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ABSTRACT
Conversational agents (CAs) have the great potential in mitigating
the clinicians’ burden in screening for neurocognitive disorders
among older adults. It is important, therefore, to develop CAs that
can be engaging, to elicit conversational speech input from older
adult participants for supporting assessment of cognitive abilities.
As an initial step, this paper presents research in developing the
backchanneling ability in CAs in the form of a verbal response to
engage the speaker. We analyzed 246 conversations of cognitive as-
sessments between older adults and human assessors, and derived
the categories of reactive backchannels (e.g. “hmm”) and proac-
tive backchannels (e.g. “please keep going”). This is used in the
development of TalkTive, a CA which can predict both timing and
form of backchanneling during cognitive assessments. The study
then invited 36 older adult participants to evaluate the backchan-
neling feature. Results show that proactive backchanneling is more
appreciated by participants than reactive backchanneling.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI;
Auditory feedback; Empirical studies in interaction design; Sound-
based input / output.
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1 INTRODUCTION
The rapidly ageing global population is imposing challenges to
healthcare systems across nations [64]. Neurocognitive disorders
(NCD), such as dementia, are particularly common in older adults
[4]. The global cost of NCD exceeded the threshold of US$1 trillion
in 2018 [70]. In Hong Kong, the estimated cost of institutional and
informal care for older adults with NCD in 2036 is HK$31.2 billion
(US$4 billion) [104]. Besides leading to an enormous financial bur-
den on the society, NCD has a negative impact on the quality of
life of older adults, their families, and caretakers, as well as on the
workload of clinicians [70]. To look on the bright side, the negative
symptoms associated with NCD have been shown to be controllable
if patients can get access to early diagnoses and timely preventive in-
terventions [2, 21]. This presents a necessity for a scalable approach
in screening cognitive impairments among older adults. Current
NCD screening and diagnosis tests, such as the Montreal Cognitive
Assessment (MoCA) [60], are mainly conducted as in-person tests
by clinical professionals [89, 100]. In-person assessments face limi-
tations due to various factors, such as limited accessibility to the
tests due to the lower mobility of some older adults, and shortages
and inter-rater variabilities of clinicians [50].

To overcome these limitations, researchers are working on alter-
native solutions for NCD screening. Since NCDs are often mani-
fested as communicative impairments, machine learning (ML) al-
gorithms are offering a new type of support for NCD screening
[3, 13, 22, 38, 47, 55, 56, 66, 72, 97, 100]. Therefore, a potential so-
lution is to integrate speech analytics into a conversational agent
(CA) to support highly accessible voice-based web applications
that can interact with older adults through spoken language for
screening NCD. Older adults can easily access web applications,
which can collect their conversational speech data automatically,
inexpensively and longitudinally. This opens up the possibility of
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detecting subtle changes in an individual’s cognitive abilities over
time, to enable early detection of cognitive decline. Such interactive
web applications may be able to engage older adults throughout
the process of cognitive assessments, e.g. in responding to a se-
ries of questions from the CA, or performing a set of requested
tasks. In particular, older adults experiencing cognitive decline may
need special responses from their interlocutors, such as “elders-
peak” [36]. To fulfill this requirement of communicating with older
adults effectively, we may reference the inter-personal communica-
tion strategies adopted by expert assessors who are well-trained
health professionals in engaging participants as they conduct cog-
nitive assessments. Backchanneling is one of such strategies that
is proven to be effective [35, 99]. Backchanneling refers to verbal
responses such as “uh-huh” or “hmm”, non-verbal responses such
as nodding, smiling and gesturing, as well as both verbal and non-
verbal responses simultaneously given by the listener when his/her
counterpart is speaking [7, 9, 12, 73]. As a form of basic human in-
teraction [29], backchanneling is displayed to show the engagement
of the listener and to encourage the speaker to continue speaking
without interrupting him/her. The importance of backchanneling
has been stated in previous works such as showing understand-
ing and engagement to the speakers [6, 30, 73], and establishing
empathy between speakers and listeners [78].

In addition, previous work have also discussed the proactive
characteristics of backchanneling. It has been shown that com-
prehension and production can co-exist in conversations [15]. In-
stead of only being passive recipients of information with reactive
backchanneling, listeners can play an active role in a conversa-
tion as co-narrators [6]. In other words, listeners can give proactive
backchanneling such as “please keep going”. Ortega et al. [65] briefly
discussed how to build a proactive listening system using backchan-
nels to influence speakers, which is the first to model backchannel-
ing from a proactive perspective. However, concrete definitions and
methodologies of conducting proactive backchannels specific to
the conversational context are largely missing in previous studies.
To fill in this gap, we define two kinds of backchannels, reactive
backchannels (RBCs) and proactive backchannels (PBCs), based on
the theories of reactive and proactive backchanneling [65]:

• Reactive backchannels (RBCs): The listener responds to the
previous speaker’s utterance directly to show agreement or
understanding without intending to take the floor. The re-
sponse is generic (context-independent) and optional, thereby
poses minimal interruption, i.e. the speaker does not need to
wait for the response as he/she continues to speak. The re-
sponse may serve as acknowledgement or assessment. Most
RBCs are non-lexical; examples are “hmm”, “oh”, “yeah”.

• Proactive backchannels (PBCs): The listener responds to the
speaker to encourage the speaker to continue speaking with-
out the intent to take the turn. This kind of response is also
optional. The response might have more lexical words com-
paredwith RBC. Examples are “please keep going”, “anything
else?”.

Based on the definitions of RBCs and PBCs, we aim to inves-
tigate their roles in engaging older adults in conversations with
CAs to complete NCD screening tasks. Few previous studies have
discussed task-based backchanneling, or potential opportunities in

adaptive backchanneling depending on tasks and participants. To
the best of our knowledge, this study may be one of the earliest
to study backchanneling for older adult participants in a cogni-
tive assessment context. Besides, the backchanneling behaviors
have been proven to be language-dependent and culture-related
[14, 17, 29]. To explore the potential for studying backchanneling
in low-resource languages, we developed technology to support
Cantonese speakers. Cantonese is a predominant Chinese dialect
used in Hong Kong, and spoken by over 80 million native speakers
worldwide [20]. To the best of our knowledge, this is also one of the
first efforts that studies backchanneling in Cantonese. This prompts
us to ask two research questions (RQs):

• RQ1: When do reactive and proactive backchannels happen
in a task-driven conversationwith older adults in Cantonese?

• RQ2: How do reactive and proactive backchannels provided
by a task-oriented CA affect its conversation with older
adults in Cantonese?

To answer these RQs, we first derived empirical patterns of how
expert assessors provide RBCs and PBCs in real-world task-oriented
NCD screening conversations, by analyzing 246 audio recordings
of MoCA test conversations between older adult participants and
assessors. Based on the results of this analysis, we developed data-
driven ML models to predict proper timing for NCD screening CAs
to deliver RBCs and PBCs, trying to mimic human strategies. Next,
we built a proof-of-concept, backchanneling-enabled CA system
called TalkTive, and conducted a between-subjects user study to
evaluate older adults’ perception of our system inMoCA test conver-
sations, in comparison to a baseline systemwithout backchanneling.
A timeline of research activities presented in this paper is shown
in Figure 1.

Our main contributions include: 1) developing a backchannel-
ing algorithm to provide RBCs and PBCs with high performance,
2) generating automatic backchannels that offers a positive user
experience for older adults, and 3) identifying the type of backchan-
neling (reactive versus proactive) and discovering that older adults
are more receptive to RBCs than PBCs.

2 RELATEDWORK
2.1 Conversational Agents in Healthcare

Support for Older Adults
In face of an ageing global populations, it becomes increasingly
important to develop technologies that offer scalable support for
older adults, as well as alleviate the pressures of caregiving in the
society. Related research has also attracted growing interests in
the HCI community, e.g. [16, 27, 45, 48, 57, 94]. One of the main
focuses of these HCI studies is to explore potential technological
solutions that may reduce the expensive medical costs and enable
older adults to manage their own care with greater independence
[94], such as providing accessible health monitoring and disease
screening solutions [18, 19, 39, 44, 46, 68]. Among various emerging
and evolving technologies, conversational agents (CAs), defined as
“systems that mimic human language and behavior to implement
certain tasks for the user via a chat interface, either text-based
or voice-based” [1], has unique advantages in healthcare surveys
and disease screening tasks. Recent research in the adoption and
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Figure 1: A timeline of research activities presented from November 2020 to September 2021.

perception of CAs by older adult users show positive results [40,
84, 105, 106]. Moreover, it has been proven that patients are more
willing to share personal information with virtual therapists than
human therapists [49]. Applying CAs to support caregiving to older
adults also draws recent attention of the CHI community, resulting
in a Special Interest Group (SIG) discussion in CHI 2020 [84].

However, adopting CAs to support healthmonitoring and disease
screening is a relatively new trend [37]. For example, while tablet-
based applications have been developed to assist clinicians to run
tests for neurocognitive disorders (NCD), e.g. MoCA App 1, to the
best of our knowledge, CAs for NCD tests have not yet been well-
studied. Many open problems related to this domain of application
exist [37], e.g., how to make the CAs can “behave” more like a
human as it converses with the user [34, 84], as well as how age
may impact the user experience in interacting with these CAs
[37, 75, 93].

2.2 Handcrafting Backchanneling Rubrics
The term “backchannel” was coined and defined as the messages
delivered by listeners in a conversation, without the intent to
take a turn [102]. Bangerter and Clark [5] defined a backchan-
nel as a listener’s response that happens during the speaker’s turn,
without taking a separate turn. More recently, researchers catego-
rized backchannels along different dimensions, namely, by content
(non-lexical, phrasal or substantive) [33], by function (backward-
looking or forward-looking) [96], by relation to the speaker’s ut-
terance (generic backchannels/assessments or specific backchan-
nels/continuers) [6, 25, 79, 88] and by proactivity (reactive or proac-
tive) [91].

From the perspective of proactivity, researchers studied the pas-
sive characteristics of backchanneling according to the unilateral
view of conversations, which may also be referred to as “reactive
tokens” [14, 103] or “response tokens” [24]. This perspective is
known as the reactive backchanneling theory [91]. On the contrary,
other researchers started to study the listener’s active participa-
tion in the development of a conversation, which also extends to
backchanneling [6, 10, 15, 61–63] – these studies form the proac-
tive backchanneling theory [86]. We referenced these studies in
stating the definition of reactive backchannels (RBC) and proactive

1https://www.MoCAtest.org/app/

backchannels (PBC) in the introductory section. Table 1 shows the
connection between proactive perspective and other perspectives.

Research studying human backchanneling behaviors started
with handcrafting rubrics for generating backchannels [95, 96].
Subsequent research referred to the speaker’s utterances that trig-
ger backchannels as “backchannel-inviting cues” [26]. Commonly
known backchannel-inviting cues are acoustic features, such as
pause and pitch (falling or rising slope) [26, 65, 92]. There may also
be linguistic features such as a final Part-of-Speech bigram in “DT
NN”, “JJ NN” or “NN NN” [26]. Prosodic and linguistic features are
usually combined to achieve a better result if manual transcrip-
tion or transcriptions from automatic speech recognition (ASR) is
available [26]. Visual cues such as gaze have also been taken into
consideration [74]. Research interests in studying user experiences
in rule-based backchanneling have expanded from a target audience
being adults to specific age groups such as kids [69].

2.3 Model-based Backchanneling using
Machine Learning Algorithms

Model-based backchanneling approaches divide the task into two
parts: prediction and action, referring respectively to the prediction
of opportunities for backchanneling from observing the speaker’s
behaviors and choosing the appropriate type of backchanneling
[73]. Previous studies formulated the problem in different ways,
e.g., focusing on prediction and choosing the same backchannels
[34]; bundling multiple binary classifiers to predict different types
of backchannels and giving corresponding actions [35]; training a
multi-class classifier to predict and act at the same time [35]. Various
machine learning algorithms have been applied, such as locally
weighted linear regression [87], Hidden Markov Model (HMM)
[58, 59], Support Vector Machines [52], Long Short-Term Memory
networks [28, 34, 77, 78] and hybrid time-delay neural network
(TDNN)/HMM system [65].

Feature engineering is another important component for ML-
based methods. Similar to the acoustic backchannel cues in rubric
methods, prosodic features are commonly used as model inputs.
Prosodic features includeMel-FrequencyCepstral Coefficients (MFCC),
pitch (fundamental frequency), energy, speaking pause (voicing
probability) and pitch/power contour [34, 65]. Besides, fundamen-
tal frequency variation (FFV) , duration, Spectral Flux, and voice
quality-related features could be taken into consideration as well
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Proactivity Content Context Function Description
Reactive Non-lexical Generic Vocalic sounds that have little or no referential meaning

Backward- e.g. “mm hm”, “uh huh”, “yeah”
Phrasal looking Lexical expressions of acknowledgment and assessment

Proactive Specific e.g. “really?”, “I see”, “I know”, “good”, “fine”, “okay”
Substantive Forward- Follow-up questions or encouragements to ask the speaker

looking to talk more e.g. “Anything else?”, “Keep going”
Table 1: Comparison among various categorizations of backchanneling: Proactivity, Content, Context (relation to previous
speaker’s utterance) and Function [6, 25, 33, 79, 88, 91, 96].

[76, 78]. Currently, more comprehensive feature sets are avail-
able, such as the ComParE feature set [98], which is a growing
set of acoustic features (6,373 in total) [98]. ComParE has been
widely used in various acoustic recognition tasks, including emo-
tion [80, 83], speaker [82], eating condition [81] and Alzheimer’s
disease detection [47]. This work is the among the first to adopt
the ComParE features set for backchanneling prediction.

3 DATA ANALYSIS
To address the first research question – “RQ1: When do reactive
and proactive backchannels happen in a task-driven conversation
with older adults in Cantonese?”, we tried to learn from real-world
conversations between older adults and trained assessors – We an-
alyzed a dataset of Montreal Cognitive Assessment (MoCA) record-
ings based on older adult participants having a conversation with
human assessors. This MoCA dataset was collected by 6 experi-
enced clinicians (5 females and 1 male) in 2 years, from June 2015 to
July 2017. It included 246 Cantonese conversations between trained
assessors and older adult participants (171 males and 75 females),
each being approximately 30 minutes in duration, and with hand
transcriptions aligned at the word-level with speech. The scale
of this dataset was comparable with some of the largest datasets
used for backchanneling studies, such as SwDA [65, 77, 78]. Partici-
pants in this MoCA dataset were aged between 77 and 94, with an
average age of 82.9. Data analyses strictly followed the project’s
Institutional Review Board (IRB) approval to protect the privacy of
participants. The tasks that participants performed in the MoCA
dataset were listed in the Supplementary Material I.

3.1 Coding Process for Backchannels
To code the assessors’ backchannels in this dataset, we followed
these three steps:

(1) Inspecting the transcripts and identifying “backchannel words”
related to reactive backchannels (RBC) and proactive backchan-
nels (PBC). Similar methods of labeling backchannels in the
corersponding textual transcripts had been used in previous
work [78],

(2) Developing a coding scheme based on RBCs and PBCs, and
improving inter-rater reliability (IRR) of that coding scheme,
and

(3) Building rubrics to auto-coding backchannels on the whole
MoCA dataset based on the coding scheme and the ground
truth coded by human coders.

First, Researcher A with full professional proficiency in Can-
tonese inspected all the assessors’ utterances of 110 conversa-
tions, with 15,455 unique utterances in total. The goal was to find
“backchannelingwords”whichmight be candidates of backchannels,
such as “hmm” and “right”. Researcher A followed the definition
of backchannels as “not occuring in separate turns, but during the
speaker’s turn” [5] to identify utterances that encouraged the par-
ticipant to talk more without interruption. The inspection resulted
in 11 RBC words and 12 PBC phrases (see examples of RBCs and
PBCs in Figure 2). Then Researcher A developed a coding scheme
(see Table 2) – If the assessor’s utterance was not considered as a
backhannel, it would be coded as 0. Researcher A shared the coding
scheme with Researcher B, and both started to code the backchan-
nels on the word-level aligned transcripts of four conversations
from the MoCA dataset.

Coding 4 conversations were divided into 2 rounds, with 2
conversations in each round. After the first round of coding, Re-
searchers A and B reviewed all the codes and discussed inconsistent
codes, finalized the ground truth and refined the coding scheme,
and then conducted a second round of coding. Besides the content
categorizations of backchannels, rubrics for coding the assessors’
backchannels were also developed:

• (R1) A backchannel should follow an utterance of the partici-
pant (which included an utterance followed by a long pause),
or a previous backchannel from the assessor.

• (R2) A backchannel should indicate that the assessor in-
tended to hear from the participant instead of taking a turn
turn.

• (R3) It did not matter whether a backchannel was followed
by an utterance (successful backchanneling) or not (unsuc-
cessful backchanneling).

• (R4) If some information was included in the backchannel, it
should be intuitive andminimal given the interaction context,
e.g. “minus”, “aunt”.

The results of two rounds of coding are reported in Table 3. The
IRR (Cohen’s Kappa) between Researchers A and B for the second
round of coding was 0.803, which showed substantial agreement
between coders [42]. After resolving the mismatches in these two
rounds of coding, we obtained the ground truth of the backchannels
in those conversations.

Given the large volume of assessors’ utterances in the MoCA
dataset, we tried to develop a rubric-based method to code the
backchannels in 246 conversations automatically. Below are the
rubrics we used to auto-code RBCs and PBCs.
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Figure 2: Examples of reactive backchannels (RBCs) and proactive backchannels (PBCs) from the MoCA dataset. The partic-
ipant was conducting 1-min verbal fluency task, trying to say as many vegetable/fruit names as possible within one minute
and receiving RBCs and PBCs from the assessor.

Category Code Definition Examples
RBCs 1 Reactive backchanneling to show oh, hmm, ah

understanding and agreements
PBCs 2 Proactive backchanneling to encourage keep going,

the speaker to speak more anything else
Table 2: Coding scheme based on categorization of content in backchanneling.

# of Utterances # of Backchannels Coded # of Consistent Codes (%) IRR (Cohen’s kappa)
Round 1 588 A: 46; B: 36 563 (95.7%) 0.676
Round 2 544 A: 29; B: 35 53 (97.8%) 0.803

Table 3: Results of two rounds of coding backchannels.

Rubrics to auto-code RBC:

• (RBC-R1) only one word in the RBC words, e.g. “hmm”, “oh”,
“uh”, “ah”, “huh”;

• (RBC-R2) at least 1000ms after the assessor’s previous utter-
ance and 1000ms before assessor’s next utterance.

Rubrics to auto-code PBC:

• (PBC-R1) at most 8 words (the longest PBC phrase has 3
words), including PBC phrases e.g. “keep going”, “next”, “un-
derstand”, “great”, “awesome”, “no rush”, “anything else”;

• (PBC-R2) at least 1000ms after the assessor’s previous utter-
ance and 1000ms before assessor’s next utterance.

The lists of RBCwords and PBC phraseswith English translations
provided in Supplementary Material II. The reason for adding RBC-
R2 and PBC-R2 was to guarantee that the utterance was not a part
of a longer utterance such as “Hmm...time is up”, which might
involve taking a turn. Our auto-coding scheme achieved substantial
agreement with the ground truth (Cohen’s kappa = 0.774) [42]. We
used these rubrics to code all the assessors’ utterances in the MoCA
dataset, resulting in 2,732 RBCs and 2,037 PBCs.

3.2 Insights from Data Analysis
As stated in RQ1, we aimed to study the timing of backchannel-
ing in task-oriented conversations. We planned to analyze coded

backchannel occurrences to gain insights from real assessors’ behav-
iors. To understand the timing of RBCs and PBCs after participants’
speech utterances, we first drew a boxplot to show the distribu-
tion of time intervals between the end of participants’ previous
utterance and the beginning of backchannel (see Figure 3).

In Figure 3 we observed that assessor’s RBCs tended to have
shorter time interval and much smaller variance than those of the
PBCs (t = 26.18, p << 0.01, after removing outliers over 2 SDs).
This indicated that that RBCs were likely to occur after a certain
duration of pausing that followed the participants’ speech. In com-
parison, PBCswere likely to occur significantly later, and hence they
did not serve as an immediate response to the speaker utterance.
This observation aligned with our definition of RBCs – that they
were generic and independent of other factors such as contextual
information (e.g., the task, participant, etc.), and the timing of RBCs
after the pauses were relatively stable (M = 178.2, SD = 1335.7).
As for PBCs, their timing after the pauses were much longer with
a larger variance (M = 1285.1, SD = 2371.9), which might reveal
that there were factors other than pause duration that affected the
timing of PBCs. Hence, we inspected the distribution of PBCs ac-
cording to three other factors: within-task progress, between-task
differences, and between-participant differences, and summarized
our observations according to possible elements that might affect
how proactive the human assessors may give PBCs.
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Figure 3: The assessor’s PBCs may begin after a longer time interval from the end of the previous participant’s utterance, as
compared with the assessor’s RBCs. The time interval may also be negative, which implies an overlap with previous partici-
pant’s utterance.

(a) (b) (c)

Figure 4: The number PBCs given by expert assessors varied along 3 dimensions: within task (a), between tasks (b) and between
subjects (c). Plot (a) describes the distribution of PBCs throughout the progress of the 1-min verbal fluency tasks, Plot (b) de-
scribes the distribution of time intervals and Plot (c) describes the distribution of the number of PBCs received by participants.

3.2.1 Within-task differences in PBCs given by expert assessors. We
first investigated the timing of PBCs as a task progresses – Figure 4a
plotted the distributions of PBCs among all the 1-min verbal fluency
tasks. We observed that assessors gave more PBCs halfway into the
task, and then the number fell before the task ended. One potential
reason may be that the participant ran out of answers later in the
task and assessor tried to use more PBCs for encouragement, while
the assessor also noted the time limit and tended to give fewer
PBCs when there were only a few seconds remaining. These results
showed that assessors may vary their proactive levels dynamically
according to task progression.

3.2.2 Between-task differences in PBCs given by expert assessors.
We noticed the differences in the PBCs given across tasks in the
MoCA tests. Considering the number of PBCs given, we identified
three major types of tasks: Type I) tasks requiring a one-off response,
where no PBCs were given, e.g., “please repeat the sentence. . . ”;
Type II) tasks requiring a series of responses in a given time, where
several PBCs may be given, such as the 1-min verbal fluency task
“please say as many animal names as possible in one minute”, and
the serial 7 subtraction task “please use 100 minus 7, and continue to
subtract 7”; and Type III) tasks requiring open-ended self-disclosure,
where few PBCs may be given, e.g., “where is your favorite place
and why”.

Even for the same type of tasks, such as the 1-min verbal fluency
task and the serial 7 subtraction task, both of which required a
series of responses from participants, there existed differences in the
duration of tolerated silence before a PBC was given (see Figure 4b).

Most PBCs for the serial 7 subtraction task occurred within 1 second
after participants’ previous answer, while for the 1-min verbal
fluency task, the corresponding interval could be as long as 10
seconds. A possible explanation may be due to the level of difficulty
of the task. For MoCA, many older adult participants stated that
the serial 7 subtraction task was quite difficult for them. The expert
assessors were mindful of the level of task difficulty and tended
to give more PBCs to encourage the participant for more difficult
tasks.

3.2.3 Between-participant differences in PBCs given by expert asses-
sors. Figure 4c shows the total number of PBCs received by each
participant in the MoCA dataset. Although each participant was
asked to conduct the same set of tasks, the counts of PBCs received
per person varied substantially from 0 to 24. This result suggested
that there existed between-participants difference in how expert
assessors gave PBCs.

4 METHODOLOGY OF BACKCHANNELING
Given the difference in functions and timing between reactive
backchannels (RBCs) and proactive backchannels (PBCs), we devel-
oped two different models to generate these two kinds of backchan-
nels. This section describes the models and discusses how they
are integrated into a functional backchanneling system. To give
an overview, when a speaking interval was detected, the previous
speaking utterance followed by this interval would be segmented.
Then, the speaking utterance was fed into OpenSmile feature ex-
tractor to obtain selected ComParE features, and those features



TalkTive: A Conversational Agent Using Backchannels to Engage Older Adults CHI ’22, April 30–May 06, 2022, New Orleans, LA

were used by the trained SVM model to make RBC predictions. For
PBC prediction, three scores were independently calculated and a
weighted sum of those scores was used to trigger PBCs. Participant
Score was calculated by passing the speech of the exact same sen-
tences to SVM model. In a certain task, Progress Score was updated
as the task was going on, and when speaking interval occurs, Pause
Score would be calculated as the length of pauses at that time stamp.
The pipeline of processing speech data is illustrated in Figure 5.

4.1 Reactive Backchanneling Algorithm
Since RBCs usually follow the previous speaker’s utterances as
a direct signal of understanding or agreement [91], we pose the
problem of finding RBCs as a binary classification problem – Given
a speaker’s utterance, the RBC prediction model will make deci-
sion regarding whether the utterance contains the backchanneling
acoustic cues [65] to trigger an RBC. Building on this definition,
we investigated and compared multiple features and models, then
proposed a method leveraging the ComParE feature set, a LASSO-
based feature selection algorithm, and SVM classifier to predict
RBCs.

4.1.1 Feature Engineering. Instead of using existing features from
other languages and dialects, we performed feature engineering
to retrieve appropriate features from Cantonese utterances, since
backchanneling features are largely affected by languages and cul-
tures [14, 17, 29]. As introduced in 2.3, dominant acoustic features
are extracted based on the ComParE feature set [81, 83], for trig-
gering backchanneling, and all the spoken interactions were in
Cantonese.

A LASSO-based algorithm was used to perform feature selection
and reduce feature dimensions. The algorithm utilized L1 penalty on
linear regression models to force the model to have a sparse weights
distribution, by which the features with non-zero weights are se-
lected. We noticed that the selection process was sensitive to the
random initialization parameters. Hence, we further applied a sta-
bility selection algorithm [54, 85]: instead of using the result of one
round of selection on the whole dataset, we used stability selection
to randomly subsample half of the data for N rounds, aggregated all
the features selected and recorded the times they get selected. Then
a threshold was used to keep the most frequently selected features.
In our experiments, this threshold was set to 0.6 as default. As a re-
sult, 34 out of 6373 features were selected as input features to train
the RBC prediction model. In addition, we also used a prosodic fea-
ture set as a baseline, including the 13-dimensional Mel-Frequency
Cepstral Coefficients (MFCC), fundamental frequency (F0), and sum
square energy, which were commonly used in many previous works
[34, 51, 65]. Selected ComParE features and prosodic features were
listed in the Supplementary Material III.

4.1.2 Theoretical Experiments for Reactive Backchanneling. A series
of experiments were conducted to obtain the best-performing con-
figuration of features and models. We evaluated the selected Com-
ParE features using the Multilayer Perceptron (MLP) and Support
Vector Machine (SVM) models. A reference baseline experiment
was conducted using prosodic features and the Long Short-Term
Memory (LSTM) model, according to the state of the art [34, 65].
The reason that we did not combine the ComParE feature set with

the LSTM model is that ComParE feature set did not include the
time-domain information of speech segments, and hence the LSTM
model cannot be used.

As for the training data, 2,732 RBCs coded in 3.1 were used.
According to previous work [26], we considered the participants’
utterances before coding the assessors’ backchannels as RBC cues,
which may be more likely to contain acoustic information for trig-
gering RBCs The negative samples were randomly selected from
the participants’ utterances that were not followed by assessors’
backchannels, referred to as non RBC cues. For a legitimate compar-
ison, the sampling process took both participant and task distribu-
tions into consideration, i.e. if there were n RBC cues coming from
the participant x in task t, then n non-RBC cues would be randomly
sampled from the participant x in task t. In this way, we obtained a
balanced data of RBC cues and non RBC cues.

From the experimental results (see Table 4), we observe that the
results based on selected ComParE features and SVM generally
outperformed the LSTM baseline, while the baseline method had a
higher recall rate. As stated in the definitions of RBCs and PBCs,
backchanneling is an optional behavior and it is not necessary to
give a backchannel within a certain timing, so the recall metric
may not be a major concern this context. Therefore, taking per-
formance and inference speed into consideration, the SVM model
with the ComParE feature set is selected to be the best one for
implementation in our system.

4.2 Proactive Backchanneling Algorithm
The function of PBCs is to encourage speakers to continue talking,
and the most intuitive way of triggering PBCs is to take place after
the users have stopped speaking for a while. More specifically, PBCs
tend to be triggered by long pauses instead of speech segments and
short pauses. This implies that themethodology for predicting RBCs
may not be applicable to predicting PBCs. Moreover, as discussed
in 3.2, trained assessors were observed to take task progress, type
of tasks, and characteristics of participants into consideration when
giving PBCs. Hence, we introduce a comprehensive scoring method,
Triple P Scoring Method, to imitate those adaptive PBC strategies.
The Triple P Scoring Method included three main components: Pause
Score, Progress Score and Participant Score. We calculated the final
PBC score through a weighted sum of those three scores, and a PBC
will be triggered if the PBC score exceeds a threshold. The threshold
was determined by the data collected through piloting our system
with 10 participants. Below we introduce how we calculated those
three scores for Type II tasks (e.g. 1-min verbal fluency task and
serial 7 subtraction task), where most PBCs occurred in the MoCA
dataset.

4.2.1 Pause Score. As mentioned earlier, pausing is the most intu-
itive cue for providing PBC, so the Pause Score is a critical compo-
nent for triggering PBC.

First, a Log-normal distribution was selected through distribu-
tion selection with minimum sum square error in the MoCA dataset,
as a Probability Density Function (PDF) to model the distribution
of the intervals between PBCs and their related speaker utterances
(see Figure 6). Then, we calculated the Cumulative Density Function
(CDF) of the modeled PDF, and the value of CDF at a certain point
of time was used as the Pause Score of that moment. According to
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Figure 5: Overview of the pipeline for processing speech data and generating RBC and PBC decisions.

Feature Model Accuracy Precise Recall F1
Prosodic LSTM 0.615/0.638 0.573/0.610 0.866/0.859 0.689/0.714

ComParE MLP 0.650/0.642 0.670/0.671 0.579/0.623 0.615/0.646
SVM 0.692/0.655 0.656/0.646 0.793/0.760 0.718/0.695

Table 4: Experiment results on RBC prediction models. Metrics are denoted as Cross Validation/Test.

the CDF, the obtained Pause Score was in the range of (0, 1) and
increases as the participant’s pause becomes longer.

The distribution of the interval between participant’s utterances
and PBCs is:

PDFloдnorm (tpau ; z, s) =
1

sz
√
2π

exp(−
loд2(z)

2s2
) (1)

z =
tpau − µ

σ
(2)

where tpau means the silence time of participant, and µ, σ and
s are parameters of log-norm distribution estimated by maximum
likelihood from the MoCA dataset. The Pause Score could be ex-
pressed as:

Scorepau = CDFloдnorm (tpau ; z, s) =
∫

PDFloдnorm (tpau ; z, s)dx

(3)
Besides, as shown in 3.2.2, the s of the intervals between the

speaker’s utterances and the PBCs are largely depending on tasks.
For example, it seems that assessors tended to have lower toler-
ance of silence and gave more encouragement to the older adult
participants whey they were undertaking relatively harder tasks,
e.g. serial 7 subtraction. Hence, we differentiated CDFs and PDFs
for different tasks. For instance, Figure 6 compares two tasks: the
serial 7 subtraction task and 1-min verbal fluency task. We can
see that the Pause Score of the serial 7 subtraction increases more
rapidly than that of the 1-min verbal fluency task, which means
that algorithm tended to provide more PBCs in serial 7 subtraction
than in 1-min verbal fluency task.

4.2.2 Progress Score. As discussed in 3.2.1, there was a clear differ-
ence in the number of PBCs provided by the assessors as the task
progresses. For example, the assessor would provide more PBCs
during the second half of the one-minute naming task. We model
this behavior of the assessors with the Progress Score. Similar to
Pause Score, a PDF obtained from distribution selection was used to
model the distribution of PBCs during the task period. Moreover, to
derive a computable score, we discretized the PDF into Probability
Mass Function (PMF) in bins of 100ms , and then used a scaling
factor to rescale the maximum of PMF to 1, by which we obtained
a score in [0, 1]. Based on the MoCA dataset, the Skew-Normal
distribution was selected as PDF, and this process can be described
by the following function:

Scorepд = k ∗ PMFskewnorm (ttask ) (4)

Where Scorepд stands for Progress Score, k is the scaling factor,
and ttask is the time that a task has been proceeded. The PDF fitting
result is shown in Figure 7. Similar to our observation in the MoCA
dataset, Progress Score peaked in the second half of task progress.

4.2.3 Participant Score. Participant Score was a score generated at
the beginning of a test, describing the proactivity level of backchan-
neling for each participant i.e. how difficult to trigger a PBC. Par-
ticipant Score was motivated by the finding in 3.2.3 that there
was a clear individual difference among participants. To simplify
this question, we considered it as a probabilistic classification task,
where the input was a segment of speech from the participant with
fixed content and the output was a score. We first used SVM to clas-
sify participants into two classes: participants received more PBCs
and participants received less PBCs. Then the output d of SVM,
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(a)

(b)

Figure 6: Distributions of pauses before PBCs show a differ-
ence between two tasks: a) serial 7 subtraction task b) 1-min
verbal fluency task, where assessors might have a lower tol-
erance of silence and weremore inclined to give PBCs faster
in a) compared with b). Probability Density Function is in
red and Cumulative Density Function is in orange.

i.e. distance from input data to SVM classification hyperplane, was
used as a classification score. Next, Platt Scaling [71] was applied
on d to obtain a probabilistic value with range of (0, 1) from the
output of SVM, denoted as Participant Score, through the following
function:

Scoresub j = Platt(y = 1|d) =
1

1 + exp(α f (d) + β)
(5)

where Platt(y = 1|dsub j ) refers to Platt Scoring, d refers the
output of classification model, α and β are parameters learnt from
SVM training data [71]. Table 5 shows the results of theoretical
experiment using SVM to classify two groups of participants.

4.2.4 Overall PBC Score. To summarize, Pause Score measured
utterance-level timing, telling when PBCs should occur after partic-
ipant’s utterance, while Progress Score measured task-level timing,
indicating when PBCs should occur within a task. Participant Score
adjusted the proactive level to adapt to different participants. Then

Figure 7: Fitting result of Probability Density Function (red)
for PBCs generated through the progress of 1-min verbal flu-
ency task. It shows the frequency of PBCs given increases as
the task proceeds, and decreases when the task is coming to
an end.

SVM Acc Pre Recall F1
Valid 0.623 0.611 0.624 0.605
Test 0.571 0.600 0.576 0.589

Table 5: Results of SVM classification on two classes of par-
ticipant.

we calculated an overall PBC score through combining those three
sub-scores with a weighted sum:

ScorePBC = wpau ∗Scorepau +wpд ∗Scorepд +wpt ∗Scorept (6)

For the convenience of tuning parameter, we limited the sum of
wpau , wpд and wpt to be 1, of which the range of ScorePBC was
(0, 1). Then we set a threshold thrPBC to make PBC decisions if
the ScorePBC was beyond that threshold. The lower thrPBC was,
the more likely it was for users to receive PBCs. In order to find
optimized setups for user experience, the hyper-parameters thrPBC ,
wpau , wpд and wpt were tuned according to statistics and user
feedback from piloting our algorithm with ten participants. For
instance,w1 could be turned down to increase the response time
of PBC; thrPBC could be turned up to reduce the number of PBCs
received by users.

4.3 Implementation of Backchanneling
Algorithms

We integrated the two models into a fully functional system, which
analyzed a user’s speech data in real-time and provide RBCs and
PBCs whenever appropriate.

Previous studies mainly considered a continuous prediction, i.e.
continuously feeding input audio into a prediction model and decid-
ing whether to give a backchannel at each frame [34, 65, 78]. Voicing
Probability was used as input feature in those methods, with an
expectation that the prediction model was able to learn the correla-
tions of backchannels and speaking intervals/utterances. However,



CHI ’22, April 30–May 06, 2022, New Orleans, LA Ding, et al.

the uncertainties introduced by prediction models brought a risk
of interrupting speakers in case of false alarms .

In our system, instead of using Voicing Probability as a feature,
we independently designed a Speaking Interval Detection (SID)
module to recognize speaking utterance and speaking interval from
the input audio. First, Voice Activity Detection (VAD) was adopted
to pre-process the input audio with a sliding window, aiming to
label input frame as voiced or unvoiced frame. Next, in order to
aggregate voiced/unvoiced frames and avoid noising prediction
spikes, a delay trigger mechanism was used to further process
VAD results, i.e. the audio segments were considered as speaking
utterance only when the number of speech frames detected was
beyond a threshold; similarly, the segments would be considered as
speaking interval when the number of silence frames was beyond a
threshold.

With this method, speaking boundaries were visible to our sys-
tem and RBC/PBC modules would only be triggered by speaking
intervals. Besides reducing the risk of interrupting the speaker ag-
gressively, this pre-processing method could lower the computation
cost as well. It only passed speech data to backchannel prediction
models when speaking intervals were detected rather than trig-
gers those models recurrently. It could reduce the computation
latency of our backchanneling pipeline, which was an important
consideration of making backchannel decisions in real time.

5 EVALUATION OF PROOF-OF-CONCEPT
SYSTEM

To answer “RQ2: How do reactive and proactive backchannels pro-
vided by a task-oriented CA affect its conversation with older adults
in Cantonese?”, we developed a proof-of-concept system TalkTive
for speech-based NCD screening, with a multimodal interface and
with the RBC and PBC modules embedded. Then we conducted a
between-subject study to evaluate the performance and user experi-
ence of our TalkTive system. The full system (Condition 2) was used
to compare two conditions: Condition 0 (baseline condition) with
the preset task functions and no backchanneling, and Condition
1 with the same task functions but providing RBCs. We obtained
institutional IRB approval for the whole project prior to the study.

5.1 System Architecture and Interaction Flow
The TalkTive system consisted of two parts: a React frontend as
graphical user interface (GUI, see Figure 8) and a Flask python
server (see Figure 9). Users interacted with the GUI to complete
a series of MoCA tests as instructed by the conversational agent.
In this process, the GUI issued corresponding commands to the
backend as API calls, such as to open or close the RBC and PBC
modules, and sent information inputted into the interface e.g., user’s
age to the backend. It also played back the speech output generated
by the server.

More specifically, when a user came to the page of a new task,
TalkTive would introduce the task by playing an audio clip of task
description. The user could replay the recording or start the task.
For tasks with a time limit, a countdownwould appear after the user
clicks the “Start answering” button. While the user was providing
speech responses to the given question, TalkTive ran the algorithms
in Section 4 to provide RBCs and PBCs in real time.

To add the action module to the TalkTive system, we invited a
native Cantonese speaker experienced in conducting MoCA tests
to record a Cantonese backchannel library. To build this library,
we selected the most common RBCs and PBCs coded in the MoCA
dataset, segmented related audio clips (which may also contain
participant’s speech and background noise), and passed them to an
experienced MoCA assessor as prompts for audio recording. The
assessor mimicked those audio clips of backchannels in a sound
proof room. We indexed this Cantonese backchannel library and
integrated into our backchanneling pipeline. If a RBC or a PBC
was triggered, TalkTive system would randomly play a piece of
corresponding backchannel audio from the Cantonese backchannel
library as feedback.

5.2 Tasks
There were three kinds of MoCA screening tasks, categorized based
on the type of expected answer 3.2.2 – Type I questions asking
for a one-off answer (e.g. “please repeat the sentence. . . ”), Type
II questions prompting for a series of responses (e.g. “please say
animal names as many as possible in one minute”), and Type III
open-ended questions. To ensure representativeness of experience
in the user study, we sampled the three types of tasks (at least one
question from each type) according to their frequency in MoCA.
This resulted in a trial MoCA test of nine tasks: three Type I ques-
tions, five Type II questions, and one Type III question as listed
below:

• (T0) Type I - Sentence repetition: Please repeat the sentence
that I said: [tongue twister in Cantonese]. (Trial task)

• (T1) Type II - 1-min verbal fluency: Please say fruit names as
many as possible in one minute.

• (T2) Type I - Sentence repetition: Please repeat the sentence
that I said: [tongue twister in Cantonese].

• (T3) Type II - 1-min verbal fluency: Please say animal names
as many as possible in one minute.

• (T4) Type II - 1-min verbal fluency: Please say vegetable names
as many as possible in one minute.

• (T5) Type II - Serial 7 subtraction: Please begin with 100 and
count backwards by 7.

• (T6) Type II - 1-min verbal fluency: Please say place names in
Hong Kong as many as possible in one minute.

• (T7) Type III - Open-ended self-disclosure: Could you please
share a place you like and why?

• (T8) Type I - Understanding: How to say the word (clap) and
how to perform that action?

In particular, T0 was designed to collect participants’ speech
and generate Participant Score, which was be used in the subse-
quent tasks. The method used to generate Participant Score was
described in 4.2.3. T0 also served as a practice task to familiarize
the participant with the TalkTive system.

5.3 Participants
To conduct a between-subject user study with our target users –
older adults, we recruited n = 36 participants (19 females and 17
males, aged from 61 to 84 with an average of 72.4), 12 for each
condition. We asked all participants to complete a pre-study survey
based on their experiences in using electronic devices. According
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Figure 8: TalkTive interfaces: “Ready to start” Interface (above), where the participant received task instructions and got pre-
pared for answering; and “Task in progress” Interface (below), where the participant provided answers in speech and could
receive system-generated backchannels (Condition 1 & 2).

Figure 9: The backend of TalkTive system to predict RBCs and PBCs during conducting cognitive assessments.

to their replies, all participants had a smartphone, 13 (36.1%) had a
tablet, and 13 (36.1%) had a laptop or a desktop or both (one may
own multiple devices). Most participants reported using electronic
devices 3 − 10 hours (17) and 1 − 3 hours (12) per day. Only three
participants (8.3%) reported using electronic devices for less than
one hour per day. These data suggested that our participants had
daily access to electronic devices that could be used for CA-based
NCD screening.

5.4 Study Procedure
The language used throughout the whole user study including the
trial MoCA test was Cantonese. A researcher who was a native
Cantonese speaker served as the experimenter and moderated the
entire study process. At the beginning of the user study, the experi-
menter informed the participants that they would conduct a test

of cognitive ability and memory. All participants signed a consent
form, agreeing to join the research study and be audio recorded.
After finishing a pre-study survey on participants’ experience using
electronic devices, participants were asked to watch a tutorial video
of how to use the GUI as illustrated in Figure 8 by showing the steps
to finish an example task (not used in the main study). After that
participants were required to finish eight tasks independently, and
the experimenter would not intervene unless there was a system
breakdown. Upon completion of all eight tasks, the participants
proceeded to fill out a post-study questionnaire on the same screen
with assessor’s facilitation (details in 5.5.2). They were required to
rate their level of agreement to eight statements regarding their
experience of talking to the (TalkTive system or baseline system
without backchannel), according to a 7-point Likert scale. We con-
cluded the study with an exit interview of four questions about
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their user experience. We present the detailed survey and interview
questions in the next subsection.

5.5 Measures
To evaluate the effect of backchannels provided by TalkTive and
user experiences of using the system for speech-based NCD screen-
ing, we collected a series of measurements from both experienced
human assessor’s and older adult participant’s perspectives.

5.5.1 Assessor’s Validation of System-Generated Backchannel Re-
sponses. We audio-recorded all the conversations between the par-
ticipants and the TalkTive system and marked all occurrences of
backchannels generated based on system logs. We invited a trained
assessor who has earned a certificate of running the MoCA test and
also a native Cantonese speaker to evaluate the appropriateness of
all backchannel instances given in Conditions 1 and 2. The assessor
listened to all task recordings and was prompted to rate each in-
stance of backchanneling with binary choice – inappropriate versus
appropriate. This evaluation may be regarded as testing the pre-
cision of our backchanneling algorithms. Because of the optional
nature of backchanneling [32, 96], the selection and placement of
backchannels may vary according to individualized preferences.
Hence it was impractical to obtain the ground truth of all possible
backchannels and identify the false negatives, so we did not include
recall in the analysis.

5.5.2 Post-studyQuestionnaire of Participants. To obtain the par-
ticipants’ subjective feedback based their experience in interacting
with our system, we adopted eight statements from [17]. The par-
ticipant needed to provide a rating those statements (five from a
positive perspective and three from a negative perspective) using
a Likert scale from 1 (strongly disagree) to 7 (strongly agree). The
five positive statements were “the person who just asked me ques-
tions showed me that she understood what I said”, “... she listened
attentively to what I said”, “... she encouraged me to talk”, “... she
was polite” and “the test went smoothly”. And the three statements
from a negative perspective were “... she seemed impatient”, “...
she seemed cold and unfriendly” and “... she interrupted me”. All
participants were asked to provide a rating those eight statements.

We adopted the eight statements to gain a comprehensive under-
standing of the participants’ experience with the TalkTive system.
We randomized the order of presenting the positive and negative
statements to prevent the participants from simply giving the same
rating to all items. To facilitate older adult participants to finish the
post-study questionnaire thoughtfully, the experiment would read
out each statement if participants had difficulty viewing the text by
themselves. We also ensured that the participants fully understood
the meaning of the scale. In addition, we invited the participant to
give the reasons behind their ratings through thinking out loud,
and we audio-recorded their verbal explanations.

5.5.3 Semi-structured User Exit Interview. After each participant
finished the test and the post-study questionnaire, the experimenter
conducted a semi-structured exit interview and audio-recorded the
session with the participant’s consent. The user interview has three
main questions as listed below.

• Q1: How was your experience using this system? Follow up:
How did you feel about communicating with the person (the
voice) who just asked you questions?

• Q2 [Asked in Condition 1 & 2]: Did you notice the response
given by the system, like “hmm”, “yeah”? How did you feel
about them? Why? Follow up: Do you think those responses
were different from those given by humans? If so, what was
the difference?

• Q3: Could you please give some suggestions to improve this
system?

6 RESULTS FROM THE USER STUDY
In this section we report on the quantitative and qualitative find-
ings of our user study, covering the performance of the proposed
backchannel-generation algorithms for NCD assessment, and the
user perception of and experience with backchannel-enabled CA
assessors to those without this mechanism.

6.1 About 89% of System-Generated
Backchannels were Validated as
Appropriate by Trained Assessor

Examples of the timing of RBCs and PBCs in conversations were
shown in Figure 10. To verify that the timing and form of the BCs
generated during the study conform to the common practice of
human assessors, we invited an expert to classify each BC instance
based on perceived appropriateness. After we collected all the data
of participants using the TalkTive system, a trained assessor coded
all 649 BCs (518 RBCs, 131 PBCs) given to the 24 participants in
Condition 1 and 2 (details see 5.5.1).

Participants in Condition 1 received a total of 267 RBCs (22.3
RBCs per test). Although more RBCs were generated by our system
compared with the MoCA dataset (11.1 RBCs per test), most RBCs
generated were considered as appropriate by expert: only 26 (9.7%)
of them were coded as inappropriate. A total of 251 RBCs and 131
PBCs were produced in Condition 2 (20.9 RBCs and 10.9 PBCs
per test). The number of RBCs given was slightly lower than that
of Condition 1, and the number of PBCs was comparable with
the number of PBCs given in the MoCA test (8.28 PBCs per test).
Among all BCs in this condition, 46 instances (12.0%) were coded
as inappropriate (see Table 6 for details), which demonstrated that
our evaluator deemed the mechanism to be generally acceptable.
It seemed that the provided PBCs had a slightly higher chance
than RBCs to be regarded as inappropriate, which aligned with the
proactive nature of PBCs that they were encouraging but had the
risk of being aggressive.

To further investigate the causes of each inappropriate backchan-
nel, we asked the assessor to take note of the reason behind her
judgement. Overall, she specified three kinds of major causes (see
Table 6). 1) “Not reply with a meaningful speech utterance”. This
mainly occurred when RBCs responded to the speakers’ non-lexical
utterances such as “uhmm...” which did not include meaningful
answers to acknowledge or agree with. 2) “Urged the speaker”,
which happened mostly when multiple PBCs were triggered within
a short period of time. Also, 3) “Interrupted speaker’s thinking”,
which frequently occurred for both RBCs and PBCs in the serial 7
subtraction task.
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Figure 10: Examples of conversation where RBCs were the dominant responses (P0848 Task 4) and conversation where PBCs
were the dominant responses (P0848 Task 3). We could see that most RBCs directly follow speakers’ utterances while PBCs
mainly occur in longer pause. The first RBC in P0848 Task 4was coded as inappropriate because it did not reply to ameaningful
speech utterance. All the other system-generated backchannels were coded as appropriate.

Con Type # of BCs # of Inappropriate BCs (%) Causes of Inappropriate BCs
1 RBC 267 26 (9.7%) “not reply to a meaningful speech utterance” (13/26);

“interrupted speaker’s thinking” (10/26)
“interrupted speaker’s talking” (1/26)
“quicker than the participant’s response” (1/26)
“overlapped with ‘time’s up’” (1/26)

RBC 251 27 (10.8%) “not reply to a meaningful speech utterance” (24/27);
2 “interrupted speaker’s thinking” (3/27)

PBC 131 19 (14.5%) “urged the speaker” (10/19);
“interrupted speaker’s thinking” (8/19);
“not reply to a meaningful speech utterance” (1/19)

Table 6: Results of assessor’s validation of backchannels given in Condition 1 & 2.

When reviewing the occurrences of inappropriate backchannels
in the audio recordings, we found many cases happened while older
adults were mumbling to themselves. For “not reply to a meaningful
speech utterance”, the muttering of older adults might be detected
by the Speaking Interval Detection (SID)module and considered as a
speaker utterance and then trigger RBCs. Figure 10 shows a example.
A similar situation may be observed for incomplete utterances
with a long pause inside, which appeared frequently in the serial 7
subtraction task, as it was found to be difficult for the older adult
participants. For example, the participant might get the first digit
much earlier than the second digit, such as “eighty- [a long pause]
six”. Human assessor would know that “eighty” was a unfinished
answer and would not backchannel to acknowledge that, while the
pause might trigger our algorithm based on acoustic features to give
a RBC. These kinds of situations indicated the need to use Automatic
Speech Recognition (ASR) and Natural language processing (NLP)
to understand the meaning of speakers’ utterances, to identify the
mumbling and also incomplete expressions, in order to yield more
reasonable backchannels. However, currently there is a lack of high-
performance ASR systems for older adult speech in Cantonese. In
other cases, older adults may murmur as they were thinking. The
SID may fail to capture such speech, and they system may treat it as
a long silence and evoke PBCs, which may be considered considered
intrusive for the speaker.

6.2 System with Proper Backchanneling
Feature were not Perceived as Disturbing
by Older Adults

To assess participants’ subjective feedback on using our system,
we compared the user ratings of eight statements in the post-study
questionnaire across the three conditions. Because the answers of
the post-study questionnaire were in the form of Likert-scale input,
the data should be treated as ordinal measurements [11]. Hence we
used the median to describe their central tendencies and applied
Kruskal-Wallis non-parametric Test to evaluate the difference.

The statistical results were reported in Table 7. In general, there
was no significant difference regarding agreements on the eight
statements among three conditions. Although the results did not
show that the system with backchannels outperformed the baseline
condition in terms of encouraging speaker or listening to speakers
attentively, they suggested that our system did not induce negative
perceptions such as being less polite/patient/unfriendly after incor-
porating additional reactive or proactive backchanneling responses.
However, regarding the central tendencies, Condition 1 with only
RBCs has the lowest ratings for five statements, indicating that
RBCs only may tend to perform worse than no BCs or both RBCs
and PBCs.
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Statements Con 0 Con 1 Con 2 p-value H-value
Positive Statements
She understood what I said. 6.0 5.0 5.0 0.23 2.90
She listened attentively to what I said. 6.5 5.5 7.0 0.33 2.20
She encouraged me to talk. 6.5 6.0 7.0 0.53 1.26
She was polite. 7.0 7.0 7.0 0.42 1.74
The test went smoothly. 7.0 5.5 7.0 0.27 2.62
Negative Statements
She seemed impatient. 1.0 2.5 2.5 0.07 5.43
She seemed cold and unfriendly. 1.0 1.0 1.0 0.11 4.45
She interrupted me. 1.0 1.0 1.0 0.10 4.55

Table 7: Medians and chi-square test results of users’ level of agreement to these statements on a Likert scale of 7 (Strongly
Agree) to 1 (Strongly Disagree) for Condition 0, 1 and 2. No significant difference was observed for all the statements among
three conditions.

6.3 Qualitative Feedback on How Older Adults
Perceived Backchannels

In this section of qualitative analysis, the goal was to understand
the participants’ thoughts and comments on the backchannels. Con-
dition 0 has no backchanneling, and hence we report on the users’
feedback for Conditions 1 and 2. there were no backchannels gen-
erated in Condition 0, here we mainly report the users’ feedback
on Condition 1 and 2.

6.3.1 Older adults reported that receiving only RBCs was not as good
as gaining responses from human. More than half of participants
in Condition 1 (7 out of 12) reported that the responses generated
by the system were not as good as those generated by humans.
Four participants said that they did not even notice the responses
generated by the system (P0877, P0316, P0304, P0215). P0316 stated
that the RBCs were not articulate enough:

“I didn’t notice that it was giving response to me.
(actually 31 RBCs were given to her) Just asking me to
finish one question and then next... At the beginning
when I heard ‘hmm’, I had no idea about what it was
doing. Really no idea. While after I heard two of that,
I got to know that it was replying to me...Real human
will bemuchwarmer. I thought it (the system)was just
a computer, a computer which could ask questions. It’s
different from face-to-face communication of human.”
(P0316)

It was reasonable for older adults to be insensitive to RBCs due
to feeling nervous about the test, focusing on giving answers, even
experiencing cognitive or hearing impairments. In other cases, al-
though having noticed the existence of RBCs, P0215 stated that
RBCs were rigid instead of human-like, and expressed a preference
of in person communication:

“Therewas no feedback. I noticed responses like ‘hmm’,
but I knew it’s just recording. I didn’t think it’s real.
Human assessors would be better. For human asses-
sors I could see their facial expressions to knowwhether
they were paying attention.” (P0215)

Other participants explained why they thought human asses-
sors would outperform that system regarding responses given: “the

responses generated by the system would be better than an inexpe-
rienced volunteer, but worse than an experienced assessor” (P0248);
“human assessors would give more explanations...had more interac-
tions” (P0235); “the responses given by humans would be clearer
than those generated by the system” (P0280); “the system was less
friendly compared with human” (P0874) or simply “the system had
a lack of something compared with human” (P0877).

For the remaining five participants in Condition 1, only P0306
said the responses generated by the system were better than those
from humans because some people may not give any responses
and just wait: “The response was pretty good. It indicated that my
answers were acceptable. The responses generated by the computer
were better than those of human. Human would not give as much
as response - he or she might just wait for you. Human might
even not give response to you. Just let you think alone.” The other
four participants said that the responses generated were similar to
human’s without giving further explanation.

6.3.2 PBCs were appreciated by older adults, especially when they
ran out of answers and were about to give up . Users gave more
positive feedback on Condition 2 and they appreciated the existence
of PBCs. In Condition 2, 8 out of 12 participants expressed that PBCs
were well received by them. For example, P0250 found that PBCs
were quite encouraging when she ran out of answers:

“(The sound of) AI was quite machine-like, while this
(system) was not. (I) think it was operated by a human.
For example, just now when I had not answered, it
was listening to me carefully, and encouraging me in
the meantime, just like doing Q&Awith you in person.
It felt like that. We were nervous (in this kind of as-
sessment), and it seemed that my mind suddenly went
blank just now. (My brain) suddenly stopped (think-
ing). Could not think anymore. But it said ‘feel free
to keep thinking’. It listened to me quite attentively.”
(P0250)

In Condition 2, it seems that all participants noticed the system-
generated backchanneling, in contrast with Condition 1 where four
participants stated that the system-generated responses went un-
noticed. One participant, P0221, even compared system-generated
response with the audio recordings of task statements, and she
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found the responses sounded more natural than task statements
recorded by the human assessor. She stated the audio recordings
of statements were machine-like, but the responses were not. She
said, “While I was thinking, (it said) ‘uhm’, ‘keep going’, so I would
really think (about the answers), much better than if it didn’t give
any response...because it made me feel like that there was really a
person there, ‘take your time’, not like facing a cold computer”.

When the participants were asked about the difference between
the responses provided by the system compared with those from a
human, P0232 said that the response was a good signal of listener’s
attentiveness, which might not even be provided by human. For
example, P0232 and P0854 claimed that the system performed better
than human and they felt more comfortable in talking to the system
than with a human.:

“(The responses from the system) showed that it val-
ued my answers. Sometimes a person said ‘you speak’,
but there was still no response even after I finished.
It seemed that he didn’t like that you spoke to him,
didn’t want to listen to you. If it had response, (it
meant that it) paid attention to your talk.” (P0232)
“The responses were good. It would not make you feel
nervous... Responses from a real human made me felt
more nervous and stressed... (I was) more comfortable
to talk to a computer (than a human)... The response
from the system was encouraging you to keep talking,
while the response from a system was more inflexible
compared with human.” (P0854)

7 DISCUSSION
7.1 Result Summary
In general, there was no significant difference among conditions
with system-generated backchannels and the baseline condition
with no backchannel given in either a positive or a negative way.
This may imply that the participants did not feel overly anxious
after receiving system-generated backchannels, even though some
instances might be deemed intrusive or aggressive from a pro-
fessional assessor’s point of view. Clearly providing appropriate
backchannels is still far away from providing “optimal” backchan-
nels to help participants stay in the optimal arousal level, while
eliminating the portion of inappropriate backchannels may be a
concrete next step.

We found that reactive backchannels (RBCs), of which 89.8%
were coded as appropriate by expert, may be ignored by older
adults or considered as rigid. On the other hand, although proactive
backchannels (PBC) have a higher risk of being perceived as pushy
or intrusive by the expert (14.5%) than RBCs (10.2%), they were well
received by most older adult participants in the given task setting.
We observed in our study that older adults, especially those who
were experiencing a decline in cognitive ability, expected the system
to provide articulate and noticeable instructions and responses to
guide them through the tasks. This preference of older adults was
reflected as a general acceptance of PBCs. As shown in the user
interview, older adults tended to consider receiving PBCs as being
encouraged instead of being urged. Particularly, PBCs could be
more helpful when participants intended to give up early, which
was common in a cognitive assessment setting.

7.2 Design Considerations
Based on the above findings, we propose a set of design consid-
erations for future improvement of conversational agents (CAs)
conducting cognitive assessments with backchanneling function.
First, we need to ensure that the generated speech of the task-
oriented CA fits the content and nature of the tasks specifics, i.e.,
administrating a neurocognitive disorder screening test. As postu-
lated by the well-known Yerkes–Dodson law [101], task performers
should have an optimal mental arousal to perform a certain task.
If the arousal of the task performers is lower or higher than the
optimal level, their performance may be hindered by inactivity or
anxiety. To guarantee that the participants’ performance may fully
reflect their actual cognitive abilities in the MoCA test, we hope to
situate them in an appropriate arousal level and engage them in
the task without making them feel too stressful. As shown in the
qualitative results of the user study, PBCs were deemed effective by
over half of participants of Condition 2 in keeping them engaged. In
comparison, only a single participant responded as such for RBCs.
Participants also expressed that PBCs were showing attentiveness
instead of stressing them out. In the qualitative feedback. Hence,
it may be beneficial to include PBCs to boost the task performers’
arousal level so that they stay active in the process. At the same
time, as suggested by the clinical assessors, we need to control
the frequency and intensity of PBCs to avoid pushing the users
beyond their normal arousal stage, which may been undesirable
for cognitive assessment.

Second, for improving the precision of system-generated BCs,
reducing the number of inappropriate PBCs may be prioritized
because PBCs are more noticeable and might affect participants’
arousalmore significantly than RBCs. According to the Yerkes–Dodson
law, difficult or intellectually demanding tasks may require a lower
level of arousal to facilitate concentration for optimal performance
[101]. This may explain why PBCs in the serial 7 subtraction task
are often coded as inappropriate by the expert (10/19). To resolve
the tension between encouraging versus pushing the participants
while they perform intellectually demanding tasks, we may further
investigate task-related adaptivity. Based on analysis of the MoCA
dataset and results of user study, we may extend the cooling time of
providing continuous PBCs in those difficult tasks to avoid “urged
the speaker”, as well as improve the Speaking Interval Detection
(SID) module to detect murmur by the older adult participant and
hence avoid interrupting their thinking process. Improvement of
SID may also improve to RBC generation in a similar manner. We
observed only one instance of inappropriate PBCs caused by the
inability of the system to understand the speaker’ utterance, which
suggests that the use of Automatic Speech Recogntion (ASR) may
not be essential for triggering PBCs.

Third, aside from reducing instances of inappropriate backchan-
nel, we also need to improve participant-related adaptivity of backchan-
neling strategies. According to the Yerkes–Dodson law, each task
performer has an optimal mental arousal to perform a certain task
[90]. Clearly there exist individual differences among participants
in terms of skill level (cognitive ability), personality and trait anxi-
ety as potential influencers of arousal level [8, 23, 53]. As a result,
the optimal arousal level may vary from person to person. In ad-
dition, individual difference in sensitivity may explain why some
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participants did not notice RBCs while others did. We have at-
tempted to integrate the idea of adaptive backchanneling based on
participant characteristics encoded as Participant Score. This was
a first step towards finding an optimal, personalized backchannel-
ing strategy for each user. To develop such adaptive strategies, we
will need to further conduct within-subject studies with multiple
levels of proactivity in backchanneling. Other information about
users e.g., language [14, 29], culture [17], etc. may also affect how
users perceive backchannels, and thus may be incorporated into
the personalized backchanneling strategy.

7.3 Generalization
Although our work was evaluated in a specific task scenario for a
particular user population, it may be generalized in threeways. First,
the backchanneling algorithm we propose may be applied to other
kinds of task-oriented conversations requiring speech responses,
including other cognitive tests [31], self-disclosure [43], counseling
[35], to name a few.While the timing and frequency of backchannel-
ing, especially for PBCs, may need to be adjusted according to the
social rules and common human-human interaction practices in the
target tasks, our data-driven approach to modeling backchannels
has the potential to be easily adapted. Second, our CA system may
be extended to serve other user groups, e.g., young adults who are
vulnerable to neurocognitive disorders [67], children who need to
be engaged in learning tasks [69], etc. Third, we demonstrated a
workflow of investigating backchanneling patterns in Cantonese
as a low-resource language. Different from well-studied languages
like English, it is a challenge to study backchanneling for a lan-
guage without previous work on this topic and supportive toolkits
such as reliable ASR algorithms. Our work introduces potential
solutions to overcome those constraints in both data analysis and
implementation strategies, which might be beneficial for future
research on backchanneling targeting low-resource languages.

7.4 Limitations and Future Work
There are several limitations regarding the design of the system and
the experiment. As a proof-of-concept system, the TalkTive system
is currently deployed on a desktop. We plan to develop a mobile
APP version of it in the future, which offers accessibility via mobile
phones. Also, the current study was conducted in the laboratory
with a trial version of the MoCA test. The full version of the MCA
test can be conducted with the mobile APP in the future. Another
limitation associated with the in-lab setup is the difficulty in recruit-
ing older adult participants due to their reduced mobility especially
under the restrictions under COVID-19. Compared with the size of
potential user population of the TalkTive system (i.e., the number
of older adults in Hong Kong), the evaluation study was under-
powered with 36 participants divided into three conditions. With
more participants, our study will have a higher statistical power in
analyzing the differences among various backchanneling strategies
and revealing the general preference of older adults. With more
participants, we will also be able to further analyze the relationship
between the characteristics of the participants and their acceptance
of backchanneling. This will help achieve greater personalization
of backchanneling strategies. In addition, if a high-performance
ASR system for older adult speech becomes available, the system

may better understand the user’s utterance and improve the trigger
of RBCs.

Moreover, there still exist intrinsic limitations of CAs as com-
pared with human healthcare professionals, such as not being as
responsive and empathetic [37, 41, 86]. We believe that human ther-
apists and CAs are complementary to each other and CAs should
not aim to replace human healthcare professionals. In this study
we have demonstrated that CAs present an affordable solution
that enables older adults to take pre-screening tests in their homes
and communities. For users considered to have a high risk of neu-
rocognitive disorder based on pre-screening results, they need to
seek further screening, diagnoses and treatment in the clinic. In
sum, CAs have the potential in offering a scalable, accessible and
economical means to support preliminary assessment of cognitive
decline, and can help support the clinician’s work to attain greater
effectiveness and higher efficiency.

8 CONCLUSION
Conversational agents (CA) hold a strong promise in supporting dig-
ital cognitive assessments, with minimal human intervention, in or-
der to scale up cognitive screening for early detection of NCDs. This
paper presents an approach for automatic generation of backchan-
neling, a type of verbal response that enables the CA to acknowl-
edge the user’s input and encourages them to interact further. We
analyzed a dataset with 246 human-human conversations involving
an assessor and a participant in a the Montreal Cognitive Assess-
ment (MoCA) test. We identified two kinds of backchannels – reac-
tive backchannels (RBCs, e.g. “hmm”) and proactive backchannels
(PBCs, e.g. “what’s more”) – commonly adopted by human asses-
sors. We labeled 2,732 RBCs and 2,037 PBCs in the MoCA dataset,
and devised a data-driven method to model the timing of the two
types of backchanneling. We proposed algorithms that generate
RBCs and PBCs based on task-related and participant-related pat-
terns, and developed TalkTive, a CA which can predict the timing
and form of backchanneling while conducting speech-based cogni-
tive assessments. For evaluation, we conducted a between-subject,
in-laboratory study with n=36 older adult participants. The study
demonstrated that the backchanneling algorithm can effectively
generate PBCs and RBCs, over 88% of which were deemed appro-
priate by a human expert. Quantitative and qualitative evaluations
in participant experience reflected that the automatically generated
backchanneling was regarded as smoothly incorporated and not
intrusive, while PBCs were preferred to RBCs.
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