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Abstract—Accurate recognition of cocktail party speech con-
taining overlapping speakers, noise and reverberation remains
a highly challenging task to date. Motivated by the invariance
of visual modality to acoustic signal corruption, an audio-visual
multi-channel speech separation, dereverberation and recognition
approach featuring a full incorporation of visual information into
all system components is proposed in this article. The efficacy of
the video input is consistently demonstrated in mask-based MVDR
speech separation, DNN-WPE or spectral mapping (SpecM) based
speech dereverberation front-end and Conformer ASR back-end.
Audio-visual integrated front-end architectures performing speech
separation and dereverberation in a pipelined or joint fashion
via mask-based WPD are investigated. The error cost mismatch
between the speech enhancement front-end and ASR back-end
components is minimized by end-to-end jointly fine-tuning using
either the ASR cost function alone, or its interpolation with the
speech enhancement loss. Experiments were conducted on the
mixture overlapped and reverberant speech data constructed using
simulation or replay of the Oxford LRS2 dataset. The proposed
audio-visual multi-channel speech separation, dereverberation and
recognition systems consistently outperformed the comparable
audio-only baseline by 9.1% and 6.2 % absolute (41.7 % and 36.0 %
relative) word error rate (WER) reductions. Consistent speech
enhancement improvements were also obtained on PESQ, STOI
and SRMR scores.

Index Terms—Audio-visual, speech separation, speech
dereverberation, speech recognition, end-to-end, conformer.

1. INTRODUCTION

ESPITE the rapid progress of automatic speech recogni-
D tion (ASR) in the past few decades, accurate recognition
of cocktail party speech [1], [2] remains a highly challenging
task to date. Its difficulty can be attributed to multiple sources of
interference including overlapping speakers, background noise
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and room reverberation. These lead to a large mismatch between
the resulting mixture speech and clean signals.

To this end, microphone arrays play a key role in state-of-the-
art speech enhancement and recognition systems designed for
cocktail party overlapped speech and far-field scenarios [3], [4],
[5]. The required array beamforming techniques used to perform
multi-channel signal integration are normally implemented as
either time or frequency domain filters. These are represented
by time domain delay and sum [6], frequency domain minimum
variance distortionless response (MVDR) [7], [8] and gener-
alized eigenvalue (GEV) [9] based multi-channel integration
approaches. Earlier generations of mixed speech separation
and recognition systems featuring conventional multi-channel
array beamforming techniques typically used a pipelined system
architecture. It contains separately constructed speech enhance-
ment front-end modules designed to perform speech separation,
dereverberation as well as denoising tasks, and speech recogni-
tion back-end components.

With the wider application of deep neural networks (DNNs)
based speech technologies, microphone array beamforming
techniques have also evolved into arich variety of neural network
based designs in recent few years. These include: a) neural
time-frequency (TF) masking approaches [10], [11], [12] used to
predict spectral mask labels for a reference channel that specify
whether a particular TF spectrum point is dominated by the target
speaker or interfering sources to facilitate speech separation;
b) neural Filter and Sum approaches directly estimating the
beamforming filter parameters in either time domain [13] or
frequency domain [14] to produce the separated outputs; and c)
mask-based MVDR [4], [15], [16], [17], [18], [19], and mask-
based GEV [20], [21] approaches utilizing DNN estimated TF
masks to compute target speaker and noise specific speech power
spectral density (PSD) matrices and to obtain the beamforming
filter parameters, while alleviating the need of explicit direction
of arrival (DOA) estimation.

In many practical applications, reverberation presents a fur-
ther challenge which can lead to severe speech recognition per-
formance degradation [22], [23] when such systems are trained
on anechoic and non-reverberant data. Classical solutions to the
resulting dereverberation problem represented by, for example,
weighted prediction error (WPE) [24], require the estimation of a
time delayed linear filter. In recent years, there has been a similar
trend of conventional speech dereverberation approaches [24],
[25], [26], [27] such as WPE evolving into their current DNN
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based variants. These include: a) the DNN-WPE [22], [23]
method, which uses neural network estimated target signal PSD
matrices in place of those traditionally obtained using maximum
likelihood estimation trained complex value Gaussian Mixture
Models [24] in the dereverberation filter estimation; and b)
complex spectral masking [28], [29] and spectral mapping [30],
[31] learning a transformation between reverberant and anechoic
data.

End-to-end all neural microphone array based speech en-
hancement and recognition systems present a comprehensive
and overarching solution to the cocktail party speech problem
by simultaneously performing speech separation, denoising and
dereverberation. However, efforts on developing such systems
are confronted by a number of key research challenges.

1) Full incorporation of video modality: Motivated by the
bimodal nature of human speech perception and the invariance
of visual information to extrinsic acoustic corruption, there has
been a long history of developing audio-visual speech enhance-
ment [32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42],
[43], [44], [45], [46], [47], [48], [49] and recognition [50], [51],
[52], [53], [541, [55], [561, [571, [58], [59], [60], [61], [62], [63],
[64], [65], [66] techniques. When processing the cocktail mixed
speech, a holistic, consistent incorporation of visual informa-
tion in all components of the entire system (speech separation,
dereverberation and recognition) is preferred. In contrast, among
existing researches, video information has mainly been partially
incorporated into: a) the speech enhancement (separation and/or
dereverberation) front-end [33], [34], [35], [36], [37], [38], [39],
[40], [41], [42], [43], [44], [45], [46], [47], [48], [49] alone; or
b) the speech recognition back-end [50], [51], [52], [53], [54],
[55], [561, [571, [58], [59], [60], [61], [62], [63], [64], [65], [66]
only. More recent works used video information in both the
multi-channel speech separation and ASR [67], but not in speech
dereverberation.

2) Integration between speech separation and dereverbera-
tion modules: Surface reflection of speech signals in reverberant
environments distorts the DOA or TF-mask estimation for the
target speaker. At the same time, interfering sound sources also
impact the dereverberation filter estimation. Hence, a suitable
form of integration between the speech separation and derever-
beration techniques is required within the speech enhancement
front-end sub-system. Possible integration solutions include:
a) a pipelined architecture within which the speech separation
and dereverberation components are sequentially connected in
any order such as the previous researches in [21], [48], [68];
or b) a single architecture where both these two enhancement
functions are implemented, for example, using weighted power
minimization distortionless response (WPD) [69], [70], [71] and
the related DNN TF-mask based WPD [72], [73] approaches.
To date, such integration problem has only been investigated for
audio-only speech enhancement [21], [69], [70], [71], [72], [ 73],
[741], [75], [76], [77], but has not been studied for audio-visual
speech separation and dereverberation.

3) Joint optimization of audio-visual speech enhancement
front-end and recognition back-end: Conventional non-DNN
based speech enhancement front-end models are often sepa-
rately constructed and cannot be easily integrated with the ASR
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back-end. The wide application of deep learning approaches for
speech enhancement and recognition components allows them
to be more tightly integrated and consistently optimized in an
end-to-end manner. An improved trade-off between the speech
enhancement front-end loss function and ASR accuracy can
then be obtained, for example, using multi-task learning [67],
[78], [79]. To date, such joint speech enhancement front-end and
ASR back-end optimization has been only conducted among: a)
audio-only speech enhancement and recognition systems using
no video input [19], [23], [72], [78], [80], [81], [82]; or b)
audio-visual speech separation and recognition tasks only while
not considering speech dereverberation [67], [79]. Hence, there
is a pressing need to derive suitable joint optimization methods
for a complete audio-visual multi-channel speech separation,
dereverberation and recognition system.

In order to address the above issues, an audio-visual multi-
channel speech separation, dereverberation and recognition ap-
proach featuring a full incorporation of visual information into
all three components of the entire system is proposed in this arti-
cle. The efficacy of the video input is consistently demonstrated
when being used in the mask-based MVDR speech separation,
DNN-WPE or spectral mapping (SpecM) based speech derever-
beration front-end and Conformer encoder-decoder based ASR
back-end components. Both the pipelined integration methods
using either a) a serial connection of the audio-visual speech
separation component with the following dereverberation mod-
ule; or b) audio-visual speech dereverberation followed by
separation; and c) joint speech separation and dereverberation
via audio-visual mask-based WPD are investigated. In order to
reduce the error cost mismatch between the speech enhancement
front-end and ASR back-end components, they are jointly fine-
tuned using either only the Conformer ASR cost function (CTC
plus Attention) [83], or the ASR cost function interpolated with
the speech enhancement loss based on mean square error (MSE)
and scale-invariant signal to noise ratio (SISNR).

Experiments conducted on the mixture overlapped and rever-
berant speech data constructed using either simulation or replay
of the benchmark Oxford LRS2 dataset [84] suggest:

1) The proposed audio-visual multi-channel speech separa-
tion, dereverberation and recognition systems consistently
outperformed the comparable audio-only baseline systems
by 9.1% and 6.2 % absolute (41.7 % and 36.0 % relative)
word error rate (WER) reductions on the LRS?2 simulated
and replayed evaluation datasets, respectively. Consis-
tent improvements of perceptual evaluation of speech
quality (PESQ) [85], short-time objective intelligibility
(STOI) [86] and speech to reverberation modulation en-
ergy ratio (SRMR) [87] scores were also obtained.

2) In particular, when compared with audio-only derever-
beration, incorporating visual information into the DNN-
WPE or SpecM based dereverberation module produced
consistent improvements of PESQ, STOI and SRMR
scores and a statistically significant! WER reduction by
up to 1.9% absolute (5.9% relative), irrespective of

'Matched pairs sentence-segment word error (MAPSSWE) based statistical
significance test [88] was performed at a significance level o = 0.05.
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the form of integration between speech separation and
dereverberation components.

3) Among different architectures to integrate the speech sep-
aration and dereverberation components within the front-
end, a pipelined, full audio-visual configuration perform-
ing DNN-WPE based speech dereverberation followed by
mask-based MVDR speech separation using video input in
both stages produced the best overall speech enhancement
and recognition performance.

4) Consistent WER reductions and improvements on speech
enhancement metric scores were also obtained after joint
fine-tuning the entire audio-visual speech separation, dere-
verberation and recognition system in a fully end-to-end
manner.

The main contributions of this article are summarized below:

1) To the best of our knowledge, this article presents the
first use of a complete audio-visual multi-channel speech
separation, dereverberation and recognition system archi-
tecture featuring a full incorporation of visual informa-
tion into all three stages. In contrast, prior researches
incorporate visual modality in either only the speech
enhancement front-end [33], [34], [35], [36], [37], [38],
(391, [401, [41], [42], [43], [44], [45], [406], [47], [48],
[49], ASR back-end [50], [51], [52], [53], [54], [55], [56],
[57], [58], [59], [60], [61], [62], [63], [64], [65], [66], or
both the multi-channel speech separation and recognition
stages [67] but excluding the dereverberation component.

2) This article presents a more complete investigation of the
advantages of audio-visual dereverberation approaches
versus audio-only dereverberation methods based on
DNN-WPE and SpecM. In contrast, similar prior stud-
ies [48] were conducted only in the context of SpecM
based dereverberation.

3) To the best of our knowledge, this is the first work
that systematically investigates the suitable form of in-
tegration between the full audio-visual speech separation
and dereverberation modules within the speech enhance-
ment front-end. In contrast, similar studies in previous
researches were only conducted for audio-only speech
enhancement [72].

4) This article presents the first research to demonstrate that
performing an end-to-end joint optimization is useful for
training a complete audio-visual multi-channel speech
separation, dereverberation and recognition system. In
contrast, related prior studies were conducted only in the
context of audio-only speech enhancement and recogni-
tion [72].

We hope these findings above will provide valuable insights
for the practical development of state-of-the-art audio-visual
speech separation, dereverberation and recognition systems for
cocktail party and far-field scenarios.

The rest of the article is organized as follows. Audio-visual
multi-channel speech separation is reviewed in Section II. Sec-
tion III presents audio-visual multi-channel speech dereverber-
ation. Integrated audio-visual speech separation and derever-
beration approaches are proposed in Section IV. Section V
presents the audio-visual Conformer ASR back-end component
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and its joint fine-tuning with the speech enhancement front-end.
Experimental data setup and results are presented in Sections
VI and VII, respectively. Section VIII draws the conclusion and
discusses future research directions.

II. AUDIO-VISUAL MULTI-CHANNEL SPEECH SEPARATION

In this section, the multi-channel far-field speech signal model
is reviewed first, before the introduction of the audio-visual
multi-channel mask-based MVDR approach for speech sepa-
ration is presented.

A. Multi-Channel Far-Field Signal Model

In the far-field scenarios, the short-time Fourier transform
(STFT) spectrum of the received multi-channel speech signal
y(t, f) € C® recorded by a microphone array consisting of R
channels can be modeled as:

y(t,f):x(t,f)+n(t,f):g(f)S(t,f)—i—n(t,f), (1)

where t and f denote the indices of time and frequency bins,
respectively. x(¢, f) € C® is a complex vector containing the
clean speech signals received by the array channels. n(¢, f) €
C™ represents either the interfering speaker’s speech or additive
background noise alone, or a combination of both. g(f) € C*
denotes the array steering vector and S(¢, f) is the STFT spec-
trum of the target speaker’s clean speech.

B. Mask-Based MVDR

Classic acoustic beamforming approaches [7], [8], [9] are
designed to capture the speech from the target speaker’s direction
while attenuating the interfering sounds coming from other loca-
tions. This is realized by setting, or “steering”’, the beamforming
filter parameters to the target direction. Taking the MVDR
beamformer as an example, a linear filter wyyvpr(f) € CF is
applied to the multi-channel mixture speech spectrum y (¢, f) to
produce the filtered output SMVDR (t, f) as:

Swvor (t, f) = wavor (F) v (L, f). (2)
= wwvor () x(t, ) + wamvor (f) T n(t, £),

target speech component

residual noise

3)

where (-)f denotes the conjugate transpose operator.

The MVDR beamformer is designed to minimize the residual
noise output while imposing a distortionless constraint on the
target speech [7], which can be formulated as

> [wavor(f)n(t, f)\2 : “4)

min
wwmvpr (f)

2
‘ —0,

. H
subject 0+ 3 |, — wavor (/)" x(¢, f)
t
where u, = [0,0,...,1,...,0]T € R¥ is a one-hot reference
vector where its 7-th component equals to one. (-)7" denotes
the transpose operator. Without loss of generality, we select the

first channel, i.e., » = 1 as the reference channel among the R
channels throughout this article.
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Audio-visual multi-channel speech separation using mask-based MVDR approach (a), and joint speech separation & dereverberation module using

mask-based WPD in (b). Both use the same audio-visual embeddings (left part of the figure) for their complex masks estimation. Y;.(¢, f) € C is the 7-th channel’s
complex spectrum of mixture speech among R microphone channels. V (¢) and A (¢) denote the audio and visual embeddings at frame index ¢, respectively.
The internal structural details of the TCN block and Visual Conv1DBlock are shown in Fig. 2. The MVDR filter wirypr (f) € C* is estimated using the target
speech and noise PSD matrices &, (f) € CE*F and &,,(f) € CE*E with their respective complex TF masks My (¢, f) € Cand M- (¢, f) € C. The
WPD filter wwpp (f) € CIADE j5 estimated using the target speaker and power normalized spatial-temporal PSD matrices @z (f) € CUEADRX(L+DE gpg

®;(f) € CEADRXILADE with their respective complex TF masks

Mo (t, f) € Cand M (t, f) € C. Re(-) and Im(-) denote the real and imaginary

parts operators. D is the prediction delay parameter and L is the number of filter taps.

The distortionless constraint in the above optimization prob-
lem is equivalent to wyypr (f)?g(f) = 1, which can be inter-
preted as maintaining the energy along the target direction. The
MVDR beamforming filter is estimated as

®.(f)"'g(f) ®.(f)"'®u(f)

e(N7®,.(f) 'e(f) = (@.(f) %(f))‘é’“’
6)

WMVDR(f ) =

where the target speaker and noise specific power spectral den-
sity (PSD) matrices

> (Mo (t )y (¢ £)) (Migvor (8, £y (E )

@.(f) = S ME et ) (MEypr (6 ) 7
™)

5 (Mg (8 Dy (8 £)) Mgy (8 £y (2 )"

®n(f) = >t Migvor (8 f) (Mgypr (t, 1)) ,
(8)

are computed using DNN predicted complex TF masks
Mvpr(t, f) € C and Mypr(t, f) € C[19], [67]. tr(-) de-
notes the trace operator. (-)* is complex conjugate operator.

C. Audio Modality

As is illustrated in the top left corner of Fig. 1, three types of
audio features including the complex STFT spectrum of all the
microphone array channels, the inter-microphone phase differ-
ences (IPDs) [15] and location-guided angle feature (AF) [89]
are adopted as the audio inputs. IPDs features are used to cap-
ture the relative phase difference between different microphone
channels and provide additional spatial cues for mask-based
multi-channel speech separation. Angle features that are based

Output
Output P [::

1x 1-Conv

Oulpul#

1x 1-Conv

|

D-Conv

i

Batch Normalization
4
PReLU
4

D-Conv

uonoauuod dryg

Batch Normalization

wonoauuos drys

Batch Normalization
4

PReLU

PReLU
4

1x 1-Conv

Input

Input Input

(a) TCN (b) Visual Conv1DBlock

Fig. 2. Illustration of the architectures of: (a) the temporal convolutional
network (TCN) Block. Each dilated 1-D ConvBlock consists of a 1 x 1
convolutional layer, a depth-wise separable convolution layer (D-Conv) [91],
with PReLU [92] activation function and batch normalization added between
each two convolution layers. Skip connections are added in each dilated 1-D
ConvBlock; and (b) Visual ConvlDBlock which consists of a PReLU [92]
activation function, batch normalization, a depth-wise separable convolution
layer (D-Conv) [91] and a 1 x 1 convolutional layer with skip connection.

on the approximated DOA of the target speaker’ are also in-
corporated to provide further spatial filtering constraints. In this
work, the approximated DOA of the target speaker is obtained
by tracking the speaker’s face from a 180° wide-angle camera
(Fig. 1, bottom left corner).

Following prior researches on audio-visual multi-channel
speech separation [67], [68], the temporal convolutional network
architecture (TCN) [90], which uses a long reception field to
capture more sufficient contextual information, is used in our
separation system. As shown in the left of Fig. 2, each TCN
block is stacked by 8 Dilated 1-D ConvBlock with exponentially
increased dilation factors 2°, 21, ... ., 27. As shown in the top left

The target speaker is located using a 180-degree wide-angle camera to track
the speaker’s face. The camera approximated DOA of target speaker is only used
in AF features.
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corner of Fig. 1, the log-power spectrum (LPS) features of the
reference microphone channel are concatenated with the IPDs
and AF features before being fed into a single TCN module based
Audio Block to compute the audio embeddings A € RFa*Ta,
where F}, is the dimension of audio embeddings and 7, is the
number of audio frames.

D. Visual Modality

The lip region of a target speaker obtained via face tracking
is fed into a LipNet [93] which consists of a 3D convolutional
layer (Fig. 1, bottom left, in pink) and an 18-layer ResNet [94]
(Fig. 1, bottom left, in light turquoise), to extract the visual
features from the target speaker’s lip movements. Before fusing
the visual features with the audio embeddings to improve the
TF masks estimation, the visual features are firstly fed into the
linear layer followed by the Visual Block containing five Visual
ConviDBlocks (Fig. 1, bottom, in light brown, the detailed
network architecture is illustrated in the right of Fig. 2), and then
the output of Visual Block is up-sampled to be time synchronised
with the audio frames via linear interpolation to compute the
visual embeddings V € Rfv*Te_ where F, is the dimension of
visual embeddings. In this work, the LipNet model is pretrained
on the lipreading task as described in [93].

E. Modality Fusion

In order to effectively integrate the audio and visual embed-
dings, a factorized attention-based modality fusion method [67],
[68] is utilized in the audio-visual speech separation module. As
shown in Fig. 1 (middle up), the acoustic embeddings at frame
index t denoted by A(t) are first factorized into K acoustic
subspace vectors [e§ (t),e5(t), . . ., €% (t)] by aseries of parallel
linear transformation P¢ € R¥«*¥«_The visual embeddings at
frame index ¢ named by V(¢) is mapped into a K dimensional
vector e (t) = [e¥(t),es(t),...,e%(t)]T by projection matrix
PY € REXF g5

e1(t), €5(t), ..., ek ()] = [PT, Py, ..
e’(t) = Softmax (P*V (1)),

S PRIA®M), 9
(10)

Then the fused audio-visual embeddings AV (t) € R are

K
AV(t)=0o <Z e%(t)ei(t)) , (1n
k=1

where o (-) is the sigmoid function.

The above audio-visual embeddings are fed into both the
Target Speech Block and Noise Block (Fig. 1, center), before
their respective outputs being further fed into the corresponding
linear layers (Fig. 1, top right, yellow blocks) to estimate the
complex TF masks Miypr(t, f) € C and M}ypr(t, f) € C
required by the target speech and noise PSD matrices in (7)
and (8) for MVDR filter estimation. After MVDR filtering,
the separated target speech spectrum is inverse STFT (iSTFT)
transformed to produce the corresponding waveform.
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E Separation Network Training Cost Function

Following the prior researches [36], [48], [67], [68], the
mask-MVDR based multi-channel speech separation network
is trained to maximize the SISNR metric, unless further joint
fine-tuning with the back-end ASR error loss later presented in
Section V is performed.

III. AUDIO-VISUAL MULTI-CHANNEL SPEECH
DEREVERBERATION

In this section, the multi-channel far-field signal model is
reformulated with additional reverberation. Audio-visual multi-
channel speech dereverberation approaches based on audio-
visual DNN-WPE and SpecM are then proposed. The incor-
poration of the video features and its fusion with audio modality
in both methods are also presented.

A. Multi-Channel Far-Field Signal Model With Reverberation

In reverberant conditions, the target speech signal x(¢, f) of
(1) is further decomposed into two parts. The first part consists
of the direct signal and early reflections, referred to as the
desired signal d(t, f) € C¥, while the other contains the late
reverberation r(¢, f) € C®. This is given by

D-1 D+L-1
x(t,f) =Y alnHSt—7/)+ > alr,f)S{t—r1,f)
T7=0 =D

d(t.f) r(t.f)

12)

where D denotes the prediction delay parameter and L is the
number of filter taps. a(7, f) € CF is the room reverberant
transfer function from a given speaker to all microphones for 7 €
{0,1,...,D + L — 1}. The dereverberation process requires
the desired signal d(t, f) to be preserved to enhance speech
intelligibility and improve ASR performance, while the late
reverberation r(¢, f) to be eliminated [24].

B. DNN-WPE Based Dereverberation

In conventional WPE [24], the dereverberated signal d (¢, f)
can be obtained by applying the WPE filter Wypg (f) € CEEXE
to the reverberant multi-channel signal as follows:

d(t, f) = x(t, f) = Wwes(H%(t = D, f),  (13)
where x(t—D,f)=x(t—-D,)T,...,x(t—D— L+
1, /)77 e CLR is the time-delayed reverberant speech
spectrum vector.

The required WPE filter coefficients are traditionally esti-
mated using maximum likelihood estimation [24]. It is assumed
that the desired signal at each microphone follows a time-varying
complex Gaussian distribution with a mean of zero and a time-
varying variance A(t, f), which corresponds to the power of
the desired signal. Minimizing the average power of the frame
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Tlustration of audio-visual multi-channel speech dereverberation networks based on the (a) DNN-WPE or (b) SpecM approaches of Sections IT1I-B and

I1I-C respectively. X.(t, f) € C is the 7-th channel’s complex spectrum of reverberant speech among R microphone channels. V (¢) and A (t) denote the audio
and visual embeddings at frame index ¢, in common with Fig. 1. During WPE filter estimation, the signal variance A(t, f) is obtained using DNN predicted TF
complex mask Mwpg (¢, f) € C. x(t, f) € (CF is the input multi-channel reverberant speech signal. D denotes the prediction delay parameter and L is the number
of filter taps. Mspeem(t, f) € C denotes the complex TF mask for SpecM based dereverberation.

prediction errors weighted by A~ (¢, f),

Hx(t, f) = Wwee(f)#x(t — D, f)H;
2 W) |

min
{Wwee(f),A(¢, )}
(14)

leads to alternating updates between the WPE filter parameters,

x(t— D, f)x(t — D, f)H

t WD)
x(t — D, f)x(t, /)H
2 Sh) s

and the residual signal power given the current WPE filter

M) =z [ae ],

where || - ||2 denotes the Euclidean norm. The above alternating
estimation procedure iterates until convergence.

Recent deep neural network extension to WPE led to the
DNN-WPE approach [22], where the filtered signal power
A(t, f) is estimated using DNN (e.g. LSTM [22]) predicted TF
complex mask® Mypg(t, f) € C. This is given by

(16)

Mt f) = 3 e (6, (e, P2,

An example of DNN-WPE based dereverberation is shown in
Fig. 3 (top right, in light blue).

a7

C. SpecM Based Dereverberation

In addition to DNN-WPE based dereverberation, SpecM
based dereverberation is also leveraged in this work. A neural
network based TF spectral transformation between the input
reverberant and desired anechoic speech spectrum is learned
as follows:

&(t, f) = WSPCCM(t7 f)X(t, f) = MSPCCM(t7 f)X(t, f)7 (13)

3 Alternatively using channel dependent predicted mask Mpg(t, f) pro-
duced comparable performance in practice while increasing the system training
time approximately by a factor of 5, and therefore not considered.

where Wspeem(t, f) € C denotes the SpecM filter and Mspeem
(t, f) € Cis the estimated complex TF-mask for SpecM based
dereverberation.

An example of SpecM based speech dereverberation is shown
in Fig. 3 (bottom right, in light yellow). Compared with DNN-
WPE, although the SpecM based dereverberation approach can
provide perceptually enhanced sounds, it has been reported
that the artifacts resulting from deterministic spectral masking
introduced a negative impact on downstream speech recognition
system performance [3], [15], [16].

D. Audio-Visual Speech Dereverberation

The audio and video embeddings previously used in the
mask-based MVDR speech separation network of Section II
and Fig. 1 are concatenated* before being fed into an AV Fusion
Block consisting of three TCN modules to produce the integrated
audio-visual embeddings (Fig. 3, left).

These audio-visual embeddings are then forwarded into linear
layers (Fig. 3, right, yellow blocks) to estimate the complex
TF masks of the desired speech for either DNN-WPE (Fig. 3,
top right, light blue) or SpecM (Fig. 3, bottom right, light
yellow) based dereverberation filter estimation. In this work, the
dereverberation network is trained in both cases using the MSE
loss computed between the filtered and ground-truth anechoic
speech spectrum [22], [48], [68].

IV. AUDIO-VISUAL SEPARATION AND DEREVERBERATION

In this section, three integrated audio-visual speech separation
and dereverberation architectures are proposed. These include:
a) a serial pipelined connection of the audio-visual speech sep-
aration component with the following dereverberation module;
or b) conversely audio-visual speech dereverberation followed
by separation; and c) joint speech separation & dereverberation
using audio-visual mask-based WPD.

4 Alternative audio-visual modality fusion methods, e.g. using the factorized
attention based fusion mechanism of Section II-E for speech separation, led to
performance degradation in practice and therefore not considered.
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A. Audio-Visual Speech Separation-Dereverberation

In the audio-visual speech separation-dereverberation archi-
tecture, the multi-channel mixture speech spectra y (¢, f) € C%
as well as the extracted visual features and the camera cap-
tured target speaker’s DOA from the Visual Front-end mod-
ule (e.g. Fig. 1, bottom left corner, in light green) are first
fed into the MVDR separation module as shown in Fig. 1(a)
to produce single-channel outputs, SMVDR(t, f), before being
connected to the dereverberation module based on DNN-WPE
or SpecM as shown in Fig. 3 to obtain the final enhanced speech
dMVDR—WPE(ta f) € Cor dMVDR-SpeCM (t7 f) eC, respectively.

When DNN-WPE based dereverberation is used, this is com-
puted in a two stage, pipelined manner as
Swvor (t, f) = wavor (f) 7y (L, f). (19)

dyivor-wee (1, f) = Suvor (L, f)

(20)

where

Smvor(t — D, f)

- [SMVDR(t D, f)er . Savor(t— D — L +1, f)r

denotes the enhanced single-channel output of the MVDR beam-
former from the past L frames and Syypr(t — D, f) € C~.
Here, Wywpe (f) € CL represents the single-channel WPE filter.
L is the number of filter taps and D denotes the prediction delay
parameter in WPE.

When SpecM based dereverberation is used, the final en-
hanced single-channel speech spectrum is computed as

SMVDR(t7 f) (t, f),
Wspeem(t, f)SMVDR(tv f)

= WMVDR(f)Hy 210

dmvor-speem(t, f) = (22)

B. Audio-Visual Speech Dereverberation-Separation

In contrast to the above, connecting the speech dereverbera-
tion and separation modules in a reverse order leads to the audio-
visual speech dereverberation-separation architecture. The se-
quence of filtering operations of this architecture is performed
as follows:

When using DNN-WPE based dereverberation, the derever-
berated multi-channel output dwpg (t, f)isfirst produced, before
being fed into the MVDR separation filter to produce the final
single-channel speech spectrum Swpgmvor (£, f) as

dwee(t, f) = y(t. f) = Wwee(/)§(t — D, f),  (23)

SWPE—MVDR(tv )= WMVDR(f)HaWPE(ta 1), 24)
where S’(t_D7f):[Y(t_D7f)Ta ay(t_D_L+
L)

€ CI denotes the stacked vector representation of the
input multi-channel mixture speech signal.

When using SpecM based dereverberation, the above can be
expressed as

aSpecM(ta f) = WSpecM(ta f)Y(t7 f)7 (25)

— Wwee(f)?8mvor(t — D, f),
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gSpeCM—MVDR(tv )= WMVDR(f)HaSpeCM (t, 1) (26)

C. Audio-Visual Joint Speech Separation & Dereverberation

Combining the multi-channel speech separation and dere-
verberation functions into a single convolutional filter leads to
a joint speech separation and dereverberation architecture, for
example, based on WPD [69], [70],[71] and their DNN predicted
mask-based variants [72].

When producing the final enhanced speech spectrum, a single
WPD filter Wypp (f) € CEHDE is applied to the time-delayed
multi-channel mixed speech vector stacked by y (¢, f) € C® and
y(t — D, f)T € C as follows:

d(t, f) Tyt /)75t - D, pHT]",

The WPD beamformer is trained to minimize the average
weighted power of the filtered signal while satisfying an orthog-
onal constraint for channel synchronization without distorting
the target speech. This is given by

= wwpp(f) 27

I U (G A
win 2 i 9) o
subject to : wwpp(f)7g(f) = 1. (29)

where the signal variance is averaged across R channels as

At f RE]Mmmtﬂ (D

is estimated using DNN predicted TF complex mask of the
desired signal Mypp(t, f) € C. Y,.(t, f) represents the r-th
component of the multi-channel mixture speech signal y (¢, f).
g(f) =Ig(HT,0,...,0]7 € CEHDE s the padded steering
vector which is composed of a steering vector g(f) € C* and
the others 0 € C*? vectors. It can be shown that the solution of
the above WPD convolutional beamformer is:

®;(f)"'8(f) 25(f) @x(f) o
e(NT®y () 8(f)  tr(@y() 1 ®x(f)

wwep(f) =
(30)

where the target speaker and power normalized spatial-temporal
PSD matrices are

S (M (8, T, ) (Mep (. /)3 (E, 1))

@f? f p * )
= Dot Mpp (8, f) (Mpp (¢, f))
(€29)
YNy N
®;(f) = ; TR (32)
and §(t, f) = [y(t, £)7, 5t — D, f)T]T € COADR, =
[u,,0,...,0]T is the padded reference vector. Mpp (¢, f) € C

denotes the complex TF mask of target speech.

An example of mask-based WPD is illustrated in Fig. 1(b)
(bottom right, in light blue). The same audio-visual embeddings
that are used in mask-based MVDR separation module (Fig. 1,
top right, light yellow) are now fed into three TCN based Target
Speech Block and Time-varying Power Block for WPD filtering.
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Ilustration of an end-to-end audio-visual multi-channel speech separation, dereverberation and recognition system, which integrates the Speech

Enhancement Front-end, Visual Front-end, Feature Extraction and Conformer ASR Back-end components.

Their respective outputs are then fed into the separate linear
layers to estimate the complex TF masks Mpp (¢, f) € C and
Miypp(t, f) € Crequired for the computation of the two spatial-
temporal PSD matrices and finally the WPD filter parameters.
The entire mask-based WPD network is trained using an equally
weighted interpolation between the SISNR and MSE losses to
perform joint speech separation & dereverberation.

V. AUDIO-VISUAL MULTI-CHANNEL SPEECH RECOGNITION

In this section, the Conformer-based audio-visual speech
recognition back-end and its further integration with the speech
enhancement front-end are introduced.

A. Audio-Visual Conformer Speech Recognition Back-End

As shown in Fig. 4 (bottom left), the enhanced speech wave-
form produced by the speech separation and dereverberation
front-ends of Sections II, III and IV is fed through a STFT
transform before log Mel-filterbank (Mel-FBK) audio features
are calculated. As is also shown in Fig. 4 (top left), the visual
features extracted from the Visual Front-end are forwarded
into a linear layer before being up-sampled to be time syn-
chronised with the Mel-FBK audio frames. Finally, the audio
and visual features are concatenated and fed into the ASR
back-end.

The Conformer ASR back-end [95], [96] comprises a Con-
former encoder and a Transformer decoder. The Conformer
encoder has one convolutional subsampling module, and a lin-
ear layer with dropout operation followed by stacked encoder
blocks. The internal components of each Conformer encoder
block include: a position-wise feed-forward network module,
a multi-head self-attention module, a convolution module, and
a final position-wise feed-forward network module at the end.
All the encoder blocks additionally undergo layer normalization
and residual connections. Fig. 4 (right) shows an example of a
Conformer ASR system, where the backbone model architecture
is in the grey colored part (Fig. 4, bottom right). The detailed en-
coder block compositions are in the blue colored part (Fig. 4, top
right). The following multi-task criterion interpolation between
the CTC and attention error costs [83] is utilized in Conformer
model training,

Lask = (1= B)Latt + BLetc, (33)

where 3 € [0,1] is a tunable hyper-parameter and empirically
set as 0.3 for training and 0.4 for recognition in this article.

B. Integration of Speech Enhancement and Recognition

Traditionally, the speech enhancement front-end and recog-
nition back-end components are optimized separately and used
in a pipelined manner [15], [16], [21], [97], [98]. However,
two issues arise with this pipelined approach: 1) the learning
cost function mismatch between speech enhancement front-end
and recognition back-end components is not addressed; 2) the
artifacts brought by the speech enhancement front-end can lead
to ASR performance degradation. To this end, a tight integra-
tion of the audio-visual speech separation, dereverberation and
recognition components via joint fine-tuning [19], [23], [67],
[72], [78], [79], [80], [81], [82] is considered in this article.
Three fine-tuning methods are investigated: a) only fine-tuning
the back-end ASR component using the enhanced speech out-
puts while the front-end remains unchanged; b) end-to-end
jointly fine-tuning the entire system including the speech en-
hancement front-end and the recognition back-end components
using the ASR cost function; c¢) end-to-end jointly fine-tuning
the entire system using a multi-task criterion interpolation be-
tween the speech enhancement and recognition cost functions as
follows:

L= (1—7v)Lasr +7vLsk, (34
where v is empirically set as 0.5 in the experiments unless oth-
erwise stated. The precise form of the speech enhancement loss
function, Lgg, is determined by the underlying integrated front-
end architectures being used, as described in Section I'V. This is
expressed as follows: a) Lsg = Lgisnr for audio-visual speech
separation followed by dereverberation, as in Section IV-A; b)
Lsg = Lysg for audio-visual speech dereverberation followed

by separation, as in Section IV-B; and ¢) Lsg = Lsisnr + LMSE
for joint speech separation & dereverberation in Section IV-C.

VI. EXPERIMENTAL SETUP

This section is organized as follows. Section VI-A gives
the details of the LRS2 corpus. The simulated and replayed
multi-channel mixture speech datasets are described in Sec-
tions VI-B and VI-C, respectively. Section VI-D presents the
performance of the baseline single-channel ASR and AVSR sys-
tems on mixture speech. Finally, two important implementation
issues that affect the performance of the proposed audio-visual
multi-channel speech separation, dereverberation and recogni-
tion systems are discussed in Section VI-E.
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A. LRS2 Corpus

The Oxford LRS2 corpus [84] is one of the largest publicly
available corpora for audio-visual speech recognition. This cor-
pus consists of news and talk shows from BBC programs. This is
achallenging AV SR task since it contains thousands of speakers
with large variations in head pose. The LRS2 corpus is divided
into four subsets, i.e. Pre-train, Train, Validation and Test sets.
In our experiments, the official Pre-train and Train data sets are
combined for model training.

B. Simulated Overlapped and Reverberant Speech

Since there is no publicly available audio-visual multi-
channel mixture speech corpus, we simulated the multi-channel
mixture speech with overlapping and reverberation based on
the LRS2 corpus in the experiments. Details of the simulation
process are described in Algorithm 1. A 15-channel symmetric
linear array with non-even inter-channel spacing [7, 6, 5, 4, 3,
2,1,1,2,3,4,5, 6, 7]cm is used in the simulation process.
843 point-source noises [99] and 20000 room impulse responses
(RIRs) generated by the image method [100] in 400 different
simulated rooms are used in our experiment. The distance
between a sound source and the microphone array center is
uniformly sampled from a range of 1 m to 5 m and the room
size ranges from 4 m x 4 m X 3 mto 10 m x 10 m X
6 m (length x width x height). The reverberation time Tgg
is uniformly sampled from a range of 0.14 s to 0.92 s. The
average overlapping ratio is around 80%. The signal-to-noise
ratio (SNR) is uniformly sampled from {0, 5, 10, 15,20}dB, and
the signal-to-interference ratio (SIR) is uniformly sampled from
{—6, 0, 6}dB. In addition, the angle difference relative to the
microphone array between the target and interfering speakers is
uniformly sampled from four ranges of the angle difference {[0°,
15°), [15°, 45°), [45°, 90°), [90°, 180°)}. The final simulated
multi-channel datasets contain three subsets with 96997, 4272
and 4972 utterances respectively for training (91.37 hours),
validation (2.59 hours) and test (2.32 hours).

C. Replayed Mixture Speech

To further evaluate the performance of the proposed approach
in a more realistic application environment, a replayed test
set [67] with 1200 utterances (0.5 hours) of LRS2 Test set
recorded in a 10 m X 5 m x 3 m meeting room is also
used in our experiments. Two loudspeakers are used to replay
different utterances simultaneously to produce mixture speech.
The geometric specification of the microphone array used during
recording is the same as that used in the simulation. The target
and interfering speakers are located at the following directions
relative to the microphone array, i.e. { 15°/30°, 45°/30°, 75°/30°,
105°/30°, 30°/60°, 90°/60°, 120°/60°, 150°/60°}, where the
distance between the loudspeakers and microphones ranges from
1 m to 1.5 m. In the replayed data, the target speaker’s DOA is
captured by a 180° camera [67]. The average overlapping ratio
of the replayed mixture speech is around 80% and SIR is around
1.5 dB.
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Algorithm 1: Multi-Channel Mixture Speech Simulation.

Input: single-channel anechoic LRS2 corpus

Output: multi-channel mixture speech

foreach utterance in LRS2 do

1) Uniformly sample an interfering utterance from
another speaker in the LRS2 corpus;

2) Uniformly sample a room size from
dmx4mx3m to 10mx10mx 6m;

3) Uniformly sample a Tgo from 0.14s to 0.92s;

4) Uniformly sample a microphone array position
in the room;

5) Uniformly sample two speakers’ positions while
the distance between each speaker and the array
is within the range of 1m to 5m;

6) Uniformly sample an angle difference from
{[0°, 15°), [15°, 45°), [45°, 90°), [90°, 180°) };

while the angle difference of the target and
interfering speakers relative to the microphone
array not in the selected range do
| 7) Re-sample the interfering speaker’s position;

8) Generate two multi-channel RIRs for the target
and interfering speakers using the above settings
and applying the image method [100];

9) Convolve each single-channel anechoic speech
of current utterance with the corresponding
multi-channel RIRs to simulate room
reverberation;

10) Uniformly sample a SIR from {-6, 0, 6} dB;

11) Scale the target and interfering sources with
the sampled SIR;

12) Uniformly sample a noise from a total of 843
point-source noise types [99];

13) Add two scaled speaker speech signals along
with the selected noise under {0, 5, 10, 15, 20}dB
SNR to obtain the final multi-channel mixture
(overlapped, noisy and reverberant) speech.

D. Baseline System Description

1) Speech Enhancement Front-End: The 257-dimensional
complex spectrum of each channel is extracted using a 512-point
STFT with a 32 ms square-root Hanning window and 16 ms
frame rate (e.g. Fig. 1, top left corner). The AF and IPD features
are computed using 9 microphone pairs {1/15, 2/14, 3/13, 1/7,
12/4,11/5, 12/8,7/10, 8/9} to sample different spacing between
microphones following [67]. For each Dilated 1D Conv Block
in a TCN module (Fig. 2, left), the number of channels in the
1 x 1 Conv layer is set to 256. The kernel size of the D-Conv
layer is set to 3, with 512 channels. The output dimension of the
linear layer is set to 257.

2) Visual Front-End: The original 160 x 160 dimensional
video frames in the LRS2 datasets are centrally cropped by a
112 x 112 dimensional window and then up-sampled to be time
synchronised with the audio frames via linear interpolation. The
Visual Front-end (e.g. Fig. 1, bottom left corner, in light green)
uses the same hyper-parameter settings as described in [93]. In
addition, the number of the acoustic subspaces K is setto 10 with
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TABLE I
PERFORMANCE OF SINGLE-CHANNEL ASR AND AVSR SYSTEMS (WITHOUT
SPEECH ENHANCEMENT FRONT-END) TRAINED AND EVALUATED ON
ANECHOIC, REVERBERANT-ONLY AND MIXTURE SPEECH

Sys. ‘ Data ‘ ;e\gt:;zls SimV:ERgzglay
é ‘ Anechoic ‘ ‘)/( ‘ gg ‘ -
i ‘ Reverberant-only ‘ ‘)/( ‘ }(3)2 ‘
g Mixture of raw channel 1 ‘ ‘); ‘ ;;; ‘ 232

“Simu” and “Replay” denote the simulated and replayed evaluation datasets
of Sections VI-B and VI-C.

P¢ € R?56%256 and Pv € R19%2%6 in the factorized attention
layer [36].

3) Recognition Back-End: The 80-dimensional log Mel-
FBK features extracted using a 25 ms window and 10 ms frame
rate serve as the inputs to the recognition back-end. The baseline
Conformer models consist of 12 encoder and 6 decoder blocks
following the ESPnet recipe.’ Each encoder or decoder block is
configured with 4-head attention of 256 dimensions and 2048
feed-forward hidden units. The convolutional sub-sampling
module includes two 2D convolutional layers with a stride of 2,
each followed by a ReLU activation. 500 B-pair-encoding (BPE)
tokens are used as decoder outputs. All models are trained using
NVIDIA A40 GPU cards.®

4) Performance of Speech Recognition without Speech En-
hancement Front-End: Table 1 presents the WER results of
the single-channel input based Conformer ASR and AVSR
systems (without using a microphone array and any speech
enhancement front-end) on the anechoic, reverberant-only and
mixture speech. It can be observed that using visual informa-
tion can consistently improve the recognition performance over
the audio-only ASR systems by up to 1.5% absolute (17.0%
relative) WER reduction on the anechoic speech (sys. 2 vs.
sys. 1) and 3.3% absolute (23.9% relative) WER reduction
on the reverberant-only speech (sys. 4 vs. sys. 3). In particular,
the AVSR system significantly outperforms the audio-only ASR
system (sys. 6 vs. sys. 5) by up to 32.3% and 36.0% absolute
(56.2% and 61.4% relative) WER reductions on the simulated
and replayed mixture speech respectively.

E. Implementation Details

1) Number of Filter Taps: The number of filter taps L used
in WPE and WPD approaches has a huge impact on the quality
of the enhanced speech and the downstream recognition perfor-
mance. A set of ablation studies on the settings of filter taps L are
conducted for each of the three integrated speech separation and
dereverberation front-end architectures of Section IV (i.e. “Sep.

3 github.com/espnet/espnet/blob/master/egs/Irs2/asr1/run.sh

®The jointly fine-tuned speech enhancement front-end and recognition back-
end systems in Table V are trained using one thread on a single Nvidia A40 GPU
with a batch size of 24 and the GPU memory usage vary from 32 G to 43 G
maximum.
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TABLE I
PERFORMANCE OF THREE INTEGRATED SPEECH ENHANCEMENT FRONT-END
ARCHITECTURES WITH DIFFERENT NUMBERS OF FILTER TAPS (L) ON
SIMULATED MIXTURE SPEECH FOR SINGLE-CHANNEL DNN-WPE,
MULTI-CHANNEL DNN-WPE AND MASK-BASED WPD MODULES USED IN
AUDIO-ONLY SPEECH ENHANCEMENT FRONT-ENDS

Filter taps PESQ(1) / STOI(1) / SRMR(1)
Sys (L)‘ : Sep. — Dervb. Dervb. — Sep. Joint Sep. & Dervb.
(Single-channel DNN-WPE) (Multi-channel DNN-WPE) (Mask-based WPD)
1 1 2.21/72.07/5.32 2.44/79.63/6.31 2.42/76.63/6.64
2 2 2.22/72.42/5.29 2.46/79.75/6.44 2.40/76.64/6.83
3 3 2.23/72.69/5.32 2.45/79.66/6.50 2.40/76.51/6.97
4 4 2.23/72.86/5.35 2.45/79.53/6.57 2.36/76.10/7.04
5 5 2.24/72.98/5.39 2.44/79.32/6.60 2.34/75.78/7.08
6 7 2.24/73.20/5.45 2.41/78.47/6.72 2.30/75.05/7.11
7 9 2.24/73.35/5.51 2.38/77.87/6.70 2.27/74.48/7.16
8 12 2.25/73.53/5.58 2.34/76.73/6.80 2.20/73.28/7.12
9 15 2.25/73.65/5.64 2.28/75.20/6.83 2.12/71.74/6.90
10 18 2.25/73.73/5.70 2.24/74.18/6.90 2.06/70.39/6.66
11 21 2.25/73.71/5.75 2.18/72.67/6.84 1.98/68.90/6.48
12 24 2.25/73.71/5.79 2.11/71.09/6.90 1.87/66.20/6.02
13 27 2.25/73.70/5.82 2.02/68.96/6.72 1.81/64.60/5.83

TABLE III
PERFORMANCE OF SPEECH ENHANCEMENT FRONT-ENDS WITH DIFFERENT
DIAGONAL VARIANCE FLOORING (€) ON SIMULATED MIXTURE SPEECH FOR
MASK-BASED MVDR, SINGLE-CHANNEL DNN-WPE, MULTI-CHANNEL
DNN-WPE AND MASK-BASED WPD USED IN AUDIO-ONLY SPEECH
ENHANCEMENT FRONT-ENDS

Variance PESQ(1) / STOI(1) / SRMR(1)

. Sep. Sep. — Dervb. | Dervb. — Sep. .
Sys. flooring (Muskiascd (Sli)ng]c—channcl (Mulli—v;hannc%J Joint Sep. & Dervb.

© MVDR) DNN-WPE) DNN-WPE) (Mask-based WFD)
1 101 1.89/63.41/4.36 | 2.21/71.98/5.67 | 2.36/77.68/6.01 2.11/67.85/5.47
2 10-3 2.08/68.50/4.77 | 2.24/73.39/5.88 | 2.44/79.37/6.24 2.36/75.38/6.45
3 104 2.17/70.39/5.34 | 2.25/73.64/5.80 | 2.43/79.25/6.18 2.42/76.63/6.64
4 1079 2.21/71.30/5.45 | 2.25/73.73/5.70 | 2.45/79.68/6.40 1.96/61.45/6.29
5 1076 2.19/71.24/5.46 | 2.25/73.74/5.65 | 2.46/79.75/6.44 1.55/45.13/4.84
6 10°7 2.16/70.92/5.39 | 2.25/73.75/5.64 | 2.44/79.62/6.56 1.63/48.27/4.74
7 107? 1.99/67.02/5.23 | 2.25/73.74/5.64 | 2.25/73.67/5.95 1.51/43.99/4.27

— Dervb”, “Dervb. — Sep.” and “Joint Sep. & Dervb.” denote
the speech separation followed by dereverberation, speech dere-
verberation followed by separation and joint speech separation
& dereverberation, respectively.) These are shown in Table II
for audio-only speech enhancement. Considering the speech
enhancement performance in terms of PESQ, STOI and SRMR
scores, the number of filter taps for single-channel DNN-WPE,
multi-channel DNN-WPE and mask-based WPD are respec-
tively chosen and fixed as 18 (sys. 10), 2 (sys. 2) and 1 (sys. 1)
in the following experiments. In addition, the prediction delay
D is empirically set to 2 for DNN-WPE and mask-based WPD.

2) Matrix Inversion: The inversion of the PSD matrices for
MVDR and WPD ((6) and (30)) and the temporal correlation
matrix for WPE (15) are prone to numerical issues when they
are ill-conditioned or singular. To this end, the diagonal variance
flooring approach [72] is utilized in this work. A complex PSD
or correlation matrix ® is floored as ' = ® + ¢ tr(P)I before
inversion, where a flooring scaling term ¢ needs to be set, and
I is the identity matrix. In addition, a more stable complex
matrix inversion algorithm [101] is adopted in this article. A
set of ablation studies on the setting of the flooring scaling
€ is shown in Table III for audio-only speech enhancement
front-end systems with different separation only or integrated
(separation and dereverberation) architectures. Based on the
PESQ, STOI and SRMR scores, 10~° (sys. 4), 107° (sys. 4),
1076 (sys. 5) and 10~* (sys. 3) are selected as the optimal
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TABLE IV
PERFORMANCE OF INTEGRATED ARCHITECTURES FOR AUDIO-VISUAL MULTI-CHANNEL SPEECH SEPARATION (“‘SEP.”), DEREVERBERATION (“DERVB.”) AND

RECOGNITION (“RECG.”) ON THE LRS2 SIMULATED MULTI-CHANNEL MIXTURE DATASET

+Visual Features PESQ(1) / STOI(T) / SRMR(*) / WER(])
Arch. Sys. | +AF | ser Derd Rece [0°, 15°) ‘ [15°, 45°) [45°, 90°) ‘ [90°, 180°) ‘ Avg.
(MVDR) (DNN-WPE) (SpecM) (Conf.)
Mixture of raw channel 1 ‘ X ‘ 1.54/53.98/3.58/57.9 ‘ 1.53/53.48/3.57/57.4 ‘ 1.53/53.58/3.58/57.8 ‘ 1.54/54.08/3.60/57.0 ‘ 1.54/53.78/3.58/57.5
V| 154/53.98/3.58025.9 | 1.53/53.48/3.57/24.7 | 1.53/53.58/3.58/25.6 | 1.54/54.08/3.60/245 | 1.54/53.78/3.58/25.2
1 v X - X | 187/62.07/5.03/514 | 2.23/71.90/5.50/29.3 | 2.35/74.95/5.5822.8 | 2.39/716.28/5.67/21.6 | 2.21/71.30/5.45/31.3
Sep. 2 X v - X | 220/7135/534128.6 | 2.20/73.39/5.52024.9 | 2.33/7441/5.5223.9 | 2.35/75.19/5.60/22.4 | 2.29/73.59/5.50/25.0
(MVDR only) 3 v v - X | 2157030532331 | 230/73.95/5.63/23.0 | 238/75.71/5.6521.4 | 2.42/76.96/5.74/19.7 | 2.31/74.23/5.59/24.3
4 | v v - V| 2157030532217 | 230/73.95/5.63/15.9 | 2.38/75.71/5.65/14.7 | 2.42/16.96/5.74132 | 2.31/74.23/5.50/16.4
5 v X X X | 191/6421/523/50.1 | 2.26/74.36/5.74127.9 | 2.39/77.51/5.86/21.6 | 2.44/718.82/5.99/20.5 | 2.25/73.73/5.70/30.0
6 v X v X | 191/6451/522/49.6 | 2.26/74.56/5.76/27.4 | 2.39/77.69/5.8721.1 | 2.44/78.96/6.01/20.3 | 2.25/73.93/5.71/29.61
Sep. — Dervh. 7 X v X X | 2247372557285 | 2.33/75.84/5.790252 | 2.37/76.95/5.8022.9 | 2.40/77.65/5.94/22.2 | 2.34176.04/5.78/24.7
MVDR > DNGWPE) | 8 X v v X | 224773815.60282 | 2.33/75.90/5.80124.5 | 238/77.03/5.82/23.2 | 240/77.74/5.95/223 | 2.34176.12/5.79/24.5
9 v v X X | 2187260554319 | 2.35/76.53/5.92/23.1 | 2.43/78.43/5.94202 | 2.47/79.63/6.09/18.9 | 2.36/76.82/5.87/23.5
0| v v v X | 2187279555317 | 2.35/76.62/5.92122.7 | 2.42/78.50/5.951200 | 2.47/19.67/6.09/182 | 2.36/76.90/5.88/23.21
1| v v v V| 2187279555011 | 2.35776.62/5.92/152 | 2.42/18.50/5.95/14.1 | 2.47/19.67/6.09/13.5 | 2.36/76.90/5.88/16.0"
v X X X | 1.95/66.13/7.00/52.7 | 2.37/77.5357.44/30.7 | 2.51/8081/7.50/23.6 | 2.57/81.01/7.54/22.5 | 2.35/76.60/737732.4
13| v X v X | 1.98/6773/7.16/50.6 | 241/78.67/7.66/28.3 | 2.55/81.81/7.71/22.8 | 2.60/82.77/1.73/20.4 | 2.39/77.75/7.56/30.51
Sep. — Dervb. 14 | x v X X | 2377810750316 | 247/80.10/7.65/27.3 | 2.5281.12/7.6324.9 | 2.54/81.60/7.66/24.1 | 2.48/80.23/7.61/27.0
VDR Speeth 15 x v v X | 23877836/7.62209 | 2.48/8028/7.71/253 | 2.53/8125/1.71/23.8 | 2.55/81.69/7.73/22.7 | 2.49/80.39/7.69/25.41
16 | v v X X | 2317674743350 | 2.50/80.72/7.72/25.8 | 2.60/82.61/7.68/22.3 | 2.64/83.55/7.73/20.9 | 2.51/80.91/7.64126.0
17 | v v v X | 2317769875835 | 2.51/80.86/7.84/23.8 | 2.59/82.71/7.80217 | 2.64/83.55/7.85/192 | 2.51/81.03/7.7724.51
18 | v v v V| 231/76.98/7.58/22.0 | 2.5180.86/7.84/168 | 2.50/82.71/7.80/145 | 2.64/83.55/7.8514.4 | 2.51/81.03/7.77/16.9"
19 | v X X X | 2.04/69.13/5.86/47.2 | 2.48/80.58/6.46/24.6 | 2.63/84.17/6.68/19.2 | 2.68/85.11/6.75/19.2 | 2.46/79.75/6.44127.5
20 | v X v X | 2.03/60.57/5.8546.7 | 2.46/80.46/6.39024.6 | 2.62/83.93/6.66/19.2 | 2.67/85.14/6.78/19.1 | 2.45/79.78/6.42127.4
21 | X v X X | 239778.99/626/27.4 | 2.53/81.61/6.61/22.0 | 2.60/83.23/6.69/204 | 2.60/83.15/6.71/20.9 | 2.53/81.75/6.57/22.7
Dervb. — Sep. 2 | x v v X | 241/7937/633258 | 2.54/81.90/6.64121.4 | 2.61/83.33/6.67/19.6 | 2.61/83.40/6.74/20.4 | 2.54/82.00/6.59/21.8"
(DNN.WEE —» MUDR) 41/79.37/6.33/25.8 | 2.54/81.90/6.64/21.4 | 2.61/83.33/6.67/19.6 | 2.61/83.40/6.74/20. 54/82.00/6.50/21.
2| v v X X | 234777.63/6.19/303 | 2.57/82.62/6.65/202 | 2.68/84.89/6.81/17.9 | 2.71/85.64/6.89/17.1 | 2.57/82.69/6.64/21.4
1 | v v v X | 2337739620307 | 2.55/82.40/6.63/20.3 | 2.66/84.93/6.74/17.7 | 2.70/85.71/6.85/17.2 | 2.56/82.61/6.61/21.4
%5 | v v v V| 233/77.39/620208 | 2.55/82.40/6.63/15.1 | 2.66/84.93/6.74/12.4 | 2.70/85.71/6.8512.3 | 2.56/82.61/6.61/15.1"
% | 7 X X X | 1.82/63.34/5.96/570 | 2.22/73.58/6.44132.8 | 2.43/78.33/6.83/25.6 | 2.49/719.63/6.94/242 | 2.24173.72/6.54134.9
27| v X v X | 1.8262.99/5.82/57.7 | 2.24/74.06/643/31.9 | 2.43/78.55/6.82/24.8 | 2.49/719.73/6.96/23.8 | 2.24/73.83/6.51/34.6
28 | X v X X | 21772.66/639/38.8 | 2.33/76.11/6.73/29.3 | 2.45/78.55/6.8924.9 | 2.45/718.51/6.92/26.4 | 2.35/76.46/6.73/29.8
Dervb. — Sep. 2 | x v v X | 2.16/72.826.44136.0 | 231/75.88/6.72/29.3 | 2.43/78.39/6.90/25.1 | 2.41/78.16/6.90/25.1 | 2.33/7631/6.74/28.91
(SpeM > MVDR) 16/72.82/6.44/36.0 | 2.31/75.88/6.72/293 | 2.43/78.39/6.90/25.1 | 2.41/78.16/6.90/25. 33/76.31/6.74128.
30 | v v X X | 2.1271.49/62839.7 | 2.35/76.58/6.74127.1 | 2.49/79.62/6.94/22.4 | 2.53/80.73/7.03/22.8 | 2.37/77.11/6.75/28.0
31| v v v X | 2017150635382 | 234/76.65/6.7127.6 | 2.47/79.54/6.92/22.4 | 2.52/80.61/7.04/21.1 | 2.36/77.10/6.76/27.31
2| v v v V| 2117159635249 | 234776.65/6.71/169 | 2.47/79.54/6.92/15.3 | 2.52/80.61/7.04114.8 | 2.36/77.10/6.76/18.0*
3| v X X | 1.99/65.92/6.06/55.0 | 241/76.81/6.60/30.1 | 2.60/81.00/6.83/22.6 | 2.67/82.69/7.07/21.8 | 2.42/76.63/6.64/32.4
Joint Sep. & Dervh. | 34 | X v X | 22977479/6.441343 | 2.46/7821/6.78125.5 | 2.57/80.26/6.91/22.9 | 2.57/80.48/7.01/22.9 | 2.47/78.44/6.78/26.4
(WPD) 35| v v X | 226/7378/636/37.7 | 2.50/79.11/6.75/25.1 | 2.64/82.25/6.95120.7 | 2.70/83.43/7.13/20.1 | 2.53/79.64/6.80/25.9
36 | v v V| 226/73.78/636/24.6 | 2.50/79.11/6.75163 | 2.64/82.25/6.95/13.7 | 2.70/83.43/7.13/13.6 | 2.53/79.64/6.80/17.0"

“Arch.”, “AF”, “SpecM”, “Conf.” and “Avg.” denote the architecture, angle feature, spectral mapping, Conformer and average, respectively. [a°, b°) denotes the range of inter-speaker angle difference
between the target and interfering speakers relative to the microphone array. “*” and “}” represent a statistically significant WER difference over the corresponding audio-only baseline systems (sys.
5,12,19,26,33) and audio-only dereverberation baseline systems (sys. (5,7,9),(12,14,16),(19,21,23),(26,28,30)), respectively.

values of the diagonal variance flooring scaling € for mask-based
MVDR, single-channel DNN-WPE, multi-channel DNN-WPE
and mask-based WPD respectively in the following experiments.

VII. EXPERIMENTAL RESULTS

In this section, the performance of three integrated audio-
visual multi-channel speech separation, dereverberation and
recognition architectures of Section IV are evaluated on the
LRS2 simulated and replayed mixture speech datasets. Sec-
tion VII-A analyses the performance improvements by incorpo-
rating visual features into different speech enhancement front-
end components as well as the recognition back-end. After end-
to-end joint fine-tuning, the performance of tightly integrated
audio-visual speech separation, dereverberation and recognition
systems are presented in Section VII-B.

A. Performance of Audio-Visual Multi-Channel Speech
Enhancement and Recognition Systems

In this part, we systematically investigate the performance
improvements attributed to the visual modality in the proposed
integrated speech enhancement architectures of Section IV on
the LRS2 simulated multi-channel mixture dataset with four
angle difference ranges [0°, 15°), [15°, 45°), [45°, 90°) and

[90°, 180°). The mask-based MVDR approach is used in the
separation module, and the dereverberation module leverages
either DNN-WPE or SpecM based dereverberation methods.
The mask-based WPD is used for joint speech separation &
dereverberation. The multi-channel audio (including AF and
IPD) features and visual modality features and their fusion
mechanism presented in Sections II-C, II-D, II-E and II-D
for speech separation and dereverberation are used. The vi-
sual features are also incorporated into the Conformer speech
recognition back-end, as described in Section V. The speech
recognition systems in Table IV are obtained by fine-tuning
the baseline single-channel Conformer ASR (Table I, sys. 1)
or AVSR (Table I, sys. 2) systems using the enhanced outputs
of the corresponding speech enhancement front-ends.

From Table IV, several trends can be observed:

1) The proposed audio-visual multi-channel speech separa-
tion, dereverberation and recognition systems (sys. 11, 18, 25,
32,36) consistently outperformed the corresponding audio-only
baseline systems (sys. 5, 12, 19, 26, 33) on the LRS2 simulated
test set. Consistent performance improvements in PESQ, STOI
and SRMR scores were also obtained. For example, a statis-
tically significant WER reduction of 12.4% absolute (45.1%
relative) was obtained by the full audio-visual system (sys. 25)
over the corresponding audio-only baseline (sys. 19) using a
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pipelined front-end architecture whereby speech dereverbera-
tion was followed by separation. A general trend can also be
found that the performance gap between systems with full in-
corporation of video modality (sys. 11, 18, 25, 32, 36) and those
using audio-only (sys. 5, 12, 19, 26, 33) was much larger when
examining the performance on the more challenging subsets, e.g.
when inter-speaker angle difference fell in the smallest range of
[0°, 15°).

2) When compared with audio-only dereverberation, incor-
porating visual information into the corresponding DNN-WPE
(sys. 6, 8, 10, 20, 22, 24 vs. sys. 5,7, 9, 19, 21, 23) or SpecM
based dereverberation (sys. 13, 15, 17, 27, 29, 31 vs. sys. 12,
14, 16, 26, 28, 30) module produced consistent improvements
in terms of PESQ, STOI and SRMR scores, irrespective of the
underlying form of integration between speech separation and
dereverberation components. A statistically significant WER
reduction by up to 1.9% absolute (sys. 13 vs. sys. 12, 5.9%
relative) was also obtained.

3) Among the proposed architectures to integrate speech
separation and dereverberation components within the speech
enhancement front-end, a pipelined, full audio-visual config-
uration performing DNN-WPE based speech dereverberation
followed by mask-based MVDR speech separation using visual
input in both enhancement and recognition stages (sys. 25 vs.
sys. 11, 18, 32, 36) produced the lowest overall WERs.

4) The integrated audio-visual speech separation,
dereverberation and recognition systems (sys. 11, 18, 25,32, 36)
consistently outperformed the corresponding separation-only
AVSR systems (sys. 4) in terms of PESQ, STOI and SRMR
scores. However, with regard to recognition performance, the
SpecM based AVSR systems (sys. 18, 32) and the mask-WPD
based AVSR system (sys. 36) did not outperform the baseline
system (sys. 4). The potential causes were: a) For systems using
SpecM based dereverberation (sys. 18, 32), although perceptu-
ally enhanced speech quality was obtained when compared to
the corresponding baseline systems (sys. 4), the spectral artifacts
caused by SpecM introduced a negative impact on downstream
speech recognition performance; and b) For mask-based WPD
systems, the number of filter taps and microphone channels
together produced spatial-temporal PSD matrices in (31)—(32)
larger than, for example, those in (7)—(8) for MVDR speech
separation only, and thus increased difficulty in their inversion.
This was further suggested by the larger variance flooring scaling
£=10"* in mask-based WPD than all the other systems shown
in the ablation studies of Table III. This issue can offset the
benefit of joint speech separation & dereverberation from WPD.

5) Finally, incorporating both the video modality and AF
spatial features into the front-ends (e.g. sys. 3, 10, 17,24, 31, 35)
consistently outperformed the comparable systems using either
only AF features (sys. 1, 5, 12, 19, 26, 33), or video features
alone (sys. 2, 8, 15, 22, 29, 34).

B. Performance of End-to-End Joint Fine-Tuning of Speech
Enhancement Front-End and Recognition Back-End

The most representative subset of audio-visual and audio-only
multi-channel systems in Table IV are then end-to-end joint
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() Ovrlappe-reverhera-nisy speech (b) Target clean speech

- _sem o~ o
(d) Pipelined audio-visual speech
enhancement output (Table IV, sys. 25)

R N e

(¢) Pipelined audio-only speech
enhancement output (Table IV, sys. 19)

(e) Jointly fine-tuned audio-only speech
enhancement output (Table V, sys. 19(b))

(f) Jointly fine-tuned audio-visual speech
enhancement output (Table V, sys. 25(b))

Fig. 5. Example spectra of (a) Overlapped-reverberant-noisy speech, (b) Tar-
getclean speech, (c) Pipelined audio-only speech enhancement output (Table IV,
sys. 19), (d) Pipelined audio-visual speech enhancement output (Table IV, sys.
25), (e) Jointly fine-tuned audio-only speech enhancement output (Table V,
sys. 19(b)), and (f) Jointly fine-tuned audio-visual speech enhancement output
(Table V, sys. 25(b)). The spectrum portions circled using blue dotted lines in (a)
represent the interfering speaker’s speech, background noise and reverberation,
which have been largely removed in (f).

fine-tuning using either the ASR cost function alone, or a multi-
task criterion interpolation between the speech enhancement and
recognition cost as described in Section V-B. Their performance
in terms of WER and front-end metrics (PESQ, STOI and
SRMR) are evaluated on both the LSR2 simulated (“Simu”)
and replayed (“Replay”) test sets and shown in Table V (original
system numbering in Table IV carried over). Several main trends
can be observed:

1) After end-to-end joint fine-tuning, consistent performance
improvements in WER were obtained over all systems without
doing so (sys. marked with “-” in Col. 3, Table V), irrespective
of the joint fine-tuning criterion based on ASR loss alone (sys.
marked with “(a)”), or its interpolation with enhancement loss
(sys. marked with “(b)”). In particular, statistically significant
overall (“O.V.”) WER reductions of 3.3% and 1.6% absolute
(14.6% and 11.9% relative) were obtained using the joint
fine-tuned ASR (sys. 19(a) vs. sys. 19) and AVSR (sys. 25(b) vs.
sys. 25) systems across both test sets. Consistent performance
improvements in speech enhancement front-end metrics scores
were also obtained. Fig. 5 shows a set of example spectra of (a)
Overlapped-reverberant-noisy speech, (b) Target clean speech,
(c) Pipelined audio-only speech enhancement output (Table IV,
sys. 19), (d) Pipelined audio-visual speech enhancement output
(Table IV, sys. 25), (e) Jointly fine-tuned audio-only speech
enhancement output (Table V, sys. 19(b)), and (f) Jointly fine-
tuned audio-visual speech enhancement output (Table V, sys.
25(b)). The spectrum portions circled using blue dotted lines in
(a) represent the interfering speaker’s speech, background noise
and reverberation, which have been largely removed in (f).

2) The best overall performance was produced by the end-to-
end joint fine-tuned audio-visual system with DNN-WPE based
dereverberation followed by mask-based MVDR (sys.25(b)).
Using this system statistically significant WER reductions of
up to 9.1% and 6.2% absolute (41.7% and 36.0% relative)
were obtained on the LRS2 simulated and replayed test sets
over the audio-only baseline (19(b)). In addition, all the jointly
fine-tuned audio-visual speech separation, dereverberation and
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TABLE V
PERFORMANCE OF AUDIO-VISUAL AND AUDIO-ONLY MULTI-CHANNEL SPEECH RECOGNITION SYSTEMS AFTER END-TO-END JOINT FINE-TUNING USING ASR
COST Lasr ALONE (MARKED WITH “(a)”’), OR ITS INTERPOLATED WITH ENHANCEMENT LOSS Lasr + Lsg (MARKED WITH “(b)”), ON THE LRS2 SIMULATED
(“SIMU”) AND REPLAYED (“REPLAY”) TEST SETS

. . . PESQ(?) / STOI(1) / SRMR(? WER(J.
Arch. Sys. Jmmlé !:'".e'mm"g = Avé) = 10°, 15°) [15°, 15°) [45°, 90°) = [90°, 180°) Avg
niterion Simu Replay Simu  Replay Simu  Replay Simu  Replay ‘ Simu ‘ Simu Replay O.V.
1 - 221/71.30/5.45  2.32/77.77/4.31 51.4 30.6 293 236 2238 185 216 313 234 27.4
1(a) Lasr 2.46/77.72/627  2.55/81.90/5.35 415 33.0 21.1 207 17.0 18.2 16.2 24.0 228 23.4
Sep. 1(b) Lasg + Lse 2.32/74.75/577  2.40/80.11/4.61 422 28.7 228 20.1 182 17.8 17.9 253 214 23.4
(MVDR only) 4 E 231/7423/559  2.37/79.18/4.42 217 159 159 1238 147 13.6 132 16.4 139 152
4(a) Lasr 2.53/79.68/6.39  2.58/83.47/5.51 17.0 155 132 118 11.7 11.0 114 133 124 129
4(b) Lask + Lse 2.38/76.36/5.77  2.42/80.81/4.60 18.5 158 14.4 124 12,6 12.1 122 14.4 13.1 13.8
5 - 225/73.73/570  2.41/80.19/4.86 50.1 275 27.9 223 21.6 16.4 205 30.0 214 257
5(a) Lasr 2.46/78.62/6.46  2.58/82.96/5.80 39.9 274 204 18.9 16.2 17.7 158 23.11 20.6 219t
Sep. — Dervb. 5(b) Lask + Lse 2.45/78.27/6.42  2.56/82.39/5.72 40.7 31.8 20.8 20.1 16.4 17.8 16.0 2351 22.1 228t
(MVDR — DNN-WPE) 1 - 2.36/76.90/5.88  2.46/81.71/5.04 211 157 152 125 4.1 121 135 16.0 132 14.6
11(a) Lasr 2.58/81.26/6.69  2.67/84.82/6.14 16.7 12.9 12.8 122 1.7 10.8 11.0 1307 11.97 1251
11(b) Lasg + Lse 2.55/80.69/6.66  2.66/84.77/6.15 172 12.0 132 11.6 11.8 10.3 112 1337 12ttt 1237
12 - 2.35/76.60/7.37  2.48/80.75/6.62 527 312 30.7 253 236 19.6 225 324 24.6 285
12(a) Lasr 2.52/79.84/7.23  2.61/83.59/6.59 383 304 20.6 19.8 16.3 16.4 159 2281 2121 220"
Sep. — Dervb. 12(b) Lasg + Lsp 2.49/79.16/6.61  2.56/82.99/5.91 39.4 303 209 19.4 16.2 17.1 16.2 23.21 21.21 2221
(MVDR — SpecM) 13 E 2.51/81.03/7.77  2.58/82.99/7.29 220 172 16.8 134 145 131 144 16.9 142 156
18(a) Lask 2.60/81.64/7.41  2.68/85.22/6.77 16.7 13.8 13.0 122 11.6 10.8 11.0 13.11 121" 126"
18(b) Lask + Lse 2.55/80.65/6.70 2.60/84.43/6.05 16.7 134 13.0 123 11.9 10.6 10.9 [ A DICLAC N b Lt
19 - 2.46/79.75/6.44  2.67/84.68/6.32 472 25.4 24.6 15.6 192 132 19.2 275 17.1 226
19(a) Lask 2.61/81.91/6.86  2.70/85.21/6.28 37.8 222 18.8 172 14.9 13.1 15.0 21.61 16.9 1931
Dervb. — Sep. 19(b) Lasg + Lse 2.61/82.12/6.82  2.69/85.22/6.28 37.6 253 19.0 15.5 15.6 13.5 15.0 2181 172 19.5"
(DNN-WPE — MVDR) | 25 E 2.56/82.61/6.61 2.72/85.85/6.49 208 15.0 15.1 10.9 124 10.7 123 15.1 118 135
25(a) Lasr 2.71/84.33/7.04  2.75/86.42/6.48 16.0 144 125 10.6 10.7 10.1 112 12.6" 114 120"
25(b) Lasg + Lsp 2.68/84.75/6.80  2.75/86.82/6.50 16.2 13.3 12.7 10.6 11.0 9.9 10.8 1277 10t 1197
26 - 224/73.72/654  2.51/80.67/6.32 57.0 304 328 204 256 14.9 242 349 20.8 279
26(a) Lasr 2.52/79.11/6.46  2.62/82.60/5.67 414 329 223 19.0 16.9 16.9 156 24.11 217 2291
Dervb. — Sep. 26(b) Lasg + Lse 2.53/79.57/6.50  2.65/83.12/5.91 425 29.8 21.7 19.9 16.7 16.5 16.1 2431 21.1 271
(SpecM — MVDR) 32 E 236/77.10/676  2.57/82.20/6.60 249 155 169 132 153 12 148 18.0 13.0 155
32(a) Lasr 2.65/82.02/6.76  2.68/84.55/5.87 16.7 14.4 12.7 118 111 10.7 10.6 12.8 1211 1251
32(b) Lasr + Lse 2.66/82.94/6.63 2.71/85.34/5.98 16.8 13.4 124 115 11.0 114 103 1267F 119t 23t
33 - 2.42/76.63/6.64  2.62/83.25/6.12 55.0 28.8 30.1 174 226 15.0 218 324 19.4 259
33(a) Lasr 2.52/78.55/6.97  2.63/82.88/6.18 43.6 34.1 233 14.9 17.4 17.9 17.0 2531 20.8 23.11
Joint Sep. & Dervb. | 33(b) Lasg + Lse 2.53/78.76/6.95  2.64/83.23/6.17 447 325 233 15.0 18.1 17.2 17.0 2571 202 23.01
(WPD) 36 E 2.53/79.64/6.80  2.67/84.45/6.29 246 158 16.3 2.1 137 113 136 17.0 127 14.9
36(a) Lask 2.61/80.93/7.16 2.69/84.81/6.39 19.0 12.7 13.8 11.0 114 10.2 113 13,97 1t 1257
36(b) Lask + Lse 2.60/81.27/6.95 2.70/85.15/6.34 19.4 13.7 13.9 10.5 11.9 10.7 1.5 1421 11478 8T+

The original system numbering from Table IV is used. “Avg.” is in short for “average” and “O.V.” for “overall” results on both simulated and replayed test data. “t”, “*” and “}” denote a statistically significant
WER difference over the systems without joint fine-tuning (marked with “-”), the corresponding audio-only baseline systems (sys. 5(b), 12(b), 19(b), 26(b), 33(b)) and separation-only AVSR baseline system
(sys. 4(b)), respectively.

TABLE VI
WER(%) PERFORMANCE OF END-TO-END JOINT FINE-TUNED
MULTI-CHANNEL SPEECH ENHANCEMENT AND RECOGNITION SYSTEMS 1(b),
4(b) AND 25(b) OF TABLE V WITH RESPECT TO THE SPEECH ENHANCEMENT
COST WEIGHT ~y IN EQN. (34) ON THE LRS2 SIMULATED (“SIMU”’) AND
REPLAYED (“REPLAY”’) TEST SETS

recognition systems consistently outperformed the comparable
baseline separation-only AVSR systems (e.g. sys. 11(b), 18(b),
25(b), 32(b), 36(b) vs. sys. 4(b)), with a statistically significant
WER reduction up to 1.9% absolute (13.8% relative) (sys.
25(b) vs. sys. 4(b)).

3) End-to-end joint fine-tuning of the speech enhancement

.. ; L. . y 0 0.25 0.5 0.75 1
frOHt—end al‘ld I'eCOgmthIl baCk—el‘ld 1S effeCtlve m mltlgatlng the Sys: Simu  Replay Simu  Replay Simu  Replay Simu  Replay Simu  Replay
impact from spectral artifacts produced in SpecM based derever- Ib) | 240 28 | 247 24 | 253 214 | 272 27 | 313 234

. . 4b) | 133 124 | 140 126 | 144 131 146 132 | 164 139
beration [82] (e-g. Sys. 12(b), 18(b), 26(b), 32(b)). This leads to 25(b) | 126 14 | 127 113 | 127 110 | 127 104 | I5.1 18

their smaller performance gap against systems using DNN-WPE
dereverberation (sys. 5(b), 11(b), 19(b), 25(b)), when compared
the gap before joint fine-tuning.

4) A further ablation study is conducted on the setting of
the speech enhancement cost weight v in (34) using three
end-to-end joint fine-tuned multi-channel speech enhancement
and recognition systems: sys. 1(b), 4(b) and 25(b) of Table V.
Their WER performance with respect to v on the LRS2 sim-
ulated (“Simu”) and replayed (“Replay”) test sets are shown
in Table VI. These results suggest that the performance of the
audio-visual multi-channel speech separation, dereverberation
and recognition system (sys. 25(b)) is largely insensitive to the
setting of v € [0, 0.75] during end-to-end joint fine-tuning using
interpolated speech enhancement and ASR error costs.

5) The performance of the most important systems shown
in Table IV (sys. 1, 4, 5, 11, 12, 18, 19, 25, 26, 32, 33, 36)
and Table V (sys. 1(b), 4(b), 5(b), 11(b), 12(b), 18(b), 19(b),
25(b), 26(b), 32(b), 33(b), 36(b)) are further evaluated on the
LRS3 [102] test set after applying the same multi-channel mix-
ture speech simulation protocol of Algorithm 1. These results
are shown in Table VII. Similar trends of WER reductions and
improvements on speech enhancement metric scores, as well as
the same performance ranking among the corresponding systems
previously shown in Tables IV and V, can also be found in
Table VII.
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TABLE VII

PERFORMANCE OF INTEGRATED ARCHITECTURES FOR AUDIO-VISUAL MULTI-CHANNEL SPEECH SEPARATION (“SEP.”), DEREVERBERATION (“DERVB.”) AND

RECOGNITION (“RECG.”) ON THE LRS3 TEST SET SIMULATED MULTI-CHANNEL MIXTURE SPEECH VIA THE LRS2 DATA TRAINED PIPELINED AND JOINTLY
FINE-TUNED (USING LasR + Lsg COST FUNCTION) SYSTEMS IN TABLES IV AND V, RESPECTIVELY

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 31, 2023

+Visual Features PESQ(?) / STOIL(1) / SRMR(1) / WER()
Arch. Sys +AF Sep. Dervb. Recg. AVg.
(MVDR) (DNN-WPE) (SpecM) (Contf.) Pipelined | Jointly fine-tuned

Sep. 1 v X - X 2.22/72.63/5.76/40.3 2.32/75.77/6.09/34.5

(MVDR only) 4 v v - v 2.30/75.18/5.89/29.8 2.38/77.57/6.12/26.9
Sep. — Dervb. 5 v/ X X X 2.25/74.97/6.12/38.6 2.46/79.44/6.95/31.9F
(MVDR —> DNN-WPE) 11 v v v v 2.34/77.71/6.28/29.5 | 2.55/81.64/7.24/25.11*%
Sep. — Dervb. 12 v/ X X X 2.38/77.88/8.02/41.9 2.50/80.32/7.13/31.77
(MVDR — SpecM) 18 v v v v 2.51/81.14/8.46/31.1 | 2.56/81.81/7.17/25.31*%
Dervb. — Sep. 19 v X X X 2.48/81.40/7.25/34.6 2.66/83.88/7.80/28.9F
(DNN-WPE — MVDR) 25 v v v v 2.55/83.22/7.32/27.2 2.69/85.73/7.70/23.91*F
Dervb. — Sep. 26 v/ X X X 2.28/75.91/7.33/42.4 2.54/81.00/7.14/32.57
(SpecM — MVDR) 32 v v v v 2.35/77.73/7.37/32.2 | 2.61/83.16/7.20/25.61*%
Joint Sep. & Dervb. | 33 v/ X X 2.45/78.84/7.27/39.4 2.54/80.46/7.46/34.1F
(WPD) 36 v v v 2.51/80.60/7.31/30.3 | 2.58/82.19/7.46/26.71*

“Arch.”, “AF”, “SpecM”, “Conf.” and “Avg.” denote the architecture, angle feature, spectral mapping, Conformer and average, respectively. “1”, “*”” and “}” denote
a statistically significant WER difference over the “Pipelined” systems, the corresponding audio-only baseline systems (sys. 5,12,19,26,33) in the “Jointly fine-tuned”
column and separation-only AVSR baseline system (sys. 4) in the “Jointly fine-tuned” column, respectively.

VIII. CONCLUSION

In this article, an audio-visual multi-channel speech separa-
tion, dereverberation and recognition approach featuring a full
incorporation of visual information into all system components
is proposed. The advantages of additional visual modality over
using acoustic features only are demonstrated consistently in
mask-based MVDR speech separation, DNN-WPE or spectral
mapping (SpecM) based speech dereverberation front-end and
Conformer based ASR back-end. A set of audio-visual front-end
architectures that integrates the speech separation and derever-
beration modules in a pipelined or joint fashion are also derived.
They are end-to-end jointly fine-tuned to minimize the error
cost mismatch between the speech enhancement front-end and
ASR back-end. Experiments were conducted on the mixture
overlapped and reverberant speech data constructed using sim-
ulation or replay of the benchmark Oxford LRS2 dataset. The
proposed audio-visual multi-channel speech separation, dere-
verberation and recognition systems consistently outperformed
the comparable audio-only multi-channel baseline by 9.1% and
6.2% absolute (41.7% and 36.0% relative) in word error rate
(WER) reductions, together with consistent improvements ob-
tained on PESQ, STOI and SRMR based speech enhancement
metrics. Future research will focus on improving system gen-
eralization to diverse microphone array geometrics and room
acoustics.
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