1m to 1.5m. The aver-
age overlapping ratio of the replayed overlapped speech is around
80% and SIR is around 1.5dB.

Model architecture: 1) The audio-visual multi-channel separa-
tion network is developed based on the time convolutional network
(TCN) structure [36]]. More details can be found in our previous
paper [27]. In the filter&sum approach, a series of complex linear
layers are used to estimate the filter parameters of each channel
using the fusion block’s outputs. For all filter&sum systems in the
remaining part of this paper|’| filter parameters are estimated using
only the first and eighth channels. 2) The recognition network starts
with four 2-dimensional convolutional layers with channel sizes (64,
64, 128, 128) and kernel size 3x3 followed by four 1280 hidden units
BLSTM layers and one softmax layer. The language model (LM)
used in recognition is a 4-gram LM developed on 2.33M words

! Adding more channels up to 15 microphones produces limited improve-
ment for filter&sum systems, while increasing the computational cost.



of transcripts of LRS2 training and pretrain set. 3) In multi-task
fine-tuning Eq.(8), « is set to 0.1 for TF masking approach and 1 for
filter&sum and mask-based mvdr approaches.

Features: 1) For the separation networks, 257-dimensional complex
spectrum are used, which are extracted with a 32ms window and
16ms frame rate. The AF and IPDs are extracted between 9 micro-
phone pairs (1,15), (2, 14), (3, 13), (1, 7), (12, 4), (11, 5), (12, 8), (7,
10), (8, 9). These pairs are selected to sample different spacing be-
tween microphones [7,27]]. The ground truth direction 6 of the target
speaker is used during training and evaluation. 2) For the recognition
network, 40-dimensional log filter bank features are used, which are
extracted using a 40ms window and 10ms frame rate. 3) For visual
inputs, we crop the already centered visual frames to 112 by 112
pixels and up-sample them to align with the audio frames via linear
interpolation.

5.2. Recognition results on non-overlapped speech

Table 1 presents the WER results of our CLDNN based ASR and
AVSR systems on non-overlapped speech in anechoic and simulated
reverberant environments. Since we are not aiming for dereverber-
ation in our overlapped speech recognition systems, the WER on
reverberant non-overlapped speech (last line) can be viewed as an
upper bound for all subsequent experiments on overlapped speech.

Table 1: Performance of ASR and AVSR systems on echo free and
reverberant non-overlapped speech.

Data System | WER (%)
. ASR 11.04
Anechoic non-overlapped speech AVSR 977
ASR 15.33
Reverberant non-overlapped speech ‘ AVSR ‘ 13.93

5.3. Audio-only vs. audio-visual systems

The performance of the audio-only and audio-visual overlapped
speech recognition systems trained using simulated overlapped
speech is shown in Table 2. All the multi-channel systems (line 3-
10) are jointly fine-tuned using the CTC loss function. Several trends
can be observed in Table 2. 1) The first block (line 1-2) in Table 2
presents the recognition performance of monaural ASR and AVSR
systems without using microphone array and explicit speech separa-
tion components. For these very simple systems, simply adding the
visual modality in the recognition network can approximately halve
the WER, which confirms the findings in our previous research [25].
2) The second block (line 3-6) of Table 2 shows the results of the
multi-channel audio-only systems. “Delay & Sum” means applying
frequency domain delay and sum beamforming approach using the
steering vector computed by the given array structure and ground
truth DOA, as described in [1]. Compared with the monaural ASR
system (line 1), the multi-channel speech separation components
can significantly improve the systems’ performance by up to 49.98%
(comparing line 1 & 6 on simu) absolute WER reduction. However,
there is a large performance gap (around 13%) between simulated
and replayed data using NN based multi-channel audio-only systems
(line 4-6). 3) The performance of the proposed audio-visual multi-
channel overlapped speech recognition systems is shown in the third
block (line 7-10) of Table 2. Comparing the results of audio-visual
and audio-only multi-channel systems, it can be seen that leveraging
visual modality in both separation and recognition components can
reduce the WER ranging from 6.81% (comparing line 6 & 10 on
simu) to 28.72% (comparing line 4 & 8 on replay). Moreover, the
performance gap between the simulated and replayed overlapped
speech is much smaller compared to that on the audio-only systems,

which suggests that the proposed audio-visual multi-channel speech
recognition systems are more robust.

Table 2: Performance of audio-only and audio-visual overlapped
speech recognition systems using various channel integration meth-
ods. The separation and recognition components are jointly fine-
tuned using the CTC loss. ”AF” denotes angle feature, “raw” de-
notes raw signal of the first channel.

‘ Separation | Recognition |  WER(%)

\ method [ AF | +visual | +visual | simu | replay
1 raw X 7536 | 80.55
2 raw v 32.06 | 31.93
3 | Delay & sum v X X 49.25 | 44.34
4 | TF masking v X X 33.12 | 46.75
5 | Filter & Sum v X X 30.24 | 43.83
6 Mask-based MVDR v X X 25.38 | 39.07
7 | Delay & Sum v X v 25.81 | 24.46
8 | TF masking v v v 19.25 | 18.03
9 Filter & Sum v v v 17.21 19.87
10 | Mask-based MVDR v v v 18.57 16.85

5.4. Comparison of different fine-tuning approaches

The results of different fine-tuning approaches are listed in Table 3.
The first line shows the baseline systems using the CTC loss func-
tion to fine-tune the recognition components only while keeping the
parameters of the separation components fixed. Jointly fine-tuning
the separation and recognition components using the CTC loss func-
tion (line 2) can improve the systems’ performance by 0.4% to 5.2%
WER reduction. The best results are obtained using a multi-task in-
terpolation between the CTC and Si-SNR cost function to fine-tune
the entire systems (last line).

Table 3: Performance of different fine-tuning approaches of audio-
visual multi-channel speech recognition systems.

Fine-tuning TF masking  Filter&sum MVDR
Sep.  Recg. Loss simu/replay  simu/replay  simu/replay
X v Lcrc 229232 19.2124.1 19.3/17.3
v v Lcre 19.3/18.0 17.0/19.9 18.9/16.9
v v Lore +alsi—SNR 18.6/18.0 16.1/19.2 18.4/16.9

6. CONCLUSIONS & FUTURE WORK

This paper presents an audio-visual multi-channel overlapped speech
recognition system with tightly integrated separation front-end and
recognition back-end. Three multi-channel integration approaches,
i.e. TF masking, filter&sum and mask-based MVDR are investigated
in the system development. The experiment results suggest that: 1)
using visual modality can improve the systems’ performance and ro-
bustness; 2) jointly fine-tuning the separation and recognition com-
ponents can tightly integrate the two components for better speech
recognition performance. In the future, this work will be extended
to: 1) performing separation and dereverberation simultaneously in
the separation front-end; 2) applying to more challenging applica-
tions, such as the situation when both the visual and audio are de-
graded; 3) investigating other separation and recognition architec-
tures.
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