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ABSTRACT

As a common way of emotion signaling via non-linguistic vocal-
izations, vocal burst (VB) plays an important role in daily social
interaction. Understanding and modeling human vocal bursts are in-
dispensable for developing robust and general artificial intelligence.
Exploring computational approaches for understanding vocal bursts
is attracting increasing research attention. In this work, we propose
a hierarchical framework, based on chain regression models, for af-
fective recognition from VBs, that explicitly considers multiple re-
lationships: (i) between emotional states and diverse cultures; (ii)
between low-dimensional (arousal & valence) and high-dimensional
(10 emotion classes) emotion spaces; and (iii) between various emo-
tion classes within the high-dimensional space. To address the chal-
lenge of data sparsity, we also use self-supervised learning (SSL)
representations with layer-wise and temporal aggregation modules.
The proposed systems participated in the ACII Affective Vocal Burst
(A-VB) Challenge 2022 and ranked first in the “TWO” and “CUL-
TURE” tasks. Experimental results based on the ACII Challenge
2022 dataset demonstrate the superior performance of the proposed
system and the effectiveness of considering multiple relationships
using hierarchical regression chain models.

Index Terms— affective computing, vocal bursts, emotional ex-
pression, multi-label, multi-culture, multi-task learning

1. INTRODUCTION

Recognition of emotions conveyed by non-linguistic vocalizations,
e.g., affective bursts, has attracted increasing research attention, as
vocalizations can reliably express certain emotions and the meanings
of vocal bursts are generally preserved across diverse cultures [1].
This lays the theoretical foundation for using affective vocalization
information to more robustly and holistically understand emotional
reactions. Despite the fact that affect vocalizations and speech-
embedded prosody both utilize the same expressive (vocal) appa-
ratus, it is also found that the accuracy of emotion decoding for
non-linguistic affect vocalizations is higher than the accuracy for
speech-embedded vocal prosody [2]. Much research has been con-
ducted in speech emotion recognition (SER) with verbal speech
recently, such as feature exploration [3, 4] and multilingual general-
ization [5]. On the other hand, nonverbal vocalizations have received
less attention.

Due to the scarcity of vocal burst data and lack of understand-
ing about mechanisms of emotion signaling via vocal bursts, devel-
oping computational models for such emotion signaling remains a
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challenging task. Therefore, the recent ICML Expressive Vocalisa-
tions Workshop & Competition 2022 (ExVo) and the ACII Affec-
tive Vocal Bursts Workshop & Challenge 2022 (A-VB) introduce
the large-scale Hume Vocal Bursts Competition Dataset (HUME-
VB) for exploring various computational approaches [6,7]. The cor-
pus contains about 37 hours of self-recorded data by speakers in 4
countries spanning 3 native languages, which can support investi-
gation of affective vocal bursts from diverse perspectives. Multi-
task approaches have been demonstrated to be effective in previous
works, e.g., by integrating various losses [8], jointly modeling aux-
iliary prediction tasks of culture and age [9]. However, it is desir-
able to explicitly model the relationship between emotion classes in
vocalization signaling and the relationship between the different re-
lated tasks. To this end, we propose a hierarchical framework based
on chain regression models, which generate predictions for one task
that is conditioned on the prediction from the other related tasks.

With recent advancements in self-supervised learning (SSL), the
adopted speech representations for emotion recognition are shifting
from hand-crafted features, e.g., acoustic pitch and energy, to high-
level embeddings extracted by pretrained models, such as Wav2vec
2.0 [10]. The large, Transformer-based SSL models trained on large-
scale data can learn representations for various downstream tasks, in-
cluding automatic speech recognition (ASR) [10] and SER [11]. As
affective vocal burst (AVB) data is generally lacking, it is important
to borrow data from other speech domains to improve the AVB mod-
eling. Purohit et al. [12] compared supervised and self-supervised
embeddings for the affective vocal burst recognition (AVBR), and
showed that SSL-based representations typically yield better per-
formance than supervised embeddings learned by pretrained task-
dependent neural networks. To further leverage these high-level fea-
tures, various network architectures have been explored in the latest
SER research, such as layer-wise aggregation [13], temporal atten-
tion [14] and dynamic convolution [15]. Following [13], we leverage
representations from different layers of pretrained models with train-
able weights.

In this work, we investigate AVBR based on a hierarchical
framework using chain regression models and pretrained represen-
tations. The relationships between emotional states and diverse cul-
tures, between low-dimension and high-dimension emotion spaces,
and between various emotion classes within the high-dimension
space, are explicitly modeled. Our system participated in the ACII
A-VB challenge and ranked first in the task of the “TWO” and
“CULTURE” tasks, and second in the “HIGH” task. The effec-
tiveness of the regression models and the weighted aggregation of
pretrained representations is also demonstrated by further experi-
ments we conduct on the challenge dataset.



2. METHODOLOGY

The proposed hierarchical multitask learning framework is illus-
trated in Fig. 1, mainly consisting of a high-level feature extrac-
tor (see left side Fig. 1), and a structured output layer with a bi-
directional regression chain (see right side Fig. 1). In the following,
we will describe our proposed framework from the bottom levels of
feature extraction, to the representation aggregation across different
pre-trained model layers, and to the top structured output layer.

Fig. 1. Overview of hierarchical multitask learning framework for
the A-VB 2022 competition. “TWO”, “TYPE”, “HIGH” and “CUL-
TURE” denote the classifiers or regression models for corresponding
tasks, and “Country” is the classifier of countries. “(∗)” means the
output size of the models.

2.1. Preprocessing

We preprocess the vocal burst data with peak normalization in the
time domain for internal consistency of the data. In addition, we
use data augmentation to enrich the data and improve the robustness
by slightly changing the acoustic characteristics with minor distor-
tions. Specifically, we applied pitch-shifting and speed-perturbation
for each input waveform during the training stage (corpus size not
changed) [16, 17]. The shifted ranges of pitch and speed are [-100,
100] semitones and [-0.05, +0.05] rates, respectively.

2.2. High-level Feature Extractor

The recent success of large pre-trained models motivates this work
to adopt hidden embeddings from SSL models [18, 19]. We use the
Wav2vec 2.0-Large XLSR (“w2v2-lg-xlsr”) [10] to extract cross-
lingual contextualised speech representations [20]. The Wav2vec 2.0
Large XLSR is trained on the CommonVoice corpus [21] by solv-
ing a contrastive task over masked latent speech representations and
jointly learning a quantization of the latent representations shared
across various languages.

The “w2v2-lg-xlsr” model contains one convolutional feature
encoding layer and 24 stacked Transformer layers. The convo-
lutional layer contains temporal convolutions with kernel widths
(10,3,3,3,3,2,2) and strides (5,2,2,2,2,2,2), which yield a receptive
field of about 320 samples. Through this convolutional layer, we
can obtain a feature map with a shape of 49 × 1024 (dimensions of
time and the embedding, respectively) for each one-second segment
with a 16kHz sampling rate from input vocal burst signals. To avoid
information loss caused by only using the last Transformer layer of
the Wav2vec model, we leverage both the Transformer layers and
the convolutional layer. We use learnable weights to sum up all the
hidden states of the 24 stacked Transformer layers and the output
feature map from the convolutional layer.

An attentive time pooling layer [22] follows the weighted
summed features and is used to compress the feature sequence with
variable lengths into a fixed-length vector. The attention mechanism
also enables flexible focus on important frames for target predic-
tion, by allocating more weights to the corresponding frames in the
summation. Then, we project the features into a lower-dimensional
vector to reduce redundancy, while retaining the intra-class vari-
ability. A batch normalization layer [23] is applied to standardize
the high-level features before the features are fed to the subsequent
classifiers and regressors.

Fig. 2. Distribution of laugh, cry and scream of the TYPE task in the
arousal-valence space of the TWO task. It can be found that different
VB types have different distributions that could be modeled.

2.3. Hierarchical Multi-task Learning

We propose an elaborate hierarchical framework to explicitly model
the relationships between the tasks. There are five tasks investigated
in our framework [7]:

• TWO This task aims to predict the emotion of AB in a space
with two dimensions, i.e., arousal and valence, based on the
circumplex model of affect [24].

• HIGH The HIGH task is to predict the emotion intensity in
a higher-dimensional space of 10 emotion classes, including
surprise, sadness, excitement, fear, etc.

• COUNTRY We design this task to consider the relationship
between VB and habitation locations. There are 4 countries
considered in this task, i.e., U.S., China, Venezuela and South
Africa.

• CULTURE This is a cross-cultural emotion task to predict
the intensity of the 10 emotions associated with the above 4
countries.

• TYPE This task focuses on the prediction of 8 VB types, i.e.,
cry, gasp, groan, grunt, laugh, pant, scream, and other.

Following [25], we used different layers to disentangle task-agnostic
and task-specific information. The shared feature extractor is trained
to extract features that are generally useful for the different predic-
tion tasks, while each task-specific feature extractor captures infor-
mation that is more related to the corresponding task.

In terms of the relationship between emotion dimensions, the
arousal and valence values in the TWO task can imply the emo-
tion classes in the high-dimensional emotion space in the HIGH or



TYPE tasks [26]. As shown in Fig. 2, distributions of the VB types,
laugh, cry and scream, are different in the arousal-valence space.
The labels in the CULTURE task are combinations of emotions and
countries. Therefore, the predictions of the HIGH, TYPE, CUL-
TURE and COUNTRY tasks are conditioned on the predicted re-
sults of the TWO task, i.e., the predicted arousal and valence values.
Since CULTURE task targets are combinations of emotion classes
and countries, the system is designed to generate the CULTURE out-
puts based on the predictions from the HIGH and the COUNTRY
tasks.

2.4. Bi-directional Regression Chain

Fig. 3. Pearson correlation coefficients between emotion classes in
the HIGH task based on training data.

It is noteworthy that the emotion classes are not independent, for
example, a higher score in amusement implies higher score in excite-
ment and lower scores in fear and horror. We visualize the Pearson
correlation coefficients between the emotion classes on the training
subset in Fig. 3. It is clearly shown that some pairs demonstrate
significant correlation, which needs to be explicitly considered.

To model such relationships between emotion classes, we used
a bi-directional regression chain to explicitly model the label depen-
dency for the HIGH and CULTURE tasks. In a regression chain,
with the predictor of the i-th emotion and the extracted feature de-
noted as fi and z, respectively, the emotion score is calculated by:
ŷi = σ(fi(z

⊕
ŷ<i)), where σ is the sigmoid function,

⊕
is the

vector concatenation operator, and ŷ<i is the previous predicted
emotion scores before the i-th emotion prediction.

To mitigate the effect from the emotion order of the chain, we
accumulate absolute coefficients of each emotion, and arrange the
order from higher accumulated values to lower ones, as shown in the
x-axis in Fig. 3. We then modify the chain regression layer to be
bi-directional by adding another chain in the reverse direction.

2.5. Loss Functions

For the countries and labels in TYPE task, categorical cross entropy
(CE) is used as the main loss function. For the labels in the TWO,
HIGH and CULTURE tasks, averaged biased concordance correla-
tion coefficient (CCC) is adopted as the main loss function [27]. The
biased CCC is defined in Eq. 1.

CCC(xi, yi) =
1

N

∑ 2 ∗ cov(xi, yi)

σ2
xi

+ σ2
yi + (µxi + µyi)

2
, (1)

where N is the number of labels, and µxi , µyi is the mean of i-th
prediction and the corresponding ground truth values, respectively.
The biased covariance is defined as cov(xi, yi) =

∑
(xi−µxi)(yi−

µyi).
The total loss function is a weighted combination of the losses

in the main task and the auxiliary tasks:

LTarget = λLTarget + (1− λ) ∗
∑

(LAuxiliary), (2)

where LTarget and LAuxiliary are the loss functions for the target
and the auxiliary tasks, respectively, and λ is a hyperparameter of
the loss weights.

3. EXPERIMENTS

3.1. The A-VB Data

We use the HUME-VB dataset of emotional non-linguistic vocaliza-
tions (vocal bursts) [28] that is used in the ACII A-VB Competition
2022 [29]. The competition aims to promote research on model-
ing emotion in vocalizations, and proposes four tasks utilizing the
HUME-VB data: the Two-Dimensional (TWO), High-Dimensional
(HIGH), Cross-Cultural High-Dimensional (CULTURE) regression
tasks, and the Expressive Burst-Type (TYPE) classification task. The
HUME-VB data contains about 37 hours of audio data from 1702
speakers from China, South Africa, the U.S., and Venezuela. Each
vocal burst is labeled from an average of 85.2 raters with intensi-
ties in [1:100] of ten different expressed emotions, amusement, awe,
awkwardness, distress, excitement, fear, horror, sadness, surprise,
and triumph. The data is subsequently partitioned into training, val-
idation, and test splits, with consideration of speaker independence
and balances across countries and vocalization types.

In this work, our target tasks are the TWO, HIGH and CUL-
TURE tasks, while the COUNTRY and TYPE are used as auxiliary
tasks. The TWO task aims to predict values of arousal and valence
(based on 1=unpleasant/subdued, 5=neutral, 9=pleasant/stimulated),
while The HIGH task aims to predict a higher dimension, i.e., the in-
tensity of the aforementioned 10 emotions. The CULTURE task is a
10-dimensional, 4-country culture-specific emotion intensity regres-
sion task, i.e., it aims to predict the 40 intensity values of emotion
(10 from each culture).

3.2. Experimental Setup

In this work, we set the dimensions of projection and shared layers
to 128 and 64, respectively. The task-specific Bi-directional chains
consist of two linear layers with sigmoid activation that are concate-
nated and averaged. The λ in Eq. 2 is set to 0.9. We use AdamW [30]
as our optimizer with a learning rate of 1e − 5 for the Wav2vec 2.0
model finetuning and 1e−3 for the downstream module training. To
obtain a stabler CCC loss and alleviate the variance from the large
pretrained model, we train the system with a large batch size of 1024
and a weight decay of 1e−3. A 0.25 dropout is added between every
two modules. We also apply early stopping (patience of 10, maxi-
mum of 25 epochs) to avoid overfitting the model. The systems are
evaluated on the validation and test datasets with the averaged biased
CCC metric for the target tasks.

3.3. Baselines

The baseline systems in this challenge include feature-based and
end-to-end methods [29]. The feature-based approach extracts
6,373-dimensional ComParE [31], 88-dimensional eGeMAPS [32]



acoustic feature sets, and models the features with three fully-
connected layers with layer normalization. While the end-to-end
approach uses Emo-18 [33] convolutional neural networks followed
by a 2-layer Long-short term memory (LSTM) network.

3.4. Experimental Results

Approach TWO HIGH CULTURE
Val. Test Val. Test Val. Test

ComParE .4942 .4986 .5154 .5214 .3867 .3887
eGeMAPS .4114 .4143 .4484 .4496 .3229 .3214
END2YOU .4988 .5084 .5638 .5686 .4359 .4401

Ours .6966 .6854 .7351 .7237 .6464 .6017

Table 1. Experimental results on the TWO, HIGH, and CULTURE
tasks of the ACII A-VB challenge 2022. the mean concordance cor-
relation coefficient (CCC) is reported.

We compare our system with the baselines on the TWO, HIGH
and CULTURE tasks in Table 1. It can be found that the proposed
system outperforms the baselines on all three tasks by a significant
margin. This demonstrates the effectiveness of the proposed hierar-
chical framework.

Approach Averaged CCC

ComParE .5154
eGeMAPS .4484
END2YOU .5638

Ours .7351
- Finetune .6103
- Regression Chain .6513
- Finetune & Regression Chain .5540

Table 2. Ablation study for the HIGH task on the validation data.
“Ours” means the hierarchical framework with chain regression and
finetuned Wav2vec 2.0, “-” means removing corresponding module
from “Ours”.

We also conducted experiments to verify the effectiveness of the
integrated pre-trained representations and the regression chains on
the HIGH task. As shown in Table 2, when the SSL representa-
tions are directly used without further fine-tuning on the HUME-
VB dataset, the performance drops from 0.7351 to 0.6103, but still
outperforms the baseline systems. If the regression chains are re-
moved, the performance also decreases significantly, which demon-
strates the effectiveness of the regression chains for the HIGH task.
These results also suggest that the combination of fine-tuned SSL
representations that implicitly borrow from external data, and the re-
gression chains that model interactions between emotion classes, are
both beneficial for performance.

Approach Valence Arousal Average

Ours .7622 .6309 .6966

Table 3. Performance (CCC) of proposed system for the TWO task
on all validation data.

We further analyze the performance of the arousal and valence
prediction in the TWO task. The breakdown of performance is
shown in Table 3. It can be observed that the CCC of predicted
valence values is much higher than that of predicted arousal values.
This matches well with the characteristics of the HUME-VB dataset
– that the distribution of human valence annotation is more diffuse
than the arousal distribution [7].

Approach Awe Excite. Amuse. Awkward. Fear
Ours .8169 .6962 .7928 .6085 .7742

Approach Horror Distress Triumph Sadness Surprise
Ours .7528 .7010 .6914 .7110 .8063

Table 4. Performance (CCC) of the proposed method for the HIGH
task on the validation data.

For the HIGH task, the performances of different emotion
classes are shown in Table 4. It can be seen that all 10 classes
have satisfactory performance. In particular, the awkward class is
relatively more difficult with a slightly lower performance, which is
also observed in [34].

Countries Average Train Val.

China .6149 79 76
U.S. .7302 206 206
South Africa .6520 244 244
Venezuela .5885 42 42

Table 5. Performance (CCC) of the proposed method for the CUL-
TURE task on the validation dataset. Distribution of recording num-
bers for the four countries on the training and validation sets is also
shown.

In the CULTURE task, it can be found that the performance for
the data from Venezuela is significantly worse than the other loca-
tions. This is probably caused by the unbalanced distribution in the
dataset. This is shown in Table 5, where the training and validation
data for Venezuela is much less compared to the data for U.S. and
South Africa. Similarly, the performance for China is also inferior
to the those for U.S. and South Africa.

4. CONCLUSION

In this paper, we investigate affective vocal burst recognition
(AVBR) by proposing a hierarchical framework with bi-directional
regression chains to explicitly consider multiple relationships, (i)
between emotional states and diverse cultures, (ii) between low-
dimensional and high-dimensional emotion spaces, and (ii) between
various emotion classes within the high-dimensional space. To ad-
dress the data sparsity problem in AVBR, we also integrate SSL
representations via a trainable aggregation method. The proposed
framework achieves significantly better performance than baseline
systems on the HUME-VB dataset. Data analysis on the dataset and
the experimental results also supports the necessity of modeling the
inherent relationships. In the future, we will investigate imbalanced
learning w.r.t. cultures and labels in the AVBR task. We will also
try to interpret the affective cues from the high-level embeddings for
VBs.
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