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Abstract 

This paper investigates lexical stress detection for L2 English 

speech using Deep Belief Networks (DBNs). The features of 

the DBN used in this work include the syllable-based prosodic 

features (assumed to have Gaussian distribution) and their 

expected lexical stress (assumed to have Bernoulli 

distribution). As stressed syllables are more prominent than 

their neighbors, the two preceding and two following syllables 

are taken into consideration. Experimental results show that 

the DBN achieves an accuracy of about 80% in syllable stress 

classification (primary/secondary/no stress) for words with 

three or more syllables. It outperforms the conventional 

Gaussian Mixture Model and our previous Prominence Model 

by an absolute accuracy of about 8% and 4%, respectively.  

Index Terms: lexical stress detection, deep belief network, L2 

English speech 

1. Introduction 

Suprasegmental phonology plays an important role in the 

perceived proficiency of the second language (L2) spoken by a 

learner [1]. Our previous study [2] has identified several 

aspects such as lexical stress, narrow focus, reduction / non-

reduction of function words, intonation of a sentence, as well 

as prosodic disambiguation in suprasegmental phonology that 

deserve attention from a Chinese learner of English. This 

paper focuses on the detection of lexical stress in a word. 

      Lexical stress is associated with the prominent syllable of 

a word. Faithful production of lexical stress is important for 

the perceived proficiency of L2 English. In some cases, it also 

serves to disambiguate lexical terms by proper placement of 

primary stress, e.g., “’insert” vs. “in’sert”.  

      To develop a Computer-Assisted Pronunciation Training 

(CAPT) system that can help learners train their lexical stress 

productions, we need to begin by detecting lexical stress in the 

L2 learners’ speech, i.e. to identify the syllable carrying 

Primary Stress (PS), Secondary Stress (SS), or No Stress (NS) 

at all. In [3], lexical stress detection is the key module for 

lexical stress assessment of L2 English speech—lexical stress 

needs to be detected before we apply an appropriate criterion 

to assess the overall word-level stress pattern. 

      Previous research has presented various features and 

approaches on the automatic detection of lexical stress. In the 

study of syllable stress detection for German and Italian, 

Tepperman [4] used the mean values of fundamental 

frequency (𝑓0 ), syllable nucleus duration, energy and other 

features related to 𝑓0 slope and RMS energy range. Imoto [5] 

developed Hidden Markov Models (HMMs) to detect stress in 

English sentences read by Japanese students. Tamburini [6] 

combined the detection of lexical stress and pitch accents into 

a task of prominence detection. Stress detection was based on 

syllable nucleus duration and high-frequency features. Our 

work in [7] used a set of syllable-based prosodic features and 

proposed a Prominence Model for lexical stress detection and 

pitch accent detection. The Prominence Model estimates the 

prominence values from the syllable in focus, as well as the 

syllables in neighboring contexts. 

      Various approaches have previously been applied to 

lexical stress detection. Results show that such detection is a 

challenging task, especially for words with three or more 

syllables. If we evaluate the lexical stress detection at the word 

level, 80% syllable-based accuracy equals to about 40% word-

based accuracy ( 0.84 ≈ 0.4 , assuming syllables are 

independent) [3]. Perceptual tests in [3] and [8] show that even 

humans may not be able to correctly identify the stress 

patterns in native English speech with high accuracy. These 

tests were conducted with 58 listeners whose mother tongue is 

Mandarin, 25 whose mother tongue is Cantonese and 25 

whose mother tongue is US English. 30 words covering 

different stress patterns were recorded by a native American 

English speaker and were presented to each listener. Results 

show that the overall average word-based accuracy they 

achieved is only about 30%. For English words with five or 

more syllables, the Cantonese and even native US English 

listeners achieved less than 10% word-based identification 

accuracies. 

Recently, the development of highly effective learning 

techniques for Deep Belief Networks (DBNs) draws much 

attention to the neural network research. In [9], Hinton 

proposed a fast learning algorithm for a DBN model in which 

the top two hidden layers form an undirected associative 

memory and the remaining hidden layers form a directed 

acyclic graph. Due to the effective, DBNs have been applied 

to speech recognition [10] [11] [12] and synthesis [13], and 

achieve impressive performance gains. 

In this work, we use DBNs to detect the lexical stress of 

L2 English speech. Generally it is expensive to collect and 

transcribe the L2 English speech.  DBNs offer the advantage 

of enabling the use of unlabeled data. We present our work 

with the following organization: Section 2 describes the 

syllable-based prosodic features for lexical stress detection. 

Section 3 introduces DBNs and specifies the structure of the 

DBN in our work. Sections 4 and 5 present our experiments 

and analysis respectively. Conclusions are given in Section 6. 

2. Syllable-based prosodic features 

Stressed syllables usually exhibit greater loudness, longer 

duration and higher pitch than their neighbors [6]. In this 

section, we introduce the syllable-based prosodic features for 

DBNs: maximum syllable loudness, syllable nucleus duration 

and two extreme pitch values. These features were first 

proposed in [7].  



2.1. Syllable nucleus duration (𝑽𝒅𝒖𝒓) 

We first apply the Maximal Onset Principle [14] to extract the 

syllables from the phoneme sequence output of the speech 

recognizer. For example, the word “apartment” uttered by an 

L2 English learner is divided into /axr/, /p aa t/, /m ax n/ and 

/d ax/, as shown in Fig.1 

      Within the time boundaries of every extracted syllable, we 

treat the frames whose loudness fall above 𝑁𝑏𝑜𝑡 as the syllable 

nuclei, where 𝑁𝑏𝑜𝑡 is the value above which 50% of all 

loudness values in the utterance. The normalized syllable 

nucleus duration 𝑉𝑑𝑢𝑟  is given as: 

 𝑉𝑑𝑢𝑟 = 𝑑𝑑𝑢𝑟 − 𝑑𝑤𝑑
      (1) 

where 𝑑𝑑𝑢𝑟  is the syllable nucleus duration, 𝑑𝑤𝑑
      is the mean 

duration of all syllable nuclei in the word. 

2.2. Maximum syllable loudness (𝑽𝒍𝒐𝒖𝒅) 

Loudness is the human perception of the strength of sound 

energy. There is a complex relationship between human 

perception of loudness and sound energy. We follow 

Zwicker’s loudness model [15] for a precise estimation of 

loudness. We use simplifying calculation of loudness based on 

Zwicker’s model in [7], which works well for stress and pitch 

accent detection. 

      The normalized maximum syllable loudness  𝑉𝑙𝑜𝑢𝑑 , as 

given by Eq. (2), is taken as our feature. 

 𝑉𝑙𝑜𝑢𝑑 = 𝑁𝑚𝑎𝑥 − 𝑁𝑤𝑑
       (2) 

where 𝑁𝑚𝑎𝑥  is the maximum loudness within the identified 

syllable, and  𝑁𝑤𝑑
        is the mean loudness over all syllable 

nuclei in the word. 

2.3. Extreme pitch values in a syllable (𝒇𝒎𝟏 & 𝒇𝒎𝟐) 

We first perform pitch extraction [16] and process pitch 

values that fall within the time boundaries of the identified 

syllable nuclei. We also convert the pitch value to the 

semitone scale, a logarithm scale that better match human 

perception of pitch.  

 𝑓 = 12𝑙𝑜𝑔2(𝑓0/𝑓𝑤𝑑
     ),         where 𝑓0 > 0 (3) 

where 𝑓0  is the fundamental frequency in Hz, 𝑓𝑤𝑑
      is the mean 

pitch value in the word.  

       A differential pitch value is proposed in [7], as given by 

Eq. (4a). It is based on the observations: syllables with rising 

tones often give a stressed perception; while syllables with 

falling tones are often perceived as unstressed.  

 𝑉𝑝𝑖𝑡𝑐 𝑕 = 𝑓𝑚2 +  𝑓𝑚2 − 𝑓𝑚1 = 2𝑓𝑚2 − 𝑓𝑚1 (4a) 

where 𝑓𝑚1is the first (in time sequence) extreme pitch value in 

the syllable nucleus and 𝑓𝑚2is the second extreme pitch value 

in the syllable nucleus, as shown in Fig. 1. 

      Eq. (4a) can be further improved to Eq. (4b), which was 

used in the experiments of [7]. Results showed that the 

differential pitch value outperforms the mean or maximum 

pitch value in a syllable by about 5% or 3% respectively.  

 𝑉𝑝𝑖𝑡𝑐 𝑕 = 2𝑓𝑚2 − 0.95𝑓𝑚1 (4b) 

      In this work, we only use the two extreme pitch values 

(𝑓𝑚1 and 𝑓𝑚2 ) in a syllable nucleus instead of the differential 

pitch value (𝑉𝑝𝑖𝑡𝑐 𝑕 ), as we believe that DBNs can optimize the 

performance by automatically adjusting the relationship 

between 𝑓𝑚1and 𝑓𝑚2. 

 

Figure 1: An example of feature extraction for lexical 

stress detection. The yellow curve is loudness, the 

green curve is pitch in semitone and the red bars 

indicate the syllable nuclei duration. 𝑓𝑚1 and 𝑓𝑚2 are 

also marked for the syllables of /p aa t/ and /m ax n/. 

3. Multi-Distribution Deep Belief Network 

(MD-DBN) 

A Restricted Boltzmann Machine (RBM) is a type of 

undirected graphical model constructed from a hidden layer 

and a visible layer. Generally, two types of RBM are 

commonly used in speech processing: (1) Bernoulli RBMs, 

whose hidden and visible units are all binary; and (2) 

Gaussian-Bernoulli RBMs whose hidden units are binary but 

visible units are Gaussian distributed [10][11][12]. Derived 

from the above two types of RBM, a type of Mixed Gaussian-

Bernoulli RBM [13] is also used in this work. 

3.1. Bernoulli RBM (B-RBM)
 
 

The energy of the joint configuration of visible and hidden 

vector (v, h) is given as: 

 E v, h;  𝚯 = −𝐡T𝐖𝐯 − 𝐚T𝐡 − 𝐛T𝐯 (5) 

where 𝚯 = (𝐖, 𝐚, 𝐛) is the set of parameters of an RBM and 

𝚯  will be omitted for clarity hereafter. W is the matrix of 

visible/hidden connection weights, a is the hidden unit bias, b 

is the visible unit bias.  

      The probability is given in term of the energy: 

 P 𝐯, 𝐡 =
e−E (𝐯,  𝐡)

  e−E (𝐯 , h )
𝐡 𝐯 

 (6) 

Since there are no connections within a layer, we can have the 

following equations [11]: 

 P 𝐡| 𝐯 =
e−E 𝐯, 𝐡 

 e−E (𝐯, h )
𝐡 

 (7a) 

               =   P 𝑕j| 𝐯 j  (7b) 

 P 𝑕j = 1| 𝐯 = σ( ωiji 𝑣i + 𝑎j) (8a) 

 P 𝑣i = 1| 𝐡 = σ( ωijj 𝑕j + 𝑏i) (8b) 

where σ(x) = (1 + e−x)−1. 

      The log probability of a given visible vector 𝐯𝑙  is: 

 log P 𝐯𝑙 = log  e𝐡 
−E(𝐯𝑙 , 𝐡 )

− log  e−E(𝐯 , h )
𝐡 𝐯  (9)    

      To optimize log P(𝐯𝑙)  in a first-order approach, we need 

the gradient of  it with respect to any 𝜃 in 𝚯 [12][13]: 

∂logP  𝐯𝑙 

∂θ
=  

e
−E 𝐯𝑙, 𝐡 

 e−E (𝐯𝑙, h )
𝐡 

𝐡
𝜕−E 𝐯𝑙 , 𝐡 

𝜕𝜃
−   

e−E 𝐯, 𝐡 

  e−E (𝐯 , h )
𝐡 𝐯 

𝐡𝐯
𝜕−E 𝐯, 𝐡 

𝜕𝜃
  

              =  P 𝐡 𝐯𝑙 
𝜕−E 𝐯𝑙 , 𝐡 

𝜕𝜃𝐡 −   P(𝐯, 𝐡)
𝜕−E 𝐯, 𝐡 

𝜕𝜃𝐡𝐯  (10) 



      Take 𝜃 = 𝑤𝑖𝑗  for example. The first term in Eq. (10) is: 

         𝑣𝑖
𝑙  𝑕𝑗  P 𝐡 𝐯

𝑙 𝐡   =     𝑣𝑖
𝑙  𝑕𝑗   P 𝑕𝑘 | 𝐯𝑙 𝑘  𝐡   

   =   P 𝑕1 𝐯
𝑙 𝑕1
   P 𝑕2 𝐯

𝑙 𝑕2
 ⋯  𝑣𝑖 

𝑙 𝑕𝑗  P 𝑕𝑗  𝐯
𝑙 𝑕𝑗
 ⋯       

   = 𝑣𝑖
𝑙  P(𝑕𝑗 = 1|𝐯𝑙) (11) 

Hence, given the instantiated observation 𝐯𝑙 , the expectation 

of derivatives in the first term in Eq. (10) can be easily 

computed. Unfortunately, the second term in Eq. (10) involves 

a summation over all possible v and is intractable. A widely 

applied method that approximates this summation is the Gibbs 

sampler which proceeds in a Markov chain as follows: 

 𝐯(0) ~ 𝐯𝑙 ,                          𝐡(0) ~ P 𝐡 𝐯 0  ; (12a) 

 𝐯(1) ~ P(𝐯|𝐡 0 ),            𝐡(1) ~ P 𝐡 𝐯 1  ;  (12b) 

 ⋯  

      Given a set of N syllables  𝐯𝑙 𝑙=1
𝑁 , the gradient of the log 

probability of the training data is [9]: 

 
1

𝑁
 

∂ log P 𝐯𝑙 

∂ω ij
𝐯𝑙 =

1

𝑁
  𝑣𝑖 

𝑙 𝑕𝑗  P 𝐡 𝐯
𝑙 𝐡𝐯𝑙 −   𝑣𝑖𝑕𝑗  P 𝐯, 𝐡 𝐡𝐯  

 =
1

𝑁
 𝑣𝑖

𝑙  P(𝑕𝑗 = 1|𝐯𝑙)𝐯𝑙 −   𝑣𝑖𝑕𝑗  P 𝐯, 𝐡 𝐡𝐯  

                            =  𝑣𝑖
(0)

𝑕𝑗
(0)  −   𝑣𝑖

(∞)
𝑕𝑗

(∞)                             (13) 

where  ∙  denotes an average over the sampled states. 

      In practice, we use the one-step contrastive divergence 

approximation for the gradient [9]: 

            
1

 N
 

∂ log P(𝐯𝑙)

∂ω ij
𝐯𝑙  ≈   𝑣𝑖

(0)
𝑕𝑗

(0)  −   𝑣𝑖
(1)

𝑕𝑗
(1)   (14) 

where  𝑣𝑖
(1)

𝑕𝑗
(1)  is the expectation over one-step reconstruction. 

3.2. Mixed Gaussian-Bernoulli RBM (GB-RBM) 

The GB-RBM has one layer of stochastic hidden binary 

units and one layer of visible units, some of which are 

assumed to have Gaussian distribution and the others 

are binary. The energy of the joint configuration of the 

visible and hidden vectors (𝐯𝒈, 𝐯𝒃, 𝐡) is given as: 

 E 𝐯𝒈, 𝐯𝐛, 𝐡 = −𝐡T𝐖𝒈𝐯𝒈 +
1

2
 𝐯𝒈 − 𝛍 T 𝐯𝒈 − 𝛍  

                                    −𝐡T𝐖𝒃𝐯𝐛 − 𝐛T𝐯𝐛 − 𝐚𝐓𝐡 (15) 

where 𝐯𝒈and 𝐯𝒃are the Gaussian units and the Bernoulli 

units in the visible layer, 𝐖𝒈 and 𝐖𝒃  are the respective 

weight matrices, 𝛍 is the mean of 𝐯𝒈, a and b are bias terms of 

𝐡 and 𝐯𝐛. The conditional P 𝐡| 𝐯𝒈,𝐯𝒃  can be derived as: 

        P 𝑕𝑗 = 1| 𝐯𝒈,𝐯𝒃 = σ( wij
𝑔

𝑖 𝑣𝑖
𝑔

+  wij
𝑏

𝑖 𝑣𝑖
𝑏 + 𝑎j) (16) 

      And P 𝑣𝑖
𝑏 = 1| 𝐡  follows Eq. (8b). The conditional 

distribution P 𝑣𝑖
𝑔

= 1| 𝐡  is: 

 P 𝑣𝑖
𝑔

 | 𝐡 = 𝒩(𝑣𝑖
𝑔

;   ωijj 𝑕j + μ𝐢, 1) (17) 

3.3. Architecture of MD-DBN 

We use the following syllable-based prosodic features as 

described in Section 2: maximum syllable loudness (𝑉𝑙𝑜𝑢𝑑 ), 

syllable nucleus duration (𝑉𝑑𝑢𝑟 ) and two extreme pitch values 

(f m1 and f m2). These features are normalized to zero mean and 

unit variance. As stressed syllables are more prominent than 

their neighbors, the two preceding and two following syllables 

are taken into consideration. Hence there are total 20 Gaussian 

visible units in the bottom of the DBN, as shown in Fig. 2. 

      We also include the expected lexical stress for each 

syllable: four bits to indicate this syllable NS, PS, SS or 

NULL. The bit of NULL is true when there is no syllable, e.g. 

for the first syllable in a word, there are no preceding syllables. 

For the syllable in focus, the bit of NULL is excluded, because 

it would be always false. Hence there are 19 binary visible 

units in the bottom of the DBN. Take the syllable /p aa t/ in 

Fig. 1 for example, the 19 binary values are: (0001 1000 010 

1000 1000). 

      The DBN used in this work is shown in Fig. 2. There are 

four hidden layers, including the top-layer. It is similar to the 

construction in [9] and [13]. 

 

Figure 2: Architecture of the MD-DBN for          

lexical stress detection. 

4. Experiments 

4.1. Corpus 

Our experiments are based on a suprasegmental corpus that we 

have collected [17]. It contains English speech recordings 

from 100 Mandarin speakers and 100 Cantonese speakers. 

There are six parts in this corpus, and only one has syllables 

labeled with PS/SS/NS. In this part, each speaker utters 28 

words, which results in 5,600 words in total. Table 1 shows 

that the labeled data constitutes about 20% of the entire corpus. 

      TIMIT is a corpus containing English speech recording 

from 630 US English speakers. As we try to detect the lexical 

stress of L2 English speech, we use the TIMIT corpus as 

unlabeled data for pre-training.  

Table 1 summaries the details of the data used in our 

experiments. Bisyllabic words are excluded from this study 

due to their simplicity.  

Table 1. Details of corpus used in our experiments. 

 Cantonese Mandarin TIMIT 

 Syl. Word Syl. Word Syl. Word 

Unlabeled 45.7 k 14.5 k 45.8 k 14.5 k 20.0 k 5.8k 

Labeled 12.1 k 2.8 k 12.1 k 2.8 k - - 

Note: Syllable (word) counts are measured in the unit of thousands (k). 

4.2. DBN training 

In the pre-training stage, we maximize the log-likelihood of 

RBMs using stochastic gradient ascent for 20 epochs with a 

batch size of 128 frames. For the GRBM, a learning rate of η = 

0.0025 is used for W, a, b. A learning rate of 0.005 is used for 

all the parameters of BRBMs. Increment in each batch is 

smoothed by a momentum of γ = 0.9 , which leads to the 

following update rule for the tth increment of θ : Δθ(t+1) =

ΥΔθ(t) + η
∂ℒ

∂θ
 , where 

∂ℒ

∂θ
 is the gradient. 

In the fine-tuning stage, we also used a 20 epochs with a 

batch size of 128 frames. The learning rates of η for GRBM 

and BRBMs are 0.005 and 0.01 respectively. 

 

20 Gaussian units

(Vloud, Vdur, fm1, fm2) × 5

19 binary units
(NS, PS, SS, NULL) × 5 -1

150 units

150 units

150 units3 binary label units

(NS, PS, SS)

200 top-level units



4.3. Experimental results 

The experimental results are shown in Table 2, which 

summarizes the total confusions from all runs in the 10-fold 

cross-validation. We use the following three criteria for 

evaluation [7]: 

- P-S-N: Identify the syllables carrying primary stress, 

secondary stress or no stress; 

- S-N: Classify the syllables as either stressed or unstressed; 

- P-N: Determine if the syllables carry PS or not. 

      The accuracies under the P-S-N, S-N and P-N criteria are 

80.17%, 86.28% and 87.09%, respectively. 

Table 2. Lexical stress detection results from 10-fold 

cross-validation. 

Annotation 

Detection         
NS SS PS 

NS 13440 985 715 

SS 695 1585 432 

PS 932 1050 4411 

5. Analysis 

In this section, we examine the influence of the number of 

hidden units, the number of epochs and the effect of pre-

training on the performance of lexical stress detection. 

5.1. Number of hidden units 

Table 3 shows that the DBN performs quite well when the 

number of hidden units in each layer is (25, 25, 25, 50). The 

performance can be further improved if we use (150, 150, 150, 

200) hidden units, which are applied in subsequent 

experiments. Table 3 also shows that further increase in the 

number of hidden units beyond (200, 200, 200, 300) may 

cause overfitting.  

Table 3. Performance of DBNs with different numbers 

of hidden units.  

# of Hidden Units P-S-N S-N P-N 

(  25,   25,   25,   50) 78.45% 84.93% 86.09% 

(  50,   50,   50, 100) 79.23% 85.65% 86.33% 

(100, 100, 100, 150) 79.23% 85.65% 86.46% 

(150, 150, 150, 200) 79.78% 86.03% 87.00% 

(200, 200, 200, 300) 79.84% 85.88% 87.09% 

(300, 300, 300, 400) 79.28% 85.47% 86.78% 

Note: 25 epochs are used for all above experiments.  

5.2. Number of epochs 

 
Figure 3. Accuracies of lexical stress detection as a 

function of the number of epochs.  

      Fig. 3 shows that the performance improves greatly from 5 

epochs to 10 epochs. No further improvement can be gained 

beyond 20 epochs. Hence 20 epochs are used in subsequent 

experimentations. 

5.3. Contribution of pre-training 

Table 4 shows the experimental results with and without pre-

training. It shows that using unlabeled data for pre-training 

improves the performance by about 4%. 

Table 4. Results with and without pre-training. 

 P-S-N S-N P-N 

Without Pre-training 76.17% 82.82% 84.00% 

With Pre-training 80.17% 86.28% 87.09% 

Note: 20 epochs are used for both experiments, where they achieve 

best performance. 

5.4. Comparing DBN with previous models  

The classifiers for lexical stress detection in [7] are Gaussian 

Mixture Model (GMM). Two approaches of detection were 

investigated: one using the syllable-based prosodic features 

(𝑉𝑑𝑢𝑟 , 𝑉𝑙𝑜𝑢𝑑 , 𝑉𝑝𝑖𝑡𝑐 𝑕 ) and the other using the prominence 

features from the Prominence Model (PM). The PM estimates 

the prominence values by taking into account the syllable in 

focus, as well as the syllables in neighboring contexts. Note 

that both approaches are based on supervised learning. For 

simplicity in notation, we denote the former approach with 

GMM and the latter with PM. 

      Table 5 summarizes the performance of using the GMM, 

PM and DBN. We observe that the DBN outperforms the PM 

by about 4% under the P-S-N and S-N criteria, while the PM 

performs better than the DBN by about 2% under the P-N 

criterion. These may be due to the fact that the DBN is 

optimized under the P-S-N criterion, while the PM is 

optimized under the P-N criterion. By comparing Table 5 with 

Table 4, we can see that leveraging unlabeled data is the key 

advantage of the DBN over the PM. 

Table 5. Performance of GMM, PM and DBN. 

 P-S-N S-N P-N 

GMM 72.11% 78.61% 87.90% 

PM 76.31% 80.69% 89.30% 

DBN 80.17% 86.28% 87.09% 

Note: The accuracies of GMM and PM are slightly different from that 
in [7], which is due to their different test data. 
 

6. Conclusions 

In this paper, we investigate lexical stress detection for L2 

English speech using DBNs. The features of the DBN used in 

this work include syllable-based prosodic features (maximum 

syllable loudness, syllable nucleus duration and two extreme 

pitch values) and their expected lexical stress (PS/SS/ 

NS/NULL), which are assumed in Gaussian and Bernoulli 

distribution, respectively. As stressed syllables are more 

prominent than their neighboring syllables, the two preceding 

and two following syllables are also taken into consideration. 

Experimental results show that, for words with three or more 

syllables, the DBN achieves an accuracy of about 80% under 

the P-S-N criterion, which outperforms the GMM and PM by 

about 8% and 4%, respectively. Experiments also show that 

using unlabeled data for pre-training can improve the 

performance by about 4%. 
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