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Abstract—In this paper, we propose an enhancement to 
Fishervoice approach [6] for speaker verification. In this 
framework, we first represent each utterance with a fix-length 
super-vector using Joint Factor Analysis (JFA) Gaussian Mixture 
Models (GMM). Multiple discriminant projections are then used 
on partitioned vectors of the super-vector for fast and effective 
matching.  Experiments are presented on the core test of NIST 
SRE 2008 male corpora. We achieve 10.3% relative improvement 
on EER compared to the state-of-art JFA. Finally, by integrating 
the enhanced Fishervoice model and the JFA, the matching 
performance can be further improved. This demonstrates the 
effectiveness of the proposed framework. 

Keywords---speaker verification; subspace model;  joint factor 
analysis; fishervoice; discriminant analysis 

I.  INTRODUCTION  
Recently, speaker recognition has attracted great attention 

due to increasing demands for real-world applications. There 
are two main kinds of speaker recognition tasks: speaker 
identification and speaker verification. In this paper, we focus 
on the speaker verification task. 

In the field of the speaker verification, Gaussian mixture 
model (GMM) [1] based Joint Factor Analysis (JFA) [2] [3] 
and discriminative Support Vector Machine (SVM) became 
popular methods for many systems. However, in the last two 
years, the combination of JFA and GMM supervector based 
SVM was not very successful [4]. A possible reason is that 
supervectors in high-dimensional space present a challenge for 
model training with SVM approach.  

Recently, feature-based speaker verification system with i-
vectors has been proposed for training stage in low-
dimensional space [5]. It tries to represent both speaker and 
channel variability by extracting a low-dimensional subspace 
from the GMM supervector space and thus reduce the 
execution time of the recognition task substantially. 

In order to make use of both the high-dimensional JFA 
supervector and discriminative training information, we 
proposed the Fishervoice [6] approach for speaker verification. 
It maps a supervector into a compressed subspace by 
nonparametric Fisher’s discriminant analysis [7], which is 
performed in an attempt to suppress intra-speaker variations 
and to emphasize the discriminative information for speaker 

recognition.  Besides, the Fishervoice framework can be 
applied directly in the testing stage to compute the distance 
between an input test sample and the reference vector of each 
known speaker. 

The rest of the paper is organized as follows: In section 2 
we describe the general setup for standard speaker verification 
systems. In section 3 and 4, we introduce and discuss the 
Fishervoice approach for speaker verification. Implementation 
details and experiments on the NIST 2008 male core test (cc=6) 
are then presented in section 5 and 6, respectively. Finally, the 
conclusion and future directions are presented in last section. 

II. THEORETICAL BACKGROUND 

A. Joint factor analysis 
In the JFA theory [2], the basic assumption is that speaker- 

and channel- dependent GMM supervectors are Gaussian 
distributed with the speaker and the nuisance components 
(usually called channel or session variability). Suppose the 
arbitrary utterance h from speaker i who contains multiple Hi 
sessions (utterances), we consider Mih as speaker and session-
dependent supervector of GMM mean. Therefore, Mih can be 
decomposed into a sum of four supervectors as follows:  

         iih ih ihM m Vy Dz Ux= + + +  (1) 
where m is the UBM supervector mean, U is Eigenchannel 

matrix, V is Eigenvoice matrix, D is diagonal residual scaling 
matrix, xi is speaker dependent Eigenchannel factor, yih is the 
session and speaker dependent Eigenvoice factor and zih is the 
session and speaker dependent speaker-residuals. The term U, 
V, D are estimated from a sufficiently large data set while the 
latent variables xi, yih, zih are estimated for each utterance.  

        For the purpose of fast calculation, we implement JFA 
only with speaker factors and channel factors, without the 
diagonal matrix D. We define the first two parts of Eq. (1) on 
the right hand side as speaker vector sih: 

    ih ihs m Vy= +  (2) 

The rest Furthermore, we use the log-likelihood ratio (LLR) 
for scoring in the verification stage, which is similar to [8].The 
implementation of this approach is to subtract the estimated 
noise in the feature level, which means that feature frames from 



the test utterance are extractedg out by the estimated channel 
noise via following formula:  
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Figure 1. Overall organization of the proposed Fishervoice framework
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where t is original feature frame, t’ is feature frame with 
channel noise subtracted, γg(t) is the posteriori probability of 
the g-th Gaussian for the feature frame t and G is the total 
number of Gaussian mixtures. Theoretically, the performance 
of applying JFA in model level (Equation (2)) and feature level 
(Equation (3)) for testing should be the same. 

B. SVM-JFA in GMM supervector space  
The SVM is a binary classifier which tries to find a 

separator. The basic idea of SVM is to project input vectors 
into a feature space in which a hyperplane can separate each 
classes linearly. This projection is carried out by using a 
mapping function. In practice, SVMs use kernel functions to 
perform the scalar product computation in the feature space. 

 In order to apply SVM with JFA using speaker GMM 
supervector as input, Campbell et al. [9] proposed a classical 
linear Kullback-Leibler (KL) divergence based kernel between 
two GMM supervector ua and ub: 
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where a
gu (or b

gu ) is the mean vector of the g-th Gaussian  for 

speaker GMM, gw  and g∑ corresponds to the g-th UBM 
mixture weights and diagonal covariance matrix. 

  During the experiment, we also test supervectors with 
conventional cosine kernel [4] given as follows:  

,
( , ) a b

a b
a b

u u
K u u
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=  (5) 

III. FISHERVOICE IN SPEAKER VERIFICATION 
Following [6], we propose an enhanced Fishervoice 

framework for speaker verification task by projecting the high 
dimensional JFA-based supervector into a low-dimensional 
discriminant subspace to model speaker characteristics.  More 
specifically, we explore different types of JFA GMM mean 
vector feature representations with nonparametric Fisher’s 
discriminant analysis.   

A. Supervector extraction 
Inspired by the rationale that the whole acoustic space can 

be characterized by a set of acoustic classes with a Gaussian 
model representing some broad phonetic events [10], it is 
desirable to use these Gaussian mixtures to compress input 
features. Thus, in the Fishervoice approach, we concatenate the 
GMM speaker vectors as the input supervector, instead of 
using the structured score vector (SSV) in [6]. These 
supervectors are able to leverage the acoustic class structure 
captured in the GMM speaker vector space in order to extract 
the “key” information in an input utterance. The structure 
captures the probabilistic distribution of acoustic feature 
classes in the overall acoustic space.  Therefore, we represent 
the utterance h from the speaker i in terms of an G×F 
dimension vector xi,h:  

, , ,1 , ,2 , , , ,[       ]Ti h i h i h i h g i h Gx s s s s=  (6) 

where  is the F-dimensional  GMM speaker vector for 
the g-th Gaussian mixture. For comparison, we also test two 
other types (weighted supervector and kernel based 
supervector) which are similar to . 
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B. Traning stage         
Figure 1 illustrates the overall organization of the proposed 

framework.  By incorporating all these strategies, a multi-
classifier framework is developed. The steps of this algorithm 
are summarized as follows: 

B.1  For each training sample, obtain the corresponding input 
feature vector using the supervector extraction technique.  
B.2  Divide the whole supuervector into K slices equally and 
then project each subvector via PCA model WP_k respectively 
for dimension reduction . Construct Fishervoice-based 
classifiers based on each PCA projected slice. (In our 
experiments, K = 16, so there are 16 classifiers) 
B.3  Apply nonparametric Fisher’s discriminant analysis on 
each slice in parallell as introduced in [7]: 
       B.3a) Subspace projection for dimension reduction —  
Compute the PCA projection matrix Wk1 from the k-th slice of 
the entire development set and use it to project all 
corresponding subvectors into the PCA subspace.  The 
subspace projection fk1 is obtained by: 

1 1 1,  where arg maxT
k k k W

Tf W x W W W= = Ψ

.

= ΦΛ

 (9) 

where x is an arbitrary subvectors from Eq. (5), (6) or (7) and 
Ψ is the covariance matrix of the corresponding k-th slice of 
subvectors in the development set. 
       B 3b) Subspace projection to reduce intra-speaker 
variations — In the PCA subspace above, compute the 
whitened subspace projection fk2 and adjust the dimension of 
the whitened subspace to reduce intra-speaker variability: 

1/ 2
2 2 1 2 2 2,  where ,  T T

k k k k w k kf W f W S W I W −= =  (10) 
where Wk2 is the whitening transformation matrix applied to 
the standard within-class (intra-class) scatter matrix Sw [7], Φ 
is the normalized eigenvector matrix of Sw, Λ is the eigenvalue 
matrix of Sw.  
        B.3c) Subspace projection to extract discriminant speaker 
class boundary information — Compute the nonparametric 
between-class scatter matrix S′

b according to Eq. (8-9) in [6].  
Perform PCA on S′

b and choose dominant eigenvectors 
(usually choose number of rank) to form projection matrix 
Wk3.  The subspace projection f3 is obtained by:  

'
3 3 2 3,  where arg maxT

k k W

T
bf W f W W S W= =  (11) 

      B.3d)  Subspace transformation matrix Wk for the k-th slice 
is denoted as: 

1 2 3k k k kW W W W=  (12) 

B.4   Finally, we concatenate all projection matrices into a 
total projection matrix WTotal  as follows: 

_1 _ _ 1Total P P k P K k KW W W W W W W⎡ ⎤= ⎡ ⎤⎣ ⎦⎣ ⎦  (13) 

B.5    During target speaker enrollment, each speaker’s 
speaker supervector is projected into a low-dimentional 
training reference vector Otrain by the total projection matrix 
WTotal.  

C. Testing stage         
C.1   For each test sample, obtain the corsponding input 
feature vector  using similar method as the training stage. 
Then each supervector is  projected into a test reference 
vector Otest by the total projection matrix WTotal. 
C.2   Calculate the distance score between projected training 
refrence vector Otrain and test refrence vector Otest in terms of 
the normalized correlation (COR) shown in Eq. (14):  

( ), T T
train test train test train train test testD O O O O O O O O= T (14) 

D. Discussion         
Essentially, the proposed framework is an extension and 
improvement of the original Fishervoice approach in [6]. 
Compared to the approach in [6], the proposed framework is 
able to generate more discriminant projections for enhanced 
matching. The idea of separating the long feature into multiple 
slices with smaller dimension allows us to work on data with 
more manageable sizes, with consideration in the number of 
training samples. This will help improve the discriminative 
ability. The experimental results we will show the advantage 
of enhanced Fishervoice framework over the original 
Fishervoice framework, as well as the other state-of-the-art 
algorithms.   
 

IV. EXPERIMENTAL SET UP 

A. Testing protocol 

All experiments are performed on the NIST SRE08 male 
short2-short3 core data set (cc=6). Each training and testing 
conversation has an average duration of 5 minutes and there is 
no cross-gender trials. Results are given in terms of equal error 
rate (EER) and minDCF. 

B. Feature extraction 
First, ETSI Adaptive Multi-Rate (AMR) GSM VAD [11] is 

applied to prune out silence. Then the speech is segmented into 
frames by a 25 ms Hamming window shifting with 10-ms 
frame rate. The first 16 Mel frequency cepstral coefficients 
together with log energy are calculated with their first and 
second derivatives to form a 51-dimension feature vector (the 
frequency window is restricted to 300-3400 Hz). Finally, the 
Gaussianization process is applied to all the MFCCs.  

C. Baseline system 
The baseline system employs gender-dependent 1024 

Gaussian UBMs, which was trained from SRE04 1side-1side 
and SRE05 lcon4w-1con4w data. The gender-dependent 
eigenvoice matrix V is trained using LDC releases of 
Switchboard II Phase 2, Phase 3, Switchboard Cellular Parts 2, 
SRE04, SRE05 and SRE06, including 893 male speakers with 
11204 utterances. The rank of the speaker space is set to 300.  

The eigenchannel matrix U is also trained gender-
dependently from 436 male speakers with 5410 utterance in the 
SRE04 SRE05 and SRE06. The rank of the channel space is set 
to 100. Both U and V are trained using the expectation 



maximization (EM) algorithm (15 iterations) of the factor 
analysis and the posteriors of x, y are computed using a single 
iteration to train a speaker model. 

In the SVM system, we use libsvm [12] for implementation. 
800 impostors for background training and 300 t-norm models 
for each gender are taken from the same dataset as in the 
eigenvoice training. 

D. Fishervoice training 
For the Fishervoice projection matrix training, the gender-
dependent Fishers discriminative projection matrix was 
constructed on NIST SRE 04-06 telephone data, including 400 
male speakers in which each speaker contains 8 different 
utterances. The Fisher’s discriminant subspace projection 
matrices, W1, W2 and W3, have the dimensions of 299, 298 and 
295 respectively, corresponding to the upper limit of their 
matrix ranks. This means the dimension of original 
supervector is reduced from 52224 (51*1024) to 4720 
(295*16) after Fishervoice projection. The parameter R 
introduced in [6] is set to 4 according to median number of 
sessions for each speaker. 

E. Score normalization 

We apply gender-dependent score normalization (T-norm 
or TZ-norm) for different speaker verification systems. We 
adopt the SRE04 and SRE05 corpus as t-norm corpus and the 
SRE06, Switchboard II Phase 2 and Phase 3 corpus as z-norm 
corpus. The number of speakers in the corpus for t-norm is 300 
and for z-norm is 800. 

V. RESULTS 
In this section, we present individual and combined results 

on the NIST SRE 08 male core test (cc=6) from the previously 
described systems.  

A. Different Types of Input Supervectors in Fishervoice 
       The first experiment investigates the sensitivity of speaker 
verification performance for the proposed method with regards 
to the types of input supervectors and score normalization 
method used.  As mentioned before, we apply the Fishervoice 
framework along with the normalized correlation for distance 
metric. Table 1 gives the results obtained without score 
normalization, with T-norm and TZ-norm score normalization 
on the three types of input supervector for the proposed 
system.  First, we observe that the performance remains stable 
across input vector types. Second, score normalization may 
greatly improve system performance. Third, T-norm maybe 
more suitable for minDCF measurement (12.4% relative 
improvement in Standard Mean as input) while TZ-norm may 
achive better results for EER meansurement (9.2% relative 
improvement in Weighted Mean as input). However, MinDCF 
of TZ-norm is not improved compare to T-norm. Besides, the 
compution speed in the test stage is very fast since no 
likelihood calculation is needed. 

TABLE I.  RESULTS OBTAINED WITH DIFFERENT NORMALIZATION 
SCHEMES ON THE THREE TYPES OF INPUT SUPERVECTOR. EER(%), 

MINDCF(X100) 

B. Comparison with the Other Systems 
The second experiment compares the Fishervoice framework 
with three other standard approaches, namely, JFA [2], JFA-
SVM with linear kernel [9] [13] and JFA-SVM with cosine 
kernel [4]. In the Fishervoice approach, we select the weighted 
mean as input supervector. Figure 2 shows the results obtained 
by the above mentioned systems. They suggest that the 
integration of JFA supervector with nonparametric Fisher’s 
discriminant analysis in the Fishervoice framework leads to 
superior performance compared to other systems. Compared 
to a single JFA classifier, the Fishevoice framework improves 
minDCF results by decreasing the minDCF from 0.0305 to 
0.0297 and improves performance of EER by a relative 
10.3%. Besides, JFA works better than JFA-SVM where both 
methods use supervector as input to train discriminative 
models. The advantage of applying Fishervoice framework is 
that each high-dimensional input supervector is cut into small 
slices while multiple subspace analysis works well on the low-
dimensional vector without any loss of useful information.  
These observations motivated us to devise a third experiment 
that fuse the Fishervoice with above standard systems. 
 

 
Figure 2. Comparison of Fishervoice and other standard systems on NIST 

SRE 08  male core task (cc=6,100x minDCF) 

No Norm T-norm TZ-norm Feature 
Input 

EER minDCF EER minDCF EER minDCF 
Standard 

Mean 5.95 3.31 5.72 2.90 5.47 2.99 

Weighted 
Mean 5.95 3.31 5.68 2.94 5.40 2.97 

Kernel Mean 5.84 3.30 5.68 2.93 5.46 2.99 



C. Fusion with the Other Systems 
In the third experiment, we fuse the Fishervoice with several 
standard systems (in Figure 3). We select JFA-SVM with 
cosine kernel to represent SVM based system. First, it is worth 
noting that the JFA + JFA-SVM fused systems only achieve 
comparable results compare to single Fishervoice system. 
Second, according to EER metric, Fishervoice fused with JFA 
and JFA-SVM offer best performance compare to single JFA 
system. It improves results by decreasing the EER from 6.02% 
to 4.67% by a relative 22.4% and decreasing the minDCF 
from 0.0305 to 0.0269. Third, we also find that the 
performance between the fusions (JFA+Fishervoice) and 
(JFA+Fishervoice+JFA-SVM-cosine) look similar. The 
possible reason may be that the functions of Fishervoice and 
SVM are the same since both models in two systems are 
trained in the discriminative way. 

 

 

Figure 3. Fusion results with other systems on NIST SRE 2008  male core 
task (cc=6,100x minDCF) 

VI. CONCLUSIONS 
This paper enhances our previous work in the Fishervoice 

approach [6] for speaker verification. The approach includes 
the application of nonparametric Fisher’s discriminant analysis 
to map the supervector into a discriminant subspace for fast 

and effective matching.  The objective is to reduce intra-
speaker variability that is unfavorable for the speaker 
recognition task, as well as extract discriminant speaker class 
boundary information that is conducive to the task.  The 
enhancement presented represents each utterance with a fix-
length super-vector using JFA Gaussian GMM. Multiple 
discriminant projections are then used on partitioned vectors of 
the super-vector for fast and effective matching.  Extensive 
experiments on the NIST08 male core test show the advantage 
of the proposed framework over the state-of-the-art algorithms.  
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