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Abstract
Although articulatory feature-based conditional pronuncia-

tion models (AFCPMs) can capture the pronunciation charac-
teristics of speakers, they requires one discrete density function
for each phoneme, which may lead to inaccurate models when
the amount of training data is limited. This paper proposes a
phonetic-class based AFCPM in which the density functions
in speaker models are conditioned on phonetic classes instead
of phonemes. Phonemes are mapped to phonetic classes by
(1) vector quantizing the phoneme-dependent universal back-
ground models, (2) grouping phonemes according to the classi-
cal phoneme tree, and (3) combination of (1) and (2). A new
scoring method that uses an SVM to combine the scores of
phonetic-class models is also proposed. Evaluations based on
2000 NIST SRE show that the proposed approach can effec-
tively solve the data sparseness problem encountered in con-
ventional AFCPM.

1. Introduction
Previous studies have shown that combining low-level acous-
tic information with high-level speaker information—such as
the usage or duration of particular words, prosodic features and
articulatory features—can improve speaker verification perfor-
mance [1, 2]. In particular, it was found that the conditional
pronunciation modeling (CPM) technique [3] is able to capture
the variation in speakers’ pronunciation, leading to the best per-
formance in a benchmark evaluation [1]. CPM aims to model
speaker-specific pronunciation by learning the relationship be-
tween what phonemes have been said and how these phonemes
are pronounced. The idea is further improved in [4] where
articulatory-feature (AF) streams are used to construct condi-
tional pronunciation models, leading to the so-called AFCPM.
Because AFs are closely related to the speech production pro-
cess, they are suitable for capturing the pronunciation charac-
teristics of speakers.

While promising results have been obtained, AFCPM re-
quires a large amount of speech data for training the phoneme-
dependent speaker models. Insufficient enrollment data will
lead to inaccurate speaker models and poor performance. More-
over, because the method is phoneme based, it builds phoneme-
dependent models regardless of the fact that some phonemes
are very similar in terms of articulatory properties. This causes
some of the background models to be almost identical. Worse
yet, because the speaker models are adapted from the back-
ground models, for those “similar” phonemes that rarely occur
in the speakers’ utterances, the corresponding speakers models
will be almost identical to the background models, making the
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Figure 1: Phoneme-dependent AFCPM background models
correspond to (a) phoneme /ah/ and (b) phoneme /ow/. (c) to (f):
Phoneme-dependent speaker models adapted from (a) and (b).
d represents the Euclidean distance between the models con-
nected by the arrows. The 60 discrete probabilities correspond-
ing to the combinations of the 6 manner and 10 place classes
are nonlinearly quantized to 256 gray levels using log scale.
See Section 2.1 for the details of manner and place classes.

speaker models fail to discriminate the speakers. This situation
is exemplified in Fig. 1. Evidently, there is substantial similar-
ity between the two background models (Figures 1(a) and 1(b)).
Comparisons between Figures 1(c) and 1(d) and between Fig-
ures 1(e) and 1(f) also reveal that the models of speaker 1018
are very similar to those of speaker 3823.

To improve the accuracy of articulatory feature-based mod-
els, this paper proposes to group similar phonemes into pho-
netic classes by using a mapping function and to represent the
background and speaker models as phonetic-class dependent
density functions. Three approaches to determining the map-
ping function are evaluated. A new scoring method that uses an
SVM to combine the scores obtained from different phonetic-
class dependent models is also proposed. It was found that this
phonetic-class AFCPM approach can effectively solve the data
sparseness problem encountered in conventional AFCPM, re-
sulting in a significantly lower error rate.

2. Phonetic-Class Dependent AFCPM
2.1. Articulatory Features

Articulatory features (AFs) are representations describing the
movements or positions of different articulators during speech
production. In Leung et al. [4], manner and place of articulation
were used for pronunciation modeling. The manner property
has 6 classes, M ={Silence, Vowel, Stop, Fricative, Nasal,
Approximant-Lateral}, and the place property has 10 classes,



P ={Silence, High, Middle, Low, Labial, Dental, Coronal,
Palatal, Velar, Glottal}. The AFs were automatically deter-
mined from speech signals using AF-based multilayer percep-
trons (MLPs) shown in Fig. 2.

P
h

o
n

et
ic

-C
la

ss
 d

ep
en

d
en

t 
S

co
ri

n
g

1

      

,..., T

X

X X Manner MLP 

Place MLP 

M M

1 ,...,
T

l l

P P

1
,...,

T
l l

1,..., T
q q

Null Grammar 

Phoneme 

Recognizer 

Phoneme to Phonetic 

Class Mapper 

( )G
c f q

1,..., T
c c

… …

CD-AFCPM

2S

CD-AFCPM

G
S

( )K

( )K

( )K

( )K

…

b

CD-AFCPM
( )S X

G-Dimensional 

Polynomial SVM  

1

1

T

T

c

q

c

q

…

AFCPM of  

Phonetic Class 2

AFCPM of  

Phonetic Class 1

AFCPM of  

Phonetic Class G

Phonetic-Class

Dependent Speaker and 

Background Models

(Eq. 5, 7) 

overlapping 

features  

from  

testing

utterances

(Eq. 10) 

Retrieve

weights

(Eq. 6) 

CD-AFCPM

1S

I
np
ut L

a
y
e
r

O
utp

ut L
a
y
e
r

H
id

d
e
n
 L

a
y
e
r

H
id
d
e
n
 L
a
y
e
r

M
a
x
n
e
t

…
…

…

…
…

9
 fram

es (t
4
,...,

t,…
,
t+

4
) o

f M
F
C

C
s,

X
t

I
np
ut L

a
y
e
r

I
np
ut L

a
y
e
r

O
utp

ut L
a
y
e
r

O
utp

ut L
a
y
e
r

H
id

d
e
n
 L

a
y
e
r

H
id
d
e
n
 L
a
y
e
r

H
id

d
e
n
 L

a
y
e
r

H
id
d
e
n
 L
a
y
e
r

M
a
x
n
e
t

M
a
x
n
e
t

…
…

…

…
…

9
 fram

es (t
4
,...,

t,…
,
t+

4
) o

f M
F
C

C
s,

X
t

I
np
ut L

a
y
e
r

O
utp

ut L
a
y
e
r

H
id

d
e
n
 L

a
y
e
r

H
id
d
e
n
 L
a
y
e
r

M
a
x
n
e
t

…
…

…

…
…

9
 fram

es (t
4
,...,

t,…
,
t+

4
) o

f M
F
C

C
s,

X
t

I
np
ut L

a
y
e
r

I
np
ut L

a
y
e
r

O
utp

ut L
a
y
e
r

O
utp

ut L
a
y
e
r

H
id

d
e
n
 L

a
y
e
r

H
id
d
e
n
 L
a
y
e
r

H
id

d
e
n
 L

a
y
e
r

H
id
d
e
n
 L
a
y
e
r

M
a
x
n
e
t

M
a
x
n
e
t

…
…

…

…
…

9
 fram

es (t
4
,...,

t,…
,
t+

4
) o

f M
F
C

C
s,

X
t

Figure 2: The verification phase of phonetic-class dependent
AFCPM.

2.2. Mapping Functions

Because the AF of some phonemes are very similar, it makes
sense to group these phonemes into a phonetic class such
that the joint probabilities in the AFCPMs are conditioned
on phonetic classes instead of individual phonemes. There
are several ways of grouping phonemes: (1) according to
the similarity (Euclidean distance) between the AFCPMs, (2)
according to the phoneme properties as depicted in the classical
phoneme tree [5], and (3) combination of (1) and (2).

Method 1: Grouping based on Euclidean distance. The
phoneme-dependent UBMs, P PD

b (m, p|q) in [4], are vectorized
to N 60-dimensional vectors called AFCPM vectors:

aq =




P PD
b (LM = ‘Vowel’, LP = ‘High’|Phoneme = q)

P PD
b (LM = ‘Vowel’, LP = ‘Low’|Phoneme = q)

· · ·
P PD

b (LM = ‘Nasal’, LP = ‘Glottal’|Phoneme = q)




where q ∈ {Phoneme 1, . . . , Phoneme N}, and LM and LP

represent the manner and place labels, respectively. Then, K-
means clustering or VQ can be applied to cluster the N AFCPM
vectors into G (< N) classes. The mapping from a specific
phoneme to its corresponding phonetic class index c is defined
as a mapping function:

c = fG
VQ(q), c ∈ {1, 2, . . . , G}. (1)

Method 2: Grouping based on phoneme properties. Because
the phoneme grouping in the classical phoneme tree [5] is partly
based on articulatory properties, we can also use the tree to de-
termine the mapping between phonemes and phonetic classes.
This results in the mapping function

c = fG
P (q), c ∈ {1, 2, . . . , G}. (2)

Table 1 shows the mapping between the phonemes and phonetic
classes for three different values of G.

Method 3: Grouping based on Euclidean distance and phoneme
properties. Note that Methods 1 and 2 group phonemes accord-
ing to different criteria. Specifically, the former is based on the
articulatory properties, whereas the latter is based on continu-
ant/noncontinuant properties of phonemes. Because these two

Class label for phoneme qPhoneme q
G=8 G=11 G=13

Front Vowels:  iy, ih, ey, eh, ae 1 1
Mid Vowels:  er, ax, ah 2 2
Back Vowels: uw, uh, ow, ao, aa 

1

3 3
Voiced Fricatives:  v, dh, z, zh 4 4
Unvoiced Fricatives:  f, th, s, sh 

2
5 5

Whisper:  hh 3 6 6
Affricates:  jh, ch 4 7 7
Diphthongs:  ay, aw, oy 5 8 8
Liquids:  r, l, el 9
Glides:  w, y 

6 9
10

Voiced Consonants:  b, d, g 11
Unvoiced Consonants:  p, t, k 

7 10
12

Nasals:  m, en, n, ng  8 11 13

Table 1: The mapping between the phonemes and phonetic
classes based on the classical phoneme tree.

ways of phoneme classification may complement each other, we
propose to combine these two methods. Specifically, phonemes
are firstly grouped by using phoneme properties to form a num-
ber of phoneme groups. The phonemes in the same group are
then further divided into subgroups by VQ. For example, all
phonemes belonging to ‘Vowels’ in Table 1 are grouped to-
gether and then divided into 3 subgroups by using VQ. This
hybrid approach results in the third mapping function:

c = fG
P+VQ(q), c ∈ {1, 2, . . . , G}. (3)

2.3. Phonetic-Class Dependent UBMs

Given the mapping functions, the phonetic-class dependent
UBM of phonetic class c can be determined by:

P CD
b (m, p|c)

= P CD
b (LM = m, LP = p|PhoneClass = c, Background)

=
#((m, p, c)in the utterances of all background speakers)
#((∗, ∗, c)in the untterances of all background speakers)

=

∑
t∈Tb

1∑
t∈Tb

′ 1
, m ∈M, p ∈ P, c ∈ {1, . . . , G}

(4)
where Tb = {t : lM

t = m, lP
t = p, fG(qt) = c, Xt ∈

all background speakers}, Tb
′ = {t : fG(qt) = c, Xt ∈

all background speakers}, LM and LP represent the manner and
place labels, respectively, and lM

t and lM
t are the manner and

place labels determined by the Manner and place MLPs, re-
spectively. Eq. 4 suggests that all frames are weighted equally.
However, frames that have a higher probability of belonging to
phonetic class c should be given a higher weight. Therefore, it
is intuitive to weight the contribution of frame t as follows:

P CD
b (m, p|c) =

∑
t∈Tb

ρc
qt∑

t∈Tb
′ ρc

qt

, (5)

where ρc
qt
≡ P (c|qt) is the probability of phoneme qt belong-

ing to phonetic class c, which can be approximated by P (c|aqt).
Note that P (c|aqt) is inversely proportional to ‖aqt − mc‖,
where mc is the centroid of phonetic class c. Therefore, we
approximate the weights ρc

qt
by:

ρc
qt
≈ P (c|aqt) ≈

exp (− 1
2
‖aqt −mc‖2)∑

c′∈Ci
exp (− 1

2
‖aqt −mc′‖2)

, c ∈ Ci

(6)
where Ci represents the phonetic classes in the i-th group.



2.4. Phonetic-Class Dependent Speaker Models

Target speaker models are obtained in two steps. In the first
step, we compute:

P CD
s (m, p|c)

= P CD
s (LM = m, LP = p|PhoneClass = c, Speaker = s)

=

∑
t∈Ts

ρc
qt∑

t∈Ts′ ρ
c
qt

, m ∈M, p ∈ P, c ∈ {1, . . . , G}

where Ts = {t : lM
t = m, lP

t = p, fG(qt) = c, Xt ∈
speaker s} and Ts

′ = {t : fG(qt) = c, Xt ∈ speaker s}.
Then in the second step, MAP adaptation is applied to obtain
the model of target speaker s:

P̂ CD
s (m, p|c) = βcP

CD
s (m, p|c) + (1− βc)P

CD
b (m, p|c) (7)

where, βc ∈ [0, 1] is a phonetic class-dependent adaptation co-
efficient controlling the contribution of the speaker data and the
background models (Eq. 5) on the MAP-adapted model. It is
obtained by

βc =
#((∗, ∗, c) in the utterances of speaker s)

#((∗, ∗, c) in the utterances of speaker s) + rβ

(8)

where rβ is a fixed relevance factor common to all phonetic
classes and speakers.

Fig. 3 shows the background model for phonetic class c = 3
of which phonemes /ah/ and /ow/ in Fig. 1 are members. Also
shown are the phonetic-class speaker models of speakers 1018
and 3823 in NIST00. Figures 3(b) and 3(c) show that the
two phonetic-class speaker models are more distinctive (there-
fore more discriminative) than the phoneme-dependent speaker
models shown in Fig. 1. The Euclidean distance d between the
phonetic-class speaker models (Figures 3(b) and 3(c)) is also
larger than that of the phoneme-dependent models (Figures 1
(c)–(f)): 11.08 vs. 8.34 and 7.36. Moreover, the distances be-
tween the speaker models and the background models are also
larger in the phonetic-class case, primarily because of more data
are available for training the phonetic-class speaker models. All
of these results suggest that phonetic-class dependent speaker
models are more discriminative.
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Figure 3: Phonetic-class dependent models in which the
phonemes /ah/ and /ow/ are members of the phonetic class. The
speaker models were obtained from the training utterances of
speakers 1018 and 3823 in NIST00, using the mapping func-
tion fG

P+VQ(q). d represents the Euclidean distance between the
models connected by arrows.

2.5. SVM Scoring

The conventional scoring methods sum the likelihood ratios of
a test utterance X = {X1, . . . , XT } in a frame-by-frame basis:

SCD-AFCPM(X) =
∑T

t=1
ρc

qt

[
log p̂CD

s (Xt)− log pCD
b (Xt)

]

=

G∑
c=1


 ∑

t:fG(qt)=c

ρc
qt

[
log p̂CD

s (Xt)− log pCD
b (Xt)

]



=
∑G

c=1
Sc

CD-AFCPM (9)

where frame t is weighted by ρc
qt

, the probability of phoneme
qt belonging to phonetic class c. The speaker models (Eq. 7)
and background models (Eq. 5) are used to compute the scores

p̂CD
s (Xt) = P̂ CD

s (lM
t , lP

t |ct)

= P̂ CD
s (LM = lM

t , LP = lP
t |PhoneClass = ct, Speaker = s)

pCD
b (Xt) = P CD

b (lM
t , lP

t |ct)
= P CD

b (LM = lM
t , LP = lP

t |PhoneClass = ct, Background),

where ct = fG(qt) is the phonetic class of frame t, and lM
t and

lP
t are the AF labels determined by the AF-MLPs.

Eq. 9 suggests that the traditional scoring method treats all
phonetic classes equally. In general, a summation of scores,
as in Eq. 9, is likely to give suboptimal solutions. Better
results may be obtained by applying an SVM to merge the
phonetic-class dependent scores. Specifically, for each train-
ing utterance, the CD-AFCPM scores (Sc

CD-AFCPM) derived from
the G phonetic classes form a G-dimensional score vector

−→
S =

[S1
CD-AFCPM, . . . , SG

CD-AFCPM]T . Vectors from target speakers and
background speakers are then used to train an SVM (see Fig. 2):

SCD-AFCPM(X) =
∑N

i=1
yiαiK(

−→
S ,
−→
Si) + b. (10)

3. Experiments and Results
3.1. Procedures

NIST99, NIST00 [6], SPIDRE [7], and HTIMIT [8] were used
in the experiments. NIST99 was used for creating the back-
ground models and mapping functions, and NIST00 was used
for creating speaker models and for performance evaluation.
HTIMIT and SPIDRE were used for training the AF-MLPs and
the null-grammar phone recognizer, respectively.

The phone recognizer uses standard 39-D vectors compris-
ing MFCCs, energy, and their derivatives. The acoustic-based
and AFCPM-based speaker models use 38-D vectors compris-
ing 19-D MFCCs and their first derivative computed every
10ms. Cepstral mean subtraction (CMS), fast blind stochas-
tic features transformation (fBSFT) [9] and short-time Gaus-
sianization (STG) [10] were applied to the MFCCs to remove
channel effects. Acoustic scores SGMM were computed based
on GMM-UBM framework [11]. The scores from AFCPMs
and the acoustic GMMs were linearly combined to obtain the
fused scores.

The training part of NIST99 was used for creating gender-
dependent acoustic (MFCC-based) background models with
1024 mixtures. The same set of data was also used to build
phoneme-dependent and phonetic-class dependent AF-based
UBMs, which were then used for determining the mapping
functions. Then, for each target speaker in NIST00, his/her
speaker models were created using Eq. 7 and the 2-minute



enrollment speech based on the mapping functions and the
phonetic-class dependent UBMs. 10-fold cross validation was
used to train and evaluate a polynomial SVM for combining the
scores of the phonetic-class models.

3.2. Results and Discussion

Table 2 shows that the mapping function fG
P+VQ(q) achieves the

lowest error rates in CD-AFCPM, suggesting that phone prop-
erties and Euclidean distance between AF models play a com-
plementary role. We conjecture that the phone properties con-
strain the possible partitioning of phonemes and VQ provides a
fine division within the phoneme groups where phone proper-
ties alone cannot entirely represent the articulatory properties.

Table 2 also shows that phonetic-class AFCPM is superior
to phoneme-dependent AFCPM. This confirms our earlier ar-
gument that when the amount of enrollment data is limited, we
had better to enrich the amount of training data per model by
grouping similar phonemes together. The insensitivity to the
accuracy of the phoneme recognizer may attribute to the su-
periority of phonetic-class dependent AFCPMs. In phoneme-
dependent AFCPM, acoustically confusable phonemes may
cause the phoneme recognizer to make mistakes, leading to er-
roneous scores. However, some of the confusable phonemes
may be mapped to the same phonetic class in the case of
phonetic-class dependent AFCPM, which effectively alleviate
the effect caused by phoneme recognition errors. There seems
to be a tradeoff between the number of models per speaker and
the representation ability of the models. In particular, a large
number of models (e.g., 46 in PD-AFCPM) could lead to infe-
rior performance, as evident in Table 2.

Table 2 shows that low-level features achieve a lower EER
than the high-level features and that fusing the scores obtained
from low- and high-level features can reduce the error rates fur-
ther. The inferiority of high-level features is primarily due to the
short verification utterances (15–45 seconds). The DET plots
corresponding to Table 2 are shown in Fig. 4. Evidently, the
fusion of phonetic-class AFCPM and GMM achieves the best
performance across a wide range of decision threshold.

It is of interest to see how the speech recognizer affects
SV performance, e.g., replace the null-grammar recognizer by
a full-brown one. We are currently working in this direction.
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12 25.64 25.30 23.73 23.66

8 25.04 24.85 24.32 24.07

11 24.13 23.89 23.31 23.23
Phone Properties 

P ( )G
c f q

13 24.48 24.25 23.09 23.20

23.42 23.31 22.88 22.81

C
D

-A
F

C
P

M

P+VQ ( )G
c f q

12
Mix gender: 23.14

26.35 24.66 
PD-AFCPM

Mix gender: 25.91

GMM (fBSFT) Mix gender: 16.11

PD-AFCPM + GMM (fBSFT) Mix gender: 15.91

CD-AFCPM + GMM (fBSFT) Mix gender: 14.70

GMM (STG+fBSFT) Mix gender: 13.81

PD-AFCPM + GMM (STG+fBSFT) Mix gender: 13.71

CD-AFCPM + GMM (STG+fBSFT) Mix gender: 13.09

No. of 

Classes

G

Phone Properties+VQ

Table 2: EERs obtained by acoustic GMM, phoneme-dependent
AFCPM (PD-AFCPM) and phonetic-class dependent AFCPM
(CD-AFCPM) using three different phoneme-to-phonetic class
mappings. The fusion of PC-AFCPM and GMM is based on the
PC-AFCPM that uses the mapping function fG

P+VQ. ‘Old Scor-
ing’ and ‘SVM Scoring’ mean that Eqs. 9 and 10 were used for
scoring, respectively. The p-values between the PD-AFCPM
and all of the CD-AFCPM and the p-value between PD-
AFCPM+GMM and CD-AFCPM+GMM are less than 0.0001.
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