
FASTSVC: FAST CROSS-DOMAIN SINGING VOICE CONVERSION
WITH FEATURE-WISE LINEAR MODULATION

Songxiang Liu1,∗ , Yuewen Cao1,∗, Na Hu2, Dan Su2, Helen Meng1

1Human-Computer Communications Laboratory, The Chinese University of Hong Kong
2Tencent AI Lab

ABSTRACT

This paper presents FastSVC, a light-weight cross-domain
singing voice conversion (SVC) system, which can achieve
high conversion performance, with inference speed 4x faster
than real-time on CPUs. FastSVC uses Conformer-based
phoneme recognizer to extract singer-agnostic linguistic fea-
tures from singing signals. A feature-wise linear modula-
tion based generator is used to synthesize waveform directly
from linguistic features, leveraging information from sine-
excitation signals and loudness features. The waveform gen-
erator can be trained conveniently using a multi-resolution
spectral loss and an adversarial loss. Experimental results
show that the proposed FastSVC system, compared with a
computationally heavy baseline system, can achieve com-
parable conversion performance in some scenarios and sig-
nificantly better conversion performance in other scenarios.
Moreover, the proposed FastSVC system achieves desirable
cross-lingual singing conversion performance. The inference
speed of the FastSVC system is 3x and 70x faster than the
baseline system on GPUs and CPUs, respectively.

Index Terms— Singing voice conversion, cross-domain,
generative adversarial network

1. INTRODUCTION

Human singing is an important way of information transmis-
sion, emotional expression and entertainment. Enabling ma-
chine the ability to produce high-fidelity singing voice can
enrich the way of human-computer interaction. This paper
focuses on a singing synthesis related task, i.e., singing voice
conversion (SVC), which aims at converting the voice of one
singer to that of other singers without changing the underly-
ing content and melody.

In terms of whether parallel singing datasets are used dur-
ing training, which are composed of paired samples among
singers singing the same content, current SVC approaches
can be categorized into two classes: parallel SVC and non-
parallel SVC. Most initial attempts for SVC belong to the par-
allel SVC class, which model parallel training samples using

*Work done during internship at Tencent AI Lab.

statistical methods, such as Gaussian mixture model (GMM)
based many-to-many eigenvoice conversion [1], direct wave-
form modification based on spectrum difference [2, 3]. Arti-
ficial neural network (ANN) based approaches are also pro-
posed to improve conversion performance [4, 5].

Since parallel singing datasets are expensive to collect in
large scale, many non-parallel SVC approaches are proposed.
WaveNet [6] autoencoder based unsupervised SVC model is
trained to convert among singers appeared in the training set
[7], where an adversarial speaker classifier is incorporated to
disentangle singer information from the encoder output. To
further improve this method, PitchNet [8] adopts an addi-
tional domain fusion term on the pitch to remove pitch in-
formation from the encoder output. Variational autoencoder
(VAE) [9], generative adversarial network (GAN) [10], and
phonetic posteriorgram (PPG) [11] based approaches are also
investigated for non-parallel SVC. However, these methods
either use acoustic features from conventional vocoders (e.g.,
WORLD [12]) or mel spectrograms as intermediate represen-
tations during conversion, which may bound the audio quality.

A very recent unsupervised cross-domain SVC approach
(UCD-SVC) [13], which combines a linguistic extractor with
a WaveNet based waveform generator, can convert any source
singer to a target speaker/singer appeared in the training set
(referred to as any-to-many SVC). UCD-SVC uses a pure
convolution network based non-autoregressive model for the
waveform-based generator, resulting in very low latency dur-
ing inference on GPUs. The usage of pitch perceptual loss
and automatic speech recognition (ASR) perceptual loss ef-
fectively boost the conversion performance. Moreover, UCD-
SVC can conduct cross-domain training, i.e., the model can
be trained using either speech or singing datasets. How-
ever, during conversion UCD-SVC uses three computation-
ally heavy neural networks in the pipeline: the CREPE model
[14] for fundamental frequency (F0) computation, Jasper
based wave-to-letter acoustic model [15] for linguistic fea-
ture extraction, and the WaveNet based waveform generator
for audio synthesis. This makes the UCD-SVC system have
many parameters, which hinders it from conducting singing
voice conversion on CPUs efficiently. Moreover, the training
process is complicated and slow.

This paper presents FastSVC, a light-weight cross-
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Fig. 1. Schematic diagram of the proposed FastSVC system.
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domain SVC system, which can achieve high conversion
performance in terms of audio fidelity and voice similar-
ity from any source singer, with inference speed 4x faster
than real-time on CPUs. The proposed FastSVC approach
holds all the merits of UCD-SVC: 1) can conduct cross-
domain training; 2) can achieve any-to-many SVC; 3) has
desirable singing voice conversion performance. FastSVC
takes advantage of recent progress in light-weight end-to-
end ASR acoustic modeling, information fusion in deep neu-
ral networks and GAN based waveform generative modeling.
Specifically, FastSVC uses Conformer [16] based phoneme
recognizer to extract singer-agnostic linguistic features from
singing signals. A feature-wise linear modulation (FiLM)
[17] based generator is used to synthesize waveform directly
from linguistic features, effectively fusing information from
sine-excitation signals and loudness features. The waveform
generator can be trained using only a combination of a multi-
scale spectral loss and an adversarial loss, which is simpler
and faster than the UCD-SVC.

The rest of this paper is organized as follows: Section 2
presents the proposed FastSVC system. Experiments are de-
scribed in Section 3 and Section 4 concludes this paper.

2. PROPSOSED METHOD

The proposed FastSVC system concatenates a linguistic ex-
tractor with a waveform generator, as illustrated in Fig. 1.
The linguistic extractor is used to compute singer/speaker-
agnostic linguistic features from singing/speech signals,
while the waveform generator directly outputs raw waveform
from linguistic features, conditioned on sine-excitation sig-

nals and loudness features. The linguistic extractor and the
waveform generator are trained sequentially, since the wave-
form generator training process requires linguistic features
extracted from a well-trained linguistic extractor. Details of
the linguistic extractor and waveform generator are presented
in Section 2.1 and Section 2.2, respectively.

2.1. Linguistic extractor

The UCD-SVC system adopts a pretrained Jasper ASR acous-
tic model [15], to extract singer/speaker-agnostic linguistic
features from wave signals. However, the Jasper model is
computationally heavy with more than 300 million parame-
ters. One goal of this study is to make the whole SVC sys-
tem parameter efficient and light-weight, such that inference
on modern CPUs can be feasible and fast. The very recent
Conformer based ASR acoustic model achieves state-of-the-
art recognition performance on LibriSpeech corpus [18]. It
is well known that the Transformer models [19] are good at
capturing content-based global interactions, while convolu-
tion neural network (CNN) models exploit local features ef-
fectively. The Conformer model combines the merits of both
the Transformer models and CNN models and also make it-
self parameter efficient.

Attracted by the advantages of the Conformer model, this
study adopts a Conformer based network structure for the lin-
guistic extractor, as illustrated in Fig. 2. Specifically, we ob-
tain a linguistic extractor from an end-to-end hybrid CTC-
attention phoneme recognizer, where the Conformer encoder
follows the structure of the small version presented in Table 1
of [16]. The input spectral features are 80-dimensional log
mel spectrograms, on which utterance-level mean-variance
normalization is conducted before feeding into the recognizer
model. The down-sample layer adopts a strided 2D convolu-
tional structure to down-sample the input mel spetrograms in
time scale by a factor of 2, where kernel-size is 4, stride is
2 and output channels is 160. Then the hidden feature maps
from the down-sample layer are fed into the Conformer en-
coder. Then a CTC decoder and attention decoder take the
encoder output as input to predict phoneme sequences. The
CTC decoder contains one fully-connected (FC) layer. The
attention decoder uses location-sensitive attention [20] mech-
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Fig. 3. Schematic diagram of the waveform generator in the proposed FastSVC system.

anism and has one decoder LSTM layer with hidden size of
320. Denote mel spectrogram features as X and phoneme se-
quence as Y , the training loss of the phoneme recognizer is a
linear combination of the CTC and attention losses:

L = λLctc(Y |X) + (1− λ)Latt(Y |X) (1)

where λ ∈ [0, 1] is a hyper-parameter weighting the CTC
objective Lctc and the attention objective Latt. In this paper,
we set λ to be 0.5.

The phoneme recognizer is trained with the LibriSpeech
corpus (960 hours). After training, we drop the CTC mod-
ule and attention decoder from the phoneme recognizer and
use the remaining part as the linguistic extractor, which only
contains 9 million parameters.

2.2. Waveform generator

As shown in Fig. 1, the waveform generator takes linguistic
features, sine-excitation signals and loudness features as in-
put, and synthesizes waveform directly. Linguistic features
provide important pronunciation traits for singing voice gen-
eration, while sine-excitation signals are melody presenta-
tions which proved to be better than F0 contours for SVC
tasks [13]. Loudness features make better energy render-
ing possible in the generated waveform. An overview of the
novel generator model structure is illustrated in Fig. 3, where
the blocks with ↑ and ↓ means up-sample blocks and down-
sample blocks respectively. The intuitions behind this using
two U-shape branches is to fully fuse information from the
sine-excitation signals and loudness features into the wave-
form generation process in different time scales.

2.2.1. Sine-excitation signals and loudness features

Sine-excitation signals are computed from the F0 values. Fol-
lowing the NSF models [21], F0 values in frame-rate are first
upsampled by linear interpolation to audio-rate and then are
regarded as instantaneous frequencies. In voiced segments,
the excitation signal are presented as sine waveform, while
in unvoiced regions, the excitation signal is represented by
Gaussian noise. Denote audio-rate F0 sequence as f1:T , fol-

lowing [21], a sine-excitation signal e1:T is computed as:

et =

{
0.1 sin (

∑t
k=1 2π

fk
fs

+ φ) + nt if ft > 0

100nt if ft = 0
(2)

where nt ∼ N (0, 0.0032), φ ∈ [−π, π] is a random initial
phase and fs is the waveform sampling rate.

A-weighting mechanism of the power spectrum, which
puts greater emphasis on higher frequencies, is adopted to
compute loudness features in this paper. The computation
process is identical to that as shown in [22]. This paper uses a
hop-size of 64 when computing loudness features, which are
up-sampled to audio-rate using linear interpolation operation
before being fed into the generator.

2.2.2. Generator model details

The up-sample blocks and down-sample blocks as shown in
Fig. 3 can adopt arbitrary convolutional network structure.
The model architecture of the building blocks in the gener-
ator is adapted from [23] and proper modifications are made
for the SVC tasks. Details of the network structure of building
blocks in the waveform generator is illustrated in Fig. 4. To
convert linguistic features with hop-size of 320 samples into
waveform, four up-sample blocks are applied to gradually up-
sample the temporal dimension by factors of 4, 4, 4, 5 with
the number of channels of 192, 96, 48, 24 respectively. The
dilation rates are 1, 3, 9, 27 in all up-sample blocks. Down-
sample blocks downsample the time dimension of the audio-
rate sine-excitation signals and loudness features. The num-
ber of channels of the down-sample blocks matches the num-
ber of up-sample blocks correspondingly. The dilation rates
are 1, 2, 4 in all down-sample blocks. LeakyReLU activation
function uses a negative slope of 0.2.

The feature-wise linear modulation (FiLM) [17] module
is used to fuse information from sine-excitation signals and
loudness features with the linguistic features, which produces
scale and shift vectors given inputs as shown in Fig.4(c).
FiLM modules have the same number of convolution chan-
nels as their corresponding up-sample blocks. The feature-
wise affine operation as shown in Fig.4(a) is conducted as

(γsine + γloudness)� Ulinguistic + ξsine + ξloudness, (3)
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Fig. 4. Network details of building blocks of the waveform generator in the proposed FastSVC system. (a) Network details of
the up-sample block. (b) Network details of the down-sample block. (c) The FiLM block appeared in (a).

where γ’s and ξ’s represent the scale and shift vectors from
the FiLM modules, Ulinguistic is the up-sampled linguistic
features and � denotes the Hadamard product.

In multi-speaker/singer SVC models, the waveform gen-
erator has an additional speaker/singer embedding table. The
speaker/singer identity information is fused into the up-
sample blocks by adding the results from each feature-wise
affine operation with speaker/singer embedding vectors. To
remove speaker/singer identity information from the results
of each feature-wise affine operation, instance normalization
[24] without affine transformation is performed before com-
bination with speaker/singer embedding vectors.

2.2.3. Training objectives

Similar to [13], the waveform generator is trained under the
least-squares GAN [25] setup, with combination of a multi-
scale STFT loss [26]. The discriminator module as shown in
Fig. 3 adopts the same multi-scale discriminator architecture
presented in MelGAN [27]. In this section, we denote the
three sub-discriminators asDk, ∀k ∈ [1, 2, 3], the groud-truth
waveform as x and the reconstructed waveform as x̂. The
generator’s adversarial loss Ladv is:

Ladv =
1

k

∑
k

||1−Dk(x̂)||2. (4)

The discriminator loss LD is computed as:

LD =
1

k

∑
k

(||1−Dk(x)||2 + ||Dk(x̂)||2). (5)

The multi-scale STFT loss is computed as:

Lstft =
1

|M |
∑
m∈M

(
||Sm − Ŝm||2
||Sm||2

+
|| logSm − log Ŝm||1

N
),

(6)
where Sm and Ŝm are the STFT magnitudes computed
from x and x̂ respectively, with FFT sizes of m ∈ M =

[2048, 1024, 512, 256, 128, 64] and with 75% overlap. N is
the number of elements.

The final waveform generator loss LG is a linear combi-
nation of the adversarial loss and the multi-scale STFT loss
as:

LG = Lstft + αLadv, (7)

where in this paper, α = 2.5.

3. EXPERIMENTS

3.1. Experimental setup

We choose the UCD-SVC system as the baseline. Both cross-
domain and in-domain SVC performance are compared be-
tween the UCD-SVC system and the proposed FastSVC sys-
tem. We also report their cross-lingual SVC performance
[28].

Three open-source English datasets are used, which are
the LJ-Speech corpus [29], the VCTK corpus [30] and the
NUS-48E corpus [31]. All audio is resampled to 16kHz
with mono channel. Datasets are randomly split into train-
validation-test sets according to a 90%-5%-5% partition. We
compare the any-to-one cross-domain (A2O-CD) SVC per-
formance of the UCD-SVC and FastSVC systems by train-
ing the models with the single-speaker LJ-Speech corpus,
and their any-to-many cross-domain (A2M-CD) SVC perfor-
mance by training the models with the multi-speaker VCTK
corpus (108 speakers in total). Any-to-many in-domain
(A2M-ID) and cross-lingual (CL) SVC performance of the
UCD-SVC and FastSVC systems are examined by training
the models with the multi-singer NUS-48E corpus (12 singers
in total). During conversion, source signals are chosen from
the NUS-48E test set, except that we use internal Chinese
source samples when conducting cross-lingual SVC since
there is no open-source Chinese singing dataset.

All models in the UCD-SVC and FastSVC systems are
trained at least 600k steps until their losses converge, with
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Table 1. Mean opinion score (MOS) results.

Scenario Naturalness Similarity
UCD-SVC FastSVC UCD-SVC FastSVC

A2O-CD 3.94±0.09 4.00±0.08 3.35±0.23 3.56±0.20
A2M-CD 3.06±0.08 3.52±0.10 2.67±0.18 3.27±0.22
A2M-ID 3.47±0.07 3.48±0.06 3.17±0.15 3.58±0.19

CL 2.92±0.07 3.09±0.08 3.15±0.19 3.26±0.19
Recording 4.62±0.16 -

Table 2. Voice similarity.

Scenario Source-target Converted-target
UCD-SVC FastSVC

A2O-CD 0.082 0.555 0.676
A2M-CD 0.124 0.588 0.433
A2M-ID 0.234 0.712 0.785

CL 0.274 0.821 0.801

batches of 32 one-second long audio segments. The ADAM
optimizer [32] with a learning rate of 0.001 is used, where
learning rate decays by 0.5 every 100k steps. The discrim-
inator joins the training process after 100k steps. F0 values
are extracted using the WORLD vocoder [12] in the FastSVC
system.

3.2. Subjective evaluation

Subjective evaluation in terms of both the naturalness and
voice similarity of the converted singing samples are con-
ducted1. The standard 5-scale mean opinion score (MOS)
test is adopted. In the MOS tests for evaluating naturalness,
each group of stimuli contains recording samples which are
randomly shuffled with the samples converted by the UCD-
SVC and FastSVC systems before presented to raters. In
MOS voice similarity tests, converted samples are directly
compared with the target singers’ reference recordings. At
least 24 samples are rated for the compared systems in each
conversion scenario. We invite 20 Chinese speakers who are
also proficient in English to participate in the MOS tests.

The subjective results are presented in Table 1. We can
see that in all SVC scenarios, the FastSVC achieves better
voice similarity. In terms of audio naturalness, the FastSVC
achieves comparable conversion performance to the UCD-
SVC system in the any-to-one cross-domain (A2O-CD) and
any-to-many in-domain (A2M-ID) scenarios. In the any-to-
many cross-domain (A2M-CD) and cross-lingual (CL) sce-
narios, the FastSVC achieves significantly better performance
than the UCD-SVC. The subjective results verify the efficacy
of the network structure design and training loss selection in
the FastSVC system.

3.3. Objective evaluation

While MOS is a desired measure for audio naturalness/fidelity
in singing voice synthesis tasks, voice similarity is more diffi-

1Audio demo: https://nobody996.github.io/FastSVC/.

Table 3. Inference speed comparison between the UCD-SVC
and FastSVC systems. Pytorch implementation without hard-
ware optimization for an Nvidia Tesla P40 GPU and Intel(R)
Xeon(R) E5-2680(v4) CPU @ 2.40GHz.

System Parameters RTF (GPU) RTF (CPU)
UCD-SVC 368.4M 0.103 17.5

FastSVC (Ours) 11.9M 0.031 0.248

cult to subjectively measured since human perception of voice
similarity can vary when a singer/speaker utters the same con-
tent with different pitch patterns. This can be reflected in Ta-
ble 1, where the standard variances of voice similarity MOS
values are much bigger than those of naturalness MOS values.

Therefore, we adopt a pre-trained end-to-end speaker
recognition model named RawNet2 [33] to objectively mea-
sure the voice similarity of the converted singing samples.
We measure cosine similarities between embedding vectors
of audio samples and the desired target speaker embedding
vectors before and after conversion, where all embedding vec-
tors are computed by the RawNet2 and singer/speaker embed-
ding vectors are obtained by averaging his/her training audio
samples. The voice similarity results are illustrated in Ta-
ble 2. We can see that both the UCD-SVC and the FastSVC
systems can significantly improve cosine similarity of audio
sample to a desired target singer/speaker after conversion. It
is worthy to note that these objective results are not consis-
tent with the subjective results in Table 1, one possible reason
is that the pre-trained RawNet2 model is trained using only
speech data. It should be better to train a RawNet2 model for
speaker/singer embedding vector computation; but we can not
access to a large multi-singer corpus during the submission of
this paper, this is to be solved in the future work.

3.4. Inference speed

The inference speed benchmark results of the compared
UCD-SVC and FastSVC systems on both GPUs and CPUs
are presented in Table 3. All models are implemented with
the Pytorch toolkit without any hardware optimization. The
proposed FastSVC system has much less number of parame-
ters (11.9M) than the UCD-SVC system (368.4M). Inference
speed of the FastSVC system is 3x faster on GPUs and 70x
faster on CPUs than the UCD-SVC system. The proposed
FastSVC system achieves a real-time factor (RTF) of 0.248
(i.e., 4x faster than real-time) on modern CPUs.

4. CONCLUSIONS

In this paper, we have presented FastSVC, a parameter effi-
cient and light-weight cross-domain SVC system, which can
achieve superior conversion performance in terms of audio
naturalness and voice similarity. The inference speed of the
FastSVC system is very fast in both GPUs and CPUs (with
real-time factors (RTFs) of 0.031 and 0.248, respectively),
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which means that FastSVC can be deployed for low-latency
real-world applications. Future works include further reduc-
ing the parameter size of the FastSVC system and investi-
gating its singer adaptation behavior in the low-resource sce-
nario.
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