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Abstract—The attention-based encoder-decoder structure, such
as the Transformer, has achieved state-of-the-art performance on
various sequence modeling tasks, e.g., machine translation (MT)
and automatic speech recognition (ASR), benefited from the su-
perior capability of layer-wise self-attention mechanism in the
encoder/decoder to access long-distance contextual information.
Recently, analysis on the Transformer layers has shown that dif-
ferent levels of information, e.g., phoneme level, word level and
semantic level, are represented at different layers. Effectively inte-
grating information from various levels is important for structured
prediction. However, the self-attention in the conventional Trans-
former structure only focuses on intra-layer integration, and does
not explicitly model inter-layer information relationships. Also,
attention across the encoder and decoder (cross-coder) only focuses
on the top encoder layer but ignores the intermediate layers. In
this article, we propose a sequence modeling structure equipped
with a hierarchical attention mechanism, named Hiformer, that
can consider the inter-layer and cross-coder hierarchical infor-
mation to improve structured prediction performance. Extensive
experiments conducted on both MT and ASR tasks demonstrate
the effectiveness of the proposed Hiformer model.

Index Terms—Hierarchical attention mechanism, transformer,
automatic speech recognition, neural machine translation.

I. INTRODUCTION

EARNING structural information in sequential data plays
L an important role in many tasks, e.g., machine trans-
lation (MT) and automatic speech recognition (ASR). Re-
cently, attention-based encoder-decoder (AED) models have
demonstrated significant successes in such sequence modeling
tasks [1], [2]. In the AED models, the encoder encodes an input
sequence to a hidden representation sequence, and the decoder
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predicts the outputs based on the encoded representation. An
attention module across the encoder and decoder (cross-coder) is
utilized to determine which parts of the representation sequence
should be attended to and summarize the attended parts to a
vector for each decoding step. Using the cross-coder attention,
the decoder is enabled to flexibly access various parts of the
encoded representation sequence.

The Transformer model is among the most promising AED
structures [3]. In the Transformer structure, the self-attention
mechanism in the encoder/decoder shows superior performance
in modeling long-distance contextual information, compared
to the conventional recurrent connections. Recent analysis on
the Transformer structure has shown that different levels of
information in input sequences, e.g., phoneme level, word level
and semantic level, are represented at different layers in the
Transformer [4], [5]. The multi-level hierarchical information is
important for structured prediction, e.g., the prediction of a trans-
lated word needs to consider not only the corresponding source
word, but also the related phrases and the semantic meaning of
the sentence. Establishing interactions across different layers is
desirable for utilizing such hierarchical information in the input
sequences. Serban et al. [6] utilize hierarchical connections be-
tween layers of recurrent neural networks (RNNs) to enable the
flowing of knowledge of textual hierarchical boundaries. How-
ever, the self-attention mechanism in the Transformer structure
only focuses on the intra-layer information by retrieving the keys
and values in the same layer and lacks explicit connections with
previous layers. Also, the cross-coder attention only considers
the encoded representation sequence at the top encoder layer
and lacks connections with the lower intermediate layers, which
hinders the hierarchical information from flowing to the decoder.

In order to consider the hierarchical information, we propose
a new AED structure improved from the Transformer model,
named Hiformer, by introducing a novel hierarchical attention
(hi-attention) mechanism. The hi-attention mechanism collects
hierarchical information from previous layers by calculating the
attention allocated to keys in previous layers using the queries
in the current layer, and combining the corresponding values
from previous layers according to the attention weights. The
hi-attention is task-agnostic and can be used to improve the
attention mechanisms for different tasks in various parts of the
AED structure, i.e., the encoder, the decoder and the cross-coder
attention. We conduct thorough experiments on two represen-
tative sequence modeling tasks, MT and ASR to validate the
effectiveness of the Hiformer model. The experimental results
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on both tasks consistently demonstrate the superiority of the
Hiformer over the Transformer.

The rest of this article is organized as follows: Section II
reviews the previous research on sequence modeling with hier-
archical connections. Recent related developments in MT and
ASR areas are also introduced. The Transformer structure with
the standard self-attention mechanism is introduced in Sec-
tion I1I. Section I'V describes the proposed hierarchical attention
mechanism. Section V illustrates the Hiformer structure with
the introduced hi-attention. Experimental results on MT and
ASR are described in Section VI. Analysis and conclusions are
presented in Section VII and Section VIIIL.

II. RELATED WORK

A. Sequence Modeling With Neural Structures

Much effort has been devoted to designing effective neural
structures for modeling sequential data. One research line is
to capture temporal information in sequential data. Feedfor-
ward neural networks can only consider fixed time windows
of input, even enhanced with sub-sampling as in time delay
neural networks (TDNNs) [7], [8]. The introduction of recurrent
connections effectively improves the temporal information cap-
turing performance [9]. The long short-term memory (LSTM)
RNNs demonstrate superior performance with the utilization of
memory cells to store contextual information [10]. However, the
sequential computation precludes parallelization within training
examples and the direct access to long-distance context. The self-
attention mechanism is introduced to address these problems by
connecting different positions within a sequence to compute
a representation for the current position [3]. Using the self-
attention as a fundamental component, the Transformer structure
has shown significant improvements over RNNs in various areas,
e.g., language modeling [11], MT [3] and ASR [12]. As recent
studies suggest, different levels of information are learned at dif-
ferent layers in Transformer encoders and decoders [4], [5], [13].
In this work, we investigate the modeling of inter-layer hierarchi-
cal information by adding explicit connections between attention
modules in the previous and the current layers to the original at-
tention mechanism of the Transformer. The improvement is task-
agnostic and can be integrated to the Transformer systems for
various tasks, e.g., MT and ASR, as demonstrated in this article.

B. Hierarchical Connections for Sequence Modeling

Explicitly modeling sequential hierarchical information has
been studied previously by enhancing inter-layer interactions,
e.g., residual connections [14], [15], highway connections [16],
hierarchical connections [6] and cross-layer fusion [17], [18].
Our work is also related to hierarchical RNNs [19], which
explicitly model information of different scales in a sequence by
establishing connections between neighboring steps across dif-
ferent RNN layers to enable the flowing of knowledge of textual
hierarchical boundaries. Our Hiformer structure is designed with
the same aim to establish hierarchical connections. However, the
Hiformer can access contextual information in longer distances
with the attention mechanism.
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Stacking multiple attention layers is another popular design
choice for modeling complex contextual information in se-
quences [20]. Zhang et al. proposes to concatenate the con-
text vectors from multiple attention layers for decoding [21].
Bertasius et al. adapts the Transformer to video data by staking
self-attention layers for the time and the space dimensions,
respectively [22]. Instead of simply stacking outputs of lower
layers together, the FusionNet [18] uses low-level features from
lower layers’ outputs as part of keys and queries to compute at-
tention for the question answering task. The proposed Hiformer
structure enhances the inter-layer connections by retrieving the
keys and values of attention modules in historical layers accord-
ing to the queries in the current layer’s attention module. Com-
pared to FusionNet that focuses on specific question-context
attention, the Hiformer structure improves encoder, decoder and
cross-coder attention modules for sequence modeling tasks.

C. Neural Machine Translation

The Transformer [3] is a milestone in the area of neural
machine translation (NMT) and has become the de facto bench-
mark structure. Attempts in improving Transformer-based MT
systems has been made in various promising directions, e.g.,
feature augmentation and structure optimization. Syntactic in-
formation [23] and pre-trained representation [24] are incorpo-
rated to provide translation models a syntactical or semantic
prior. Back-translation is utilized to augment parallel data for
NMT [25]. [26] and [2] equip basic models with translation
memory components to cache training corpora. For structure op-
timization, more advanced NMT architectures based on the stan-
dard Transformer have been proposed. Transformer models with
more stacked layers have shown superiority over the shallower
ones [27]. However, training a deep Transformer is non-trivial
and some strategies have been proposed, including training
layers orderly from shallow to deep [27], parameters sharing
among different layers [28] and creating residual connections
between layers [15]. In the vanilla Transformer, the decoder
only queries the representation of the topmost encoder layer
through a cross-coder attention mechanism, which is considered
insufficient for making use of source information from the lower
encoder layers [29]. To this end, previous works propose deeper
cross-coder attention mechanisms by, e.g., aggregating the rep-
resentations from multiple encoder layers for the decoder [17],
[21], or using information from lower encoder/decoder layers
(mean of the states in lower layers) to improve the attention
allocation in the current layer [30], [31]. Zhang et al. introduce
multiple parallel attention modules in the gated recurrent unit
(GRU)-based decoder to attend to multiple encoder layers [20].
Wang et al. [32] propose to integrate tree structures of input text
sequences into attention modules.

Our work shares the common objective of improving the
Transformer structure. In contrast to the aforementioned works
towards this objective, the proposed hi-attention can be applied
to various parts of the AED structure. Moreover, the proposed at-
tention mechanism emphasizes collection of hierarchical infor-
mation from previous layers by dynamically allocating attention
to previous layers, while the previous methods only focus on the
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Fig. 1.
historical layers with a dilation factor of 2.

attention allocation in the current layer by enhancing attention
module inputs with deterministic connections from previous lay-
ers, e.g., residual connections. Also, our approach reuses key and
value vectors from previous layers without additional parame-
ters, while the previous approaches require extra parameters to
compute the key and value vectors for inter-layer attention.

D. Automatic Speech Recognition

The Transformer structure has been successfully applied
to the ASR task and achieved outstanding performance [12],
[33]. Though RNNs are more suitable for streaming ASR,
the self-attention mechanism has the advantage of integrating
information from longer-distance context, leading to superior
performance than recurrent connections in RNNs. Many adap-
tations have been made to improve the Transformer structure
for streaming, e.g., restricting the attention computation to a
fix-sized context window [12], [34]. [33] investigates the com-
bination of self-attention and RNN transducers and shows that
limiting the left attention context can make decoding compu-
tationally tractable for streamable speech recognition. Wang
et al. [12] explore more encoding methods and show that 2D
convolutional embeddings can implicitly model the positional
information specifically for ASR. While Transformer blocks
are good at capturing content-based global interactions, con-
volutional layers are better at exploiting local features. The
convolution-augmented Transformer (Conformer) is proposed
to combine the merits of both sides to model both local and
global dependencies within an audio sequence, and has achieved
state-of-the-art performance on several corpora [1].

This work improves the self-attention in the Transformer
architecture to the hi-attention for integration of hierarchical
information from multiple historical layers. The hi-attention
inherits the key-value pairs from the self-attention in historical
layers, therefore the improvements on the original Transformer
to enhance the self-attention mechanism for streaming can be di-
rectly applied to the Hiformer, e.g., limiting attention windows.

III. TRANSFORMER WITH SELF-ATTENTION MECHANISM

The general sequence modeling learns the mapping from a
source sequence to another target sequence. Most competitive
sequence modeling systems adopt the AED architecture [20],
e.g., the Transformer [1], [3]. In the AED architecture, the
input sequence is first encoded into a hidden representation
sequence, upon which the output sequence is decoded, in an
autoregressive or non-autoregressive manner. Attention weights
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Comparison of self-attention and hi-attention. (a) Self-attention; (b) Hi-attention that considers two historical layers; (c) Hi-attention that considers two

between the encoder and the decoder are utilized to combine the
encoded representation sequence into a representation vector for
each decoding step. We will illustrate these components in the
Transformer in the following sections.

A. Encoder & Decoder

The encoder is composed of N identical layers, or called
blocks, which are stacked one by one. Each layer has two
sub-layers, a multi-head self-attention module and a position-
wise feedforward network. The self-attention module, as
introduced in the next section, attends to intra-layer context and
aggregate information for each time step. The two sub-layers
are surrounded by residual connections and followed by layer
normalization [35].

The decoder also consists of N layers that contains three
sub-layers, a multi-head self-attention module, a cross-coder
multi-head attention module and a feedforward network. Similar
to the encoder sub-layers, residual connections and layer nor-
malization are employed for each sub-layer. The self-attention
module focuses on intra-layer context weighting and aggrega-
tion. The cross-coder attention module determines which steps
of encoder outputs to be focused on at the current decoding step.
To prevent the decoder from attending to future positions, proper
masks are applied to the decoder inputs. The decoder outputs are
also offset by one position, such that the predictions for certain
position only depend on the outputs at previous positions.

B. Self-Attention

In the standard Transformer [3], the scaled dot-product self-
attention is adopted to model the correlation between each step
pairs in the same layer, as shown in Fig. 1(a). The attention
function in the [-th Transformer layer is computed based on
a set of queries Q(l) performed on the keys K ) and the
corresponding values v,

SO — softmax (dgl/QQ(l)K(l)T) V(l), 1)

where Q) e RT*dk K ¢ RT*dx and VD ¢ RT*dv gre
queries, keys and values derived from the input sequence. 7T,
dy, and d,, are the sequence length and the hidden embedding
dimensions of keys and values, respectively.

Note that the attention outputs S @ for different layers are cal-
culated separately in (1), hence only the intra-layer information
is integrated, and inter-layer connections are not established for
integration of information from various layers.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 11,2024 at 02:31:02 UTC from IEEE Xplore. Restrictions apply.



3996

Multi-head attention is shown to improve the self-attention
performance by adopting parallel projections to obtain the
queries, keys and values and obtain attention outputs separately
as (1) [3]. The outputs of multiple heads are then concatenated
and projected back to a shared space again. The multi-head
self-attention outputs SIEQ can be calculated with the single-head
outputs S,(f) from (1) as:

Sillh) = concat (SEZ), cen SE,ZL)) w5, 2

where S;l) is the j-th head attention outputs and W* ¢ R™dvxd
is a trainable matrix. m and d are the head number and the model
hidden dimension, respectively.

C. Positional Encoding

To enable the Transformer blocks to consider position in-
formation, positional encodings are added to the input of the
encoder and decoder stacks. There are different choices of
such positional encodings. One option is each dimension of the
encodings is based on sine and cosine functions [3]:

PE(p, 2j) = sin (p/100002j/d) : 3)
PE(p,2j + 1) = cos (p/100002j/d) , 4)

where p is the position and j is the dimension. With these
functions, PE(p + k, %) can be represented as a linear function
of PE(p, *), so that relative positions can be learnt by encoders
and decoders.

IV. HIERARCHICAL ATTENTION MECHANISM

To enable the inter-layer hierarchical information integration,
we propose a hierarchical attention, called hi-attention, by in-
troducing connections between the current layer and historical
layers, i.e., lower layers. We will explain the improvement of
hi-attention over self-attention in the following sections.

A. Hi-Attention

Inspired by the observation [4], [5] that different Transformer
layers in pre-trained models, like wav2vec [36], represent dif-
ferent levels of information, we propose to consider the multi-
layer/level information when calculating the attention outputs,
as shown in Fig. 1(b). Given the keys and values calculated in the
historical layers K, V@) j =12, ... 1 —1, the cross-layer
hi-attention can be calculated as:

H) — softmax (dgl/QQ(l)K(i)T) V(i)’ ®)
HO = 8O § concat (H(”*U, o H(“*")) Wi (6)

where WH ¢ R"@*dv is a trainable matrix and 7 is a hy-
perparameter of number of historical layers considered in the
hi-attention. concat is a function to concatenate the input
matrices along the last dimension. When n = 0, the hi-attention
backs off to the original self-attention, which does not consider
historical layer information. Note that since the key-value pairs
K@ and V® are directly borrowed from the historical layers,
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the hi-attention structure only requires additional parameters
W compared with the self-attention structure. Compared to
previous works using another set of attention modules [30], our
hi-attention has better parameter efficiency by reusing the keys
and values in historical layers.

1) Dilation: To enable the hi-attention structure to consider
more distant layer information, while at the same time restrain
the increase of parameter size, we introduce the dilated connec-
tions to the hi-attention structure. Using a dilation factor of f,
the indices of the considered n historical layers at the [-th layer
are {{-1,l—f—1,...,1—(n—1)f — 1}, as illustrated in
Fig. 1(c). The concatenation in (6) can be improved to

H®Y =80 4 concat (H(l’lfl), ey H(l’lf(”fl)ffl)) wi,

(7)

With the dilated connections, the hi-attention can consider a
wider window of historical layers.

2) Multi-Head Attention: Similarly, the hi-attention can be
improved to have multiple heads:

HIEIQ = S:Eél) + concat (Hlsél’l_l), oy Hlﬁl’l_")> WH,

HE) — concat (HY*”, N .,Hg,l;“) wo, (8)

where H ,(Cl’z) is the k-th head outputs between the [-th and the
i-th layer, as in (5). W € R >4 5 a trainable matrix to
project the concatenated multi-head outputs to a shared hidden
space, and WH € R™¥*4 is another trainable matrix to project
the concatenation of multi-head outputs across layers back to
the model’s hidden space. In practice, we can merge the two

projections of W and W into one single projection with a
trainable matrix of W1 ¢ Rmdvxd;

H,th) = S,E,lh) + concat (Hgl:;ln*l), cn Hglf,;")> wt,
Hgl’frz = concat (Hgl’i), cen Hg,lll)) . )

The parameter size of hi-attention increases with only nd? for
each layer that introduces the hi-attention structure.

We also explore another option to combine hi-attention and
self-attention, such that the model parameter size is not in-
creased. Equation (9) can be changed to simply sum up all the
intra-layer attention outputs Sg,? and the inter-layer attention
outputs H S,l;i) from historical layers:

l-n
I:Il(nlh) = concat (Sgl) + Z Hgl’l), co
i=1-1
l-n 4
SO+ > HS,QZ)) WS, (10)

i=l—-1

Though directly summing attention outputs as (10) does not
require extra parameters, analysis in Section VII shows that con-
catenating the outputs as (9) outperforms summing the outputs.
Hence, in our experiments, we use the concatenating option.
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Hiformer architecture. Compared to traditional Transformer architecture, the hi-attention can access to information in historical layers (dashed arrows),

and propagate multi-layer hierarchical information across the encoder and the decoder (blue arrow).

B. Positional Encoding & Masking

The hi-attention structure directly reuses the queries, keys
and values of the self-attention module, hence the positional
encodings [3], [37] applied to queries, keys and values are
inherited from the self-attention. Also, the masks applied to the
key-value pairs for different layers can be reused conveniently.
The hierarchical dilation can also be implemented with masks.

V. HIFORMER ARCHITECTURE

Compared with the Transformer, the Hiformer structure im-
proves the self-attention to the hi-attention in the encoder, de-
coder and cross-coder attention modules, as shown in Fig. 2. In
the following, we will introduce these three parts of the Hiformer
structure.

A. Encoder

The encoder consists of N layers equipped with the hi-
attention. In each of these layers, we follow the previous standard
configuration of Transformer [3]. Each layer is composed of a
multi-head hi-attention sub-layer and a feedforward sub-layer.
Residual connections with layer normalization are employed
around the two sub-layers.

B. Decoder

Similar to the encoder, N layers with hi-attention are stacked
in the decoder. Each decoder layer consists of an intra-layer
multi-head hi-attention, a cross-coder multi-head hi-attention

sub-layers are surrounded by residual connections followed by
layer normalization. The intra-layer attention is the same as that
in the encoder, and the inter-layer attention matches the queries
from the decoder and the keys from the encoder layers and
aggregating the corresponding values according to the query-key
matching. Attention masks are applied to the hi-attention to
prevent dependence on future outputs.

C. Attention

The hi-attention mechanism in the Hiformer structure is em-

ployed to handle three types of information integration:

e Intra-layer integration—similar to the conventional self-
attention, the hi-attention projects hidden representations
to queries, keys and values and integrates the values in
the same layer by matching the corresponding queries and
keys.

¢ Inter-layer integration—based on the keys and values gen-
erated by historical layers, the hi-attention in the current
layer integrates the historical-layer values by matching
the current-layer queries with the corresponding historical-
layer keys.

® Cross-coder integration—in the conventional Transformer,
only the values from the topmost encoder layer are inte-
grated. In the proposed Hiformer structure, values gener-
ated from not only the top encoder layer but also the lower
encoder layers are integrated in the cross-coder attention.
For the lower layers, the key-value pairs generated for the

andAu%ole;@ﬁ|c8r93%9%8£'?ﬁ]nn£8‘?9f8ﬁmas‘é%n?&bbé@)ﬁ?ﬁon&%ﬁ& I:%Wﬁl%aded on J;r?tgﬁl_ﬁyz%gf gte&%?%za {Je'l'g}f]fl)srre] (I1EEE Xplore. Restrictions apply.
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TABLE I
STATISTICS OF THE JRC-ACQUIS EXPERIMENTAL DATA

Directions | #Train Pairs | #Dev Pairs | #Test Pairs
Es<En 679,088 2,533 2,596
De<En 699,569 2,454 2,483

VI. EXPERIMENTS

We evaluate the Hiformer structure on two sequence modeling
tasks, MT and ASR, that tackle text and audio input sequences
respectively. Both tasks predict discrete labels for the target
sequences, which generally have different lengths from the input
sequences.

A. Machine Translation

We conduct the MT experiments on the JRC-Acquis cor-
pus [42], which contains the total body of European Union (EU)
law applicable to the EU member states, and the standard WMT
2014 English-to-German dataset. On the JRC-Acquis corpus,
we focus on the translation directions of Spanish = English (Es
= En), En = Es, German < English (De = En) and En =
De. The corresponding statistics is shown in Table I. We use
the same dataset that is processed by [43] and followed by [2],
hence our experimental results can be fairly compared with the
results in [2], [43]. The WMT 2014 English-German training set
consists of about 4.5 M sentence pairs. We use the newstest2014
as test set. The sentences are tokenized by Moses [44] and byte
pair encoding (BPE) [45] with a shared vocabulary of 44 k
symbols.

1) MT Models: The Transformer structure has the same con-
figuration as the Transformer Base in [3], with 8 attention
heads, 512 dimensional hidden states and 2048 dimensional
feedforward states. The encoder and decoder both contain 6
Transformer blocks. We use the baseline Transformer imple-
mented on the JRC-Acquis by [2]" and the Transformer baseline
from Fairseq® on the WMT’ 14 dataset. Based on these Trans-
former baselines, we build the Hiformer models by replacing
self-attention modules with hi-attention modules. To ensure fair
comparison, the model configuration and training settings of
the Transformer and the Hiformer are kept the same, except
the introduction of hi-attention in the Hiformer models. We
also compare the Hiformer with the well-known attention-based
encoder-decoder MT model based on recurrent neural networks,
denoted as RNNencdec [39]. We follow the learning rate,
dropout and label smoothing settings in [2], [3]. The Adam
optimizer with 3; = 0.9, 32 = 0.98 and € = 107 is used to
train all models up to 150 K training steps. The models are
trained on one Tesla V100 GPU. The max tokens are set to 16384
with an update frequency of 8. The dropout rate of Hiformer is
increased to 0.2 from 0.1 used in Transformer training. A beam
size of 5 is used in decoding.

2) Results: The BLEU scores of the compared systems on the
JRC-Acquis corpus are shown in Table II. It can be found that the
Hiformer significantly outperforms the other baseline systems

![Online]. Available: https://github.com/jcyk/copyisallyouneed
2[Online]. Available: https://ai.facebook.com/tools/fairseq
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on all the four translation directions, with the significance tested
by bootstrap re-sampling [38]. This demonstrates the superiority
of the proposed hi-attention mechanism over the self-attention.
We investigate the effect of the hi-attention in various parts of
the Hiformer structure. It can be found that the cross-coder hi-
attention plays an important role in the Hiformer model (by
comparing line 4 and line 5 in Table II). Reverting the cross-
coder hi-attention to self-attention degrades the performance in
all four translation directions consistently, with a BLEU score
reduction of 0.16-0.59 on the test sets. It can also be found
that simply using hi-attention in the encoder can still provide
performance gains (comparing line 3 and 6).

The experimental results on the WMT’ 14 English = Ger-
man translation task also demonstrate the effectivenss of the
Hiformer structure, as shown in Table III. The Hiformer struc-
ture, with either concatentating or summing combination in
hi-attention ((9) or (10)), outperforms the Transformer baseline.
Note that the Hiformer with summing combination does not
require additional parameters in comparison to the Transformer.
We also build three variants of the Transformer base structure,
i.e., Transformer-7 L, Transformer-1.5 W and Transformer-7L-
1.5 W. The Transformer-7 L structure consists of 7 encoder
layers and 7 decoder layers. The Transformer-1.5 W has the same
layer numbers as the Transformer base, but with 1.5 times wider
layers. The Transformer-7L-1.5 W combines these two improve-
ments. All these three systems achieve better performance than
the Transformer base model. The Hiformer outperforms all these
three Transformer variants with less model parameters, which
indicates the parameter efficiency of the Hiformer structure. We
estimate the number of floating point operations used to train a
model by multiplying the training time, number of used GPUs
and an estimate of the sustained single-precision floating-point
capacity of the used GPUs. We use the value of 14 TFLOPs for
the Tesla V100 GPU. The Hiformer structure requires around 2.5
times the training cost of the Transformer structure, but achieves
significantly better performance, improving from 27.42 to 28.24
BLEU. The Transformer-7L-1.5 W requires comparable FLOPs
with the Hiformer but has more parameters. However, the perfor-
mance of Transformer-7L-1.5 W is inferior to that of Hiformer
with either concatenating or summing option, which indicates
the training efficiency of the Hiformer structure. Table IV shows
the comparison of the Hiformer with the latest systems that
consider cross-layer information. The Hiformer outperforms the
MultiScale Collaborative (MSC) nets [40] and the Transformer
with Dynamic Linear Combination of Layers (DLCL) [41]. The
Deep Representation [30] and GTRANS [17] achieve better
performance but require significantly more model parameters.

B. Automatic Speech Recognition

We conduct experiments on the benchmark ASR corpora
of AMI meeting transcription [48], Librispeech [49] and
AISHELL-2 [50]. The AMI dataset comprises approximately
100 hours of meeting recordings with 3-5 speakers per meeting
recorded by independent headset microphones (IHM). About
81 hours of the data are used as training set and around 9
hours for development (Dev) and evaluation (Eval) set [46].
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BLEU SCORES ON THE JRC-AcQuis CORPUS

# | Systems Es=En En=-Es De=-En En=-De
Dev Test Dev Test Dev Test Dev Test

1 | RNNencdec [39] 63.97 64.30 61.50 61.56 60.10 60.26 55.54 55.14
2 | Transformer [2] 64.25 64.07 62.27 61.54 59.82 60.76 55.01 54.90
3 | Transformer (our impl.) 64.41 64.18 62.39 61.63 59.92 60.36 54.83 55.08
4 | Hiformer (concat Eq. (9)) | 65.11 | 64.91* | 62.71 | 62.07* | 60.91 | 61.52* | 55.48 | 56.17*
5 - Cross-coder Hi-attn 65.07 64.33 62.66 61.77 60.63 61.36 55.51 55.58
6 - Dec Hi-attn 65.08 64.75 62.55 61.86 60.54 61.40 55.30 55.60
7 | Hiformer (sum Eq. (10)) 64.73 64.47 62.34 62.01 60.38 61.02 55.37 55.42

“Our impl.” denotes our implementation of the transformer model on this corpus. “Concat” and “Sum” denote the two combination
option in the hi-attention modules. *denotes hiformer outperforms our implemented transformer significantly with p < 0.05, tested

by bootstrap re-sampling [38].
The bold values are superior to the baseline.

TABLE III

EVALUATION OF TRANSLATION PERFORMANCE ON THE WMT’ 14 ENGLISH = GERMAN (“EN = DE”) TRANSLATION TASK
Systems #Para. Train | Decode | FLOPs(10'®) | BLEU
Transformer 66.48M 2.34 235.76 3.7 27.42
Transformer-7L 73.84M 1.62 212.39 5.7 27.64
Transformer-1.5W 132.75M 1.67 170.85 7.3 27.63
Transformer-7L-1.5W 149.29M 1.47 156.53 8.6 27.89
Hiformer 66.70M 0.47 138.27 8.8 28.24
- Cross-coder Hi-attn | Concat Eq. (9) 66.63M 0.52 185.06 7.6 27.99
- Dec Hi-attn 66.56M 0.58 229.76 6.9 27.67
Hiformer 66.48M 0.48 140.14 8.3 28.07
- Cross-coder Hi-attn Sum Eq. (10) 66.48M 0.53 191.87 7.5 27.85
- Dec Hi-attn 66.48M 0.59 228.43 6.6 27.63

#Para. denotes number of parameters, “Train” and “Decode” respectively denote the training speed (steps/second) and

decoding speed (sentences/second) on a tesla v100 GPU.
The bold values are significant with p<0.05.

TABLE IV
EVALUATION OF VARIOUS SYSTEMS ON THE WMT’ 14 EN = DE TASK

Systems #Para. | BLEU
Transformer [3] 65M 27.31
MSC [40] 73M 27.68

DLCL [41] 62M 27.60

Deep Representation [30] | 111M | 28.78
GTRANS [17] 225M 30.01
Hiformer 67TM 28.24

#Para. denotes number of parameters.

The Librispeech corpus contains read speech data of audiobooks
by multiple speakers, and has been carefully segmented and
aligned. About 960 hours of the data are used as training set, and
20 hours for development and testing. The Dev and Test sets both
comprise two subsets, {Dev,Test}-clean and {Dev,Test}-other.
The ‘other’ sets are more acoustic challenging than the ‘clean’
sets. The training data of AISHELL-2 contains 1,000 hours of
Mandarin speech (around 1 million utterances), and the dev and
test sets contains 2,500 and 5,000 utterances recorded via three
parallel channels, i.e., i0OS, Android and Microphone.

1) ASR Models: The state-of-the-art sequence-to-sequence
architecture for ASR is the convolution-augmented Transformer
(Conformer) [1], where convolutional layers are introduced to
enhance the modeling of local feature patterns. We improve the
Conformer model to a convolution-augmented Hiformer model,
named Chiformer. Experimental comparison is conducted be-
tween the following acoustic models:

e Transformer [12], [47]. For the AMI corpus, we build a

Transformer-based model, where the encoder and decoder
are composed of 12 and 6 layers with 2048 dimensions

TABLE V
WER (%) OF VARIOUS SYSTEMS ON THE AMI IHM DATASET

Systems no LM with LM
Dev Eval Dev Eval
Hybrid [46] - - - 17.5
Transformer ' 19.8 19.1 19.1 18.3
Conformer? 18.0 17.0 17.7 16.5
Conformer (our impl.) 18.2 17.1 18.1 16.9
Chiformer 18.0* | 16.7** | 17.8** | 16.5**

*and **indicate chiformer significantly outperforms our implmented conformer
with p < 0.05 and p < 0.005 respectively. idenotes systems from espnet official
repository.

respectively. The self-attention modules have 4 heads of
256 dimensions, i.e., the attention dimension is 1024. For
Librispeech, we directly include the reported results by [47]
in Table VI. The Transformer in [47] has 24 layers for the
encoder and 6 layers for decoder, with 4096 dimensions
for each layer and 4 heads for self-attention modules.

Conformer [1]. Compared with the Transformer, the Con-
former encoder improves the feed forward layers to a
feedforward module. In the feedforward module, layer
normalization is applied first, and then two linear layers are
utilized to expand the hidden representation and transform
the representation back to the original dimension. The
Swish activation is used to regularize the network. Between
the multi-head attention and the top feedforward module,
a convolution module with point-wise convolution and a
gated linear unit is added, followed by a depth-wise convo-
lutional layer with batch normalization and another point-
wise convolutional layer. For the AMI and Librispeech
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TABLE VI
WER (%) OF VARIOUS SYSTEMS ON THE LIBRISPEECH CORPUS

no LM with LM
Systems Dev Test Dev Test
Clean | Other | Clean | Other | Clean | Other | Clean | Other
Transformer [47] 2.54 6.67 2.89 6.98 2.10 4.79 2.33 5.17
Conformer [1] - - 2.1 4.3 - - 1.9 3.9
Conformer? 2.1 5.2 2.4 5.2 1.8 3.9 2.0 4.2
Conformer (our impl.) 2.4 6.7 2.8 6.5 1.9 49 2.1 4.9
Chiformer 24 6.5 2.6%* 6.4 1.9 4.7 2.2 4.8
- Cross-coder Hi-attn 2.5 6.6 2.7 6.5 1.9 4.8 2.1 4.9
- Dec Hi-attn 2.5 6.7 2.7 6.6 1.9 4.8 2.1 5.0

*and ** indicate chiformer significantly outperforms conformer with p < 0.05 and p < 0.005, respectively.

Tdenotes systems from espnet official repository.
The bold values are superior to the baseline.

corpora, we build two Conformer models with the same
configuration, with 12 Conformer blocks for the encoder
and 6 Transformer blocks for the decoder. The block
dimension is 2048, and the self-attention modules have
4 heads. We implement the Transformer and Conformer
models based on ESPnet.?

e Chiformer, We introduce the hi-attention mechanism to
the baseline Conformer to build three Chiformer models
for the three corpora, respectively. The configurations of
the three Chiformer models are the same as the Conformer
models except for the introduction of hi-attention modules
and the increase of attention dropout rate from 0 to 0.1.
This makes it possible for fair comparison. The hi-attention
considers two historical layers with a dilation factor of
1 in the experiments. The Chiformer has a parameter
size of 126.64 M compared to the baseline Conformer
of 116.15 M, which is only an increase of ~10% in the
total size.

Three language models (LMs) are trained for the AMI, Lib-
rispeech and AISHELL-2 systems respectively. All LMs are
composed of 16 Transformer layers of 2048 dimensions with
8 attention heads. The reference transcripts of AMI training
data, the standard Librispeech LM corpus, and the training set
of AISHELL-2 are used for LM training, respectively. We adopt
a joint CTC/attention-based encoder-decoder structure for the
two corpora. The training weight for the CTC branch is 0.3.

2) Results: The AMI experimental results are shown in
Table V. The proposed Chiformer model achieves significantly
better performance than our implemented Conformer model,
with a word error rate (WER) reduction of over 0.4% on the Eval
sets. The significance is evaluated by the matched pairs sentence
segment word error (MPSSWE) test using the NIST ASR
scoring toolkit (SCTK). This implies the effectiveness of the
proposed hi-attention mechanism. Note that the only difference
between the Conformer and the Chiformer architecture is the
introduction of the hi-attention mechanism. The difference of
our implemented Conformer and the Conformer from ESPnet
official repository is mainly caused by the training setting. We
use 2 GPUs while the ESPnet model uses 8 GPUs.

The Librispeech results are presented in Table VI. It can be
found that the Chiformer model still achieves better or compara-
ble performance than the Transformer and Conformer baselines.

3[Online]. Available: https://github.com/espnet

Note that the WER of 2.8% on the test-clean set is quite low,
and a reduction of 0.2% is already statistically significant. This
again verifies the effectiveness of the hi-attention mechanism
even when the training dataset is relatively large. We also in-
vestigate the effect of the hi-attention on various parts of the
Chiformer model on the Librispeech corpus. It can be found
that reverting the hi-attention to self-attention in various parts
results in performance degradation. On the AISHELL-2 corpus,
the Chiformer achieves better performance than the Conformer
with and without LM rescoring, as shown in Table VII, where
the Transformer and Conformer results from ESPnet official
repository are also included. These observations, consistent
with those in the MT experiments, validate that the Hiformer
model with hi-attention is effective compared to the Transformer
counterparts.

VII. ANALYSIS
A. Combination Options in Hi-Attention

We compare the two options of combining hi-attention out-
puts from historical layers, i.e., concatenating the multi-head
hi-attention outputs across layers and then projecting to the
model hidden space, as illustrated in (9), or simply summing
up the heads of the intra-layer attention and the corresponding
heads of the inter-layer attention as (10). We compare the two
options on the JRC-Acquis corpus in Table II. It can be found that
the concatenating option consistently outperforms the summing
option on all four translation directions. We compare the model
parameters and training/decoding time of the two options on the
WMT’ 14 En = De translation task in Table III. The concatenat-
ing option still outperforms the summing option, but the number
of model parameters is larger and the required training cost
is higher.

B. Contribution of Historical Layers

To investigate how previous layers contribute to the current
layer, we add trainable weights to the hi-attention for combina-
tion of the current layer’s attention outputs and previous layers’
attention outputs in (10) on the ASR Chiformers trained on
the AISHELL-2 corpus. The trained weights in the hi-attention
modules for the encoder, decoder and cross-coder are shown in
Fig. 3-5, respectively. It can be found that in the encoder hi-
attention, different layers have different weight distributions on
the current and the previous layers. This indicates that previous
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TABLE VII
WER (%) OF THE CONFORMER AND CHIFORMER SYSTEMS ON THE AISHELL-2 CORPUS

Svstems no LM with LM
y dev_ios | test_android | test_ios | test_mic | dev_ios | test_android | test_ios | test_mic
Transformer® - - - - 8.9 7.5 8.6 83
Conformer’ 5.4 6.1 5.7 6.1 5.2 6.0 5.5 5.8
Conformer (our impl.) 5.6 6.4 5.8 6.4 5.4 6.1 5.5 6.0
Chiformer 4.9 6.1 5.2 5.9 4.8 6.0 5.1 5.8
fdenotes systems from espnet official repository.
The bold values are significant with p<0.05.
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Fig. 3. Visualization of trainable weights in the encoder hi-attention for .
top second third

combining attention outputs from the current layer, the previous layer and the
layer before the previous (prev-prev).

0.8
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0.4

0.2 I

. b
current prev prev-prev
M layerl mlayer2 mlayer3 Layer4
Fig. 4. Visualization of trainable weights in the decoder hi-attention for

combining attention outputs from the current layer, the previous layer and the
layer before the previous (prev-prev).

layers have different contributions to the current hi-attention at
different layers. In the decoder hi-attention, the weights for the
current layers are slightly larger. In the cross-coder hi-attention,
the weights for the top and second encoder layers already dom-
inate the weights, which indicates that the contributions from
the second layer are as important as the top layer. The weights
visualization suggests that the information from historical layers
is important for the current layer. We also investigate adding
regularization to the encoder to enhance the diversity of infor-
mation encoded in different layers by separating the hi-attention
modules in the encoder. Specifically, we follow [40] to divide the
encoder of 12 layers into 3 blocks with 4 successive layers in each
block. The hi-attention modules can only attend to the historical
layers in the same block. The different blocks are expected to
learn diversified information with such a regularization method.
Though in our experiments performance degradation is observed
due to the regularization, the trainable weights in the encoder
hi-attention with regularization, as in Fig. 6, presents a clearer
pattern where more weights are assigned to the current layers

M Layerl mlayer2 mlayer3 Layer4 mLayer5

Fig. 5. Visualization of trainable weights in the cross-coder hi-attention for
combining attention outputs from the top, the second and the third encoder
layers.
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Fig. 6. Visualization of trainable weights in the encoder hi-attention with reg-
ularization for combining attention outputs from the current layer, the previous
layer and the layer before the previous (prev-prev).

TABLE VIII
EFFECT OF NUMBER OF CONSIDERED HISTORICAL LAYERS AND DILATION
FACTOR ON THE HIFORMER MODEL, BLEU SCORES EVALUATED ON TEST SETS
OF THE JRC-AcQuis CORPUS

Layer | Dilation | Es=En | En=Es | De=En | En=De
0 — 64.18 61.63 60.36 55.08
1 1 64.80 61.97 61.62 55.81
1 64.88 62.05 61.39 55.97
2 2 64.91 62.07 61.52 56.17
3 64.76 62.18 61.19 55.59
3 1 64.83 61.84 61.09 55.67
2 64.73 61.88 61.23 55.65

(compared to Fig. 3), while the other previous layers also make
contributions to the current layers.

C. Considered Historical Layers and Dilation Factor

We investigate the effect of number of considered histori-
cal layers and the dilation factor on the Hiformer structure in
Table VIII. Generally, using hi-attention brings performance
gains. It can be also found that the configuration of considering
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Fig. 7. Comparison between the Transformer baseline and the Hiformer on
different groups of sentence lengths based on the WMT’ 14 En = De dataset.

two historical layers with a dilation factor of 2 achieve generally
better performance than the other settings.

D. Hiformer on Various Sentence Lengths

We analyze the performance of the Transformer and the
Hiformer on various groups of sentence lengths, as in Fig. 7.
We divide the WMT’ 14 En = De test set into different subsets
according to sentence lengths, i.e., number of words. The num-
bers of sentences in the intervals of <15, 15-29, 30-44 and >45
are 600, 1,376, 720 and 302, respectively. It can be found that the
Hiformer significantly outperforms the Transformer in all four
groups. This indicates the hi-attention is beneficial to modeling
sequences with various lengths.

VIII. CONCLUSION

In sequence modeling, recent analyses show that multi-level
hierarchical information is represented at various layers of
encoder-decoder structures, such as Transformer. This hierar-
chical information is important for structured prediction, e.g.,
machine translation (MT) and automatic speech recognition
(ASR). However, the conventional self-attention mechanism in
the sequence models only considers the intra-layer information
integration by retrieving the keys and values in the same layer,
and lacks explicit connections with previous layers. In this
work, we propose a novel structure, named Hiformer, with
a hierarchical attention (hi-attention) mechanism to enhance
the models’ ability to leverage hierarchical information from
historical layers. Inter-layer connections are explicitly estab-
lished by retrieving the keys and values of attention modules
in historical layers according to the queries in the current layer’s
attention modules. Extensive experiments conducted on the
benchmark MT and ASR corpora demonstrate the effectiveness
of the proposed Hiformer structure, with significant performance
improvement measured by BLEU score and WER on MT and
ASR tasks, respectively. In the future, we plan to apply the
Hiformer structure to other tasks, e.g., speech synthesis, and
to semi-supervised representation learning.
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