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Abstract
Linear discriminant analysis (LDA) is an effective and widely
used discriminative technique for speaker verification. How-
ever, it only utilizes the information on global structure to per-
form classification. Some variants of LDA, such as local pair-
wise LDA (LPLDA), are proposed to preserve more informa-
tion on the local structure in the linear projection matrix. How-
ever, considering that the local structure may vary a lot in dif-
ferent regions, summing up related components to construct a
single projection matrix may not be sufficient. In this paper,
we present a speaker-aware strategy focusing on preserving dis-
tinct information on local structure in a set of linear discrim-
inant projection matrices, and allocating them to different lo-
cal regions for dimension reduction and classification. Exper-
iments on NIST SRE2010 and NIST SRE2016 show that the
speaker-aware strategy can boost the performance of both LDA
and LPLDA backends in i-vector systems and x-vector systems.
Index Terms: Linear discriminant analysis (LDA), speaker ver-
ification, speaker-aware

1. Introduction
Speaker verification technologies have been developed for sev-
eral decades and applied in many daily applications like voice
assistants [1]. Gaussian Mixture Model (GMM) based i-vector
systems [2], which are developed from the Joint Factor Anal-
ysis (JFA) [3] method, has laid the foundation for many state-
of-the-art speaker recognition systems. In recent years, deep
neural networks (DNN) have been used in place of GMM, such
as in well-trained automatic speech recognition (ASR) neural
networks [4]. Recently, end-to-end neural networks [5, 6] are
also used in speaker verification, where the networks are di-
rectly trained to discriminate among speakers, and the outputs
of the hidden layers are regarded as the embedding vectors
for different speakers. These systems compress both channel
and speaker information into a low-dimensional total variabil-
ity space and represents variable-length utterances with low-
and fixed-dimensional identifying vectors. Then, at the back-
end of the system, LDA [7] and probabilistic LDA (PLDA) [8]
are applied on the extracted embedding vectors for inter-session
compensation and classification [9, 10, 11].

Although the LDA method is applied in linear space, it is
still an efficient and popular backend process in most classifica-
tion systems. The idea behind LDA is to maximize the between-
class covariance while minimizing the within-class covariance
[12]. However, LDA only makes use of information based on
global structure to compute the between-class covariance, while
neglecting information on local structures. Recently, variants of
LDA have been proposed, focusing on the utilization of infor-
mation on local structure, such as nearest neighbor discriminant
analysis (NDA) [13] and local pairwise linear discriminant anal-
ysis (LPLDA) [14]. The common idea behind these methods

is to pay more attention to information on the local structure,
i.e., focusing on nearby non-target samples rather than distant
non-target samples. The NDA method incorporates this idea
by introducing weight parameters according to distance when
computing between-class covariance. In the LPLDA method,
computation of the between-class covariance has been adapted
towards measuring the distance between target samples and
nearby non-target samples.

In the above methods, information on local structure is con-
sidered in the summation for computing between-class covari-
ance to construct a single linear transformation space for all
speakers. However, since the local structure information may
vary across different regions [10, 15], a single projection ma-
trix may not be sufficient to address this nonlinear problem.
To make use of the distinctive information offered by the local
structure, this paper presents a speaker-aware strategy to allo-
cate different linear discriminant projection matrices to differ-
ent speakers in the training dataset. More specifically — during
training, for each speaker, the proposed method considers the
utterances of neighboring speakers and gives different weights
for computation of between-class covariances and the within-
class covariances to obtain a set of linear discriminant projec-
tion matrices. Then, for testing, projection matrices in the cor-
responding local regions are selected for dimension reduction
and classification scoring, which can better utilize the distinc-
tive information in the local structure to boost the performance
over existing LDA and LPLDA methods.

2. LDA and its variants
LDA is an efficient dimension reduction method, which utilizes
class information for supervised classification. The key idea
behind LDA is to minimize the ratio between the within-class
covariance and between-class covariance. Let xci denotes the
i-th sample of class (speaker) c, the within-class scatter matrix
Sw and between-class scatter matrix Sb can be represented as

Sw =
C∑

c=1

Nc∑
i=1

(xci − µc)(x
c
i − µc)

T

Sb =
C∑

c=1

Nc(µc − µ̄)(µc − µ̄)T

(1)

where C and Nc denote the number of the classes and the sam-
ples in class c respectively, µc is the mean of samples in class c
and µ̄ denote the overall mean, that is, µ̄ =

∑
cNcµc/

∑
cNc.

Then the projection matrix of LDA W can be obtained as:

Wopt = arg
W

max tr((WTSwW)−1WTSbW) (2)

where tr{·} denotes the matrix trace function, and columns
of Wopt are the eigenvectors of S−1

w Sb corresponding to the
largest eigenvalues.



Since the LDA method only considers the global structure
between the classes, it may not work well in difficult situations,
e.g., verifying whether two closely positioned samples belong
to the same class or not. Hence, variants of LDA have been
proposed to focus on learning the local structure, such as nearest
neighbor discriminant analysis (NDA) [13] and local pairwise
linear discriminant analysis (LPLDA) [14].

NDA computes the between-class scatter matrix by giving
different weights to neighboring samples, i.e.,1

Sb =

C∑
c=1

Nc∑
i=1

wcc̄
i (xci − µ̄c̄

i )(x
c
i − µ̄c̄

i )
T , (3)

where µ̄c̄
i is the mean of the K-nearest samples of xci outside of

class c, and the weight parameter wcc̄
i in (3) is defined as:

wcc̄
i =

min{d(xci ,NNK(xci , c)), d(NNK(xci , c̄))}
d(xci ,NNK(xci , c)) + d(NNK(xci , c̄))

, (4)

where NNk(xci , c) and NNk(xci , c̄) denote the k-th nearest sam-
ple of xci from class c and outside of class c respectively, and
d(·) denotes the cosine distance d(a, b) = 1 − cos(a, b). The
within-class scatter matrix is computed in a similar way as (3)
except for setting the weight to 1 and replacing µ̄c̄

i with the
mean of the K-nearest samples inside of the class c µ̄c

i .
LPLDA learns the local structure by selecting confusable

samples to construct negative classes with respect to each target
(positive) class. For each target class, it draws an inner circle
covering all the target samples with the class mean as the cen-
ter point. Then, it counts the non-target samples in the inner
circle to determine how many neighboring non-target samples
should be selected to construct the negative class. In order to
better discriminate the target class samples from selected con-
fusable samples, a local pairwise scatter matrix is constructed.
The scatter matrix Slp can be computed as follows:

Slp =

C∑
c=1

Nc(µc − µ̄c̄)(µc − µ̄c̄)
T , (5)

where µ̄c̄ is the mean vector of the negative class with respect to
the target class c. The linear projection matrix can be computed
with the eigenvectors of S−1

w Slp.

3. Speaker-aware linear discriminant
analysis

In the above methods, information about the local structure is
captured in the summation during computation of the between-
class scatter matrix in order to construct a single linear transfor-
mation space. Considering that the local structure information
may not be consistent across different regions, only a single lin-
ear projection may not be able to capture the variability. We
proposed a speaker-aware strategy in computing a set of linear
projection matrices for the classes, which can be applied to ex-
isting LDA and LPLDA methods.

3.1. Strategy for LDA

For simplification, we use sw-LDA to denote the speaker-aware
strategy for the LDA method. In computing the scatter matrices

1Different from the original formation, here we apply the one-
versus-rest strategy used in [16], which can lead to better performance.
(http://www.cvc.uab.es/˜jordi/nda.txt)

for speaker s, we will give a weight wsc to denote the impor-
tance of another speaker c in relation with speaker s. The weight
for each speaker can be viewed as a re-sampling rate to focus
the linear transformation on neighboring samples for speaker s,
while filtering out the distant samples. Then, the within-class
and between-class scatter matrices for speaker s can be com-
puted as:

Sw(s) =

C∑
c=1

Nc∑
i=1

wsc(x
c
i − µc)(x

c
i − µc)

T . (6)

Sb(s) =

C∑
c=1

Ncwsc(µc − µ̂s)(µc − µ̂s)T , (7)

where µ̂s is the weighted mean vector of the overall sam-
ples, which can be computed as µ̂s =

∑C
c=1 Ncwscµc/∑C

c=1 Ncwsc. Finally, the sw-LDA matrix W(s) for speaker
s can be computed using the eigenvectors of Sw(s)−1Sb(s).

Since the set of weight values determines the balance be-
tween the global structure vis-à-vis local structure, the setting
of weights will impact performance – this will be elaborated in
Section 4.

3.2. Strategy for LPLDA

We use sw-LPLDA to denote LPLDA with speaker-aware strat-
egy. Compared with LDA, LPLDA pays more attention on con-
fusable samples. Based on Eq.(5), the scatter matrix Slp(s) for
speaker s can be computed as:

Slp(s) =

C∑
c=1

Ncwsc(µc − µ̄c̄)(µc − µ̄c̄)
T . (8)

The within-class scatter matrix Sw(s) is computed as Eq.(6).
Then the sw-LDA matrix for speaker s can be computed with
the eigenvectors of Sw(s)−1Slp(s).

4. Weight setting and scoring methods
4.1. Weight setting

We first analyze the data distribution in the training set to in-
form weight setting. For every pair of speakers, we compute
the cosine distances between their mean vectors, i.e.,D(s, c) =
cos(µs, µc) and use them to estimate the distribution of the dis-
tance between the different utterances by considering the num-
ber of utterances {Nc} of each speaker.

Figure 1 shows the distribution of the cosine distances be-
tween different utterances in the training dataset, where the em-
bedding vectors are extracted from the DNN i-vector system.
As we can see, the distribution density of the distance in the
whole training dataset pt can be modeled as a Gaussian model
N (m ≈ 0, σ2) with approximately zero mean. The positive
part of the distribution contains more information on the local
structure, where two speakers can have closer distances and are
generally more indistinguishable. In order to pay more atten-
tion to the positive part, we construct another Gaussian distri-
bution ptp ∼ N (σ, σ2) to give higher weights on the neighbor-
ing samples, where the mean is set as the standard deviation σ.
The weight value {wsc|c = 1...C, c 6= s} for speaker s can be
computed as:



Figure 1: Histogram of the cosine distances between the dif-
ferent utterances in the training dataset using a DNN i-vector
system, where the solid curve is the estimated Gaussian density
and the dashed curve is the constructed Gaussian density with
mean σ.

ŵsc = max

{
min

{
ptp(D(s, c))

pst (D(s, c))
, Tmax

}
, Tmin

}
, c 6= s

ŵss = max{wsc}c 6=s

wsc =
ŵsc∑
c ŵsc

(9)
where Tmin and Tmax are the lower bound and upper bound
of the weight values to avoid overfitting, and pst is estimated
from single speaker s, that is, pst ∼ N (ms, σ

2
s), ms =∑C

c=1,c 6=s NcD(s,c)∑C
c=16=s

Nc
and σ2

s =
∑C

c=1,c 6=s Nc(D(s,c)−ms)2∑C
c=1,c 6=s

Nc
.

4.2. Classification Scoring

After computing the set of linear projection matrices for all
speakers in the training dataset, we can use them to verify
whether the enrollment embedding vector xe and the testing
embedding vector xt belong to the same speaker. The steps
are

1. We first find the closet speakers se and st in the training
dataset based on the enrollment vector and testing vector re-
spectively, that is, se/t = argc max cos(µc, xe/t)

2. Then we apply the linear projection matrices of these two
speakers W(se) and W(st) to do transformation, that is:

yee = W(se)Txe, yet = W(st)
Txe,

yte = W(se)Txt, ytt = W(st)
Txt,

(10)

3. Finally, we take the average of the score(yee, yte) and score
(yet, ytt) as the final score.

When scoring two embedding vectors, we need to project
them into the same linear spaces. Meanwhile, when applying
PLDA as the scoring backend, we also need to compute a set of
PLDA transformations using the corresponding weight values
of each speaker to score them.

5. Experiments
The experiments are carried out on NIST SRE2010 [17] and
NIST SRE2016 datasets [18]. In the experiments of SRE2010

(a) sw-LDA

(b) sw-LPLDA

Figure 2: Local structure information learned in the projection
matrices. The region in the red box is enlarged and shown in
the top right corner.

dataset, both the GMM i-vector and DNN i-vector [19] systems
are investigated, and performances in the coreext-coreext and
core-core test conditions are discussed. Two short-duration test
conditions (10sec-10sec, conv-10sec) are also investigated in
the DNN i-vector system. NIST SRE2004∼2008 datasets and
Switchboard Phase II part 1/2/3 and Cellular Part 1/2 are used to
train the GMM and DNN models. The Mel-frequency cepstral
coefficient (MFCC) is used as the input feature, and its dimen-
sionality in GMM i-vector system is set to 39 with its delta and
delta-delta deviations, while in DNN i-vector system it is set
to 60. The universal background models (UBMs) in the GMM
i-vector system are trained with 2048 gender-independent com-
ponents. The i-vector dimensionality is set at 600. For backends
training, only the SRE datasets are used, and the number of the
speakers in the training dataset is 3805. The dimensionality for
linear transformation is set at 200.2

In the experiments with the SRE2016 dataset, the x-vector
system [6] is investigated, where a well-trained time-delay neu-
ral network (TDNN) 3 is applied to extract the embedding vec-
tors. NIST SRE2004∼2010 datasets are used to train the back-
end, and noise and reverberation additions are applied for data
augmentation. The dimensionality for linear transformation is
set to 150.

Tmin and Tmax in Eq.(9) are set to 1.5 and 10 empirically
to obtain a proper balance between global structure and local
structure. The parameters for NDA and LPLDA are set to be
the same as that in [13] and [14].

2For more details, please refer to the codes (on Kaldi platform[20])
in https://github.com/njzheng/LCLDA

3http://www.kaldi-asr.org/models/m3



5.1. Information on local structure in projection matrices

In order to examine the information on local structure learned
in different linear projection matrices, we select the first col-
umn (the eigenvector corresponding to the largest eigenvalue)
of the linear matrices obtained for each speaker, and apply t-
SNE [21] method to represent them as arrows on the 2-D plane
(with length and direction), as shown in Figure 2. The coor-
dinates of the arrows correspond to the speaker mean vectors
which are also transformed by t-SNE method. As we can see
in Figure 2(a), different local regions have different main direc-
tions, which means that the information on local structure is dis-
tinct and can be utilized individually to obtain higher discrim-
ination. Figure 2(b) shows higher complexity compared with
Figure 2(a), since sw-LPLDA focuses on discriminating nearby
confusable samples, which can partition the space in greater de-
tail.

5.2. Performance evaluation

In the following experiments, equal error rate (EER) and min-
imum detection cost function (mDCF)[17] are used to mea-
sure performance. In the GMM i-vector system, the results
for coreext-coreext and core-core with condition 5 are shown
in Table 1. The LDA and LPLDA applying the speaker-aware
strategy show improvements in both EER and mDCF10.4 In the
coreext-coreext condition, with PLDA backend, the relative im-
provement of sw-LPLDA can reach at 13.5% in EER and 8.7%
in mDCF10 over the original LPLDA method.

Table 1: Results on NIST2010 using the GMM i-vector system
coreext-coreext core-core

EER% mDCF10 EER% mDCF10

LDA 3.473 0.5116 3.814 0.5038
NDA 3.111 0.4304 2.966 0.4329
LPLDA 2.860 0.4239 3.107 0.4193
sw-LDA 3.125 0.4776 3.249 0.4784
sw-LPLDA 2.762 0.3942 3.107 0.3993

LDA-PLDA 1.855 0.3854 1.836 0.3670
NDA-PLDA 1.758 0.2867 1.836 0.3061
LPLDA-PLDA 1.646 0.2908 1.554 0.3442
sw-LDA-PLDA 1.688 0.3268 1.554 0.3343
sw-LPLDA-PLDA 1.423 0.2656 1.412 0.2849

In the DNN i-vector system, the improvement in the coreext
and core test conditions are shown in Table 2. In the coreext-
coreext test condition, the relative improvements over the orig-
inal LDA and LPLDA setups are respectively at 13.6% and
10.9% in EER and 12.3% and 12.1% in mDCF10. Combining
with the PLDA backend, the relative improvements can respec-
tively reach 17.3% and 17.8% in EER, and 17.6% and 10.7% in
mDCF10.

We also investigate the performance in short-duration test
conditions with the DNN i-vector system, where the test utter-
ances are much shorter than that in training dataset. The results
are shown in Table 3, where sw-LPLDA can obviously improve
the mDCF085 performance in both conditions.

Experimental results using the SRE2016 dataset are shown
in Table 4 with the x-vector system. The dimensionality of the
backend is set at 150, which are trained with data augmenta-
tion. Out-of-domain PLDA backends are considered. The pri-
mary measurement mDCF16 is defined as the average cost at

4mDCF10: Cmiss = 1, Cfa = 1 and Ptarget = 0.001.
5mDCF08: Cmiss = 10, Cfa = 1 and Ptarget = 0.01.

Table 2: Results on NIST2010 using the DNN i-vector system
coreext-coreext core-core

EER% mDCF10 EER% mDCF10

LDA 2.106 0.3359 2.260 0.3460
NDA 1.785 0.3171 2.260 0.2580
LPLDA 1.785 0.3071 2.119 0.2486
sw-LDA 1.827 0.2946 1.977 0.2835
sw-LPLDA 1.590 0.2699 1.836 0.2373

LDA-PLDA 1.046 0.2405 1.130 0.2667
NDA-PLDA 1.088 0.2184 1.130 0.2060
LPLDA-PLDA 1.018 0.2127 1.271 0.1681
sw-LDA-PLDA 0.865 0.1981 0.848 0.1554
sw-LPLDA-PLDA 0.823 0.1899 0.989 0.1283

Table 3: Results on NIST2010 in short-duration conditions
conv-10sec 10sec-10sec

EER% mDCF08 EER% mDCF08

LDA 5.930 0.2764 11.72 0.5053
NDA 5.391 0.2437 10.26 0.4915
LPLDA 5.391 0.2342 10.62 0.4619
sw-LDA 4.852 0.2470 10.81 0.4803
sw-LPLDA 5.121 0.2143 10.44 0.4471

LDA-PLDA 3.774 0.2174 8.974 0.3778
NDA-PLDA 3.504 0.1957 8.242 0.3873
LPLDA-PLDA 3.774 0.2010 8.059 0.3731
sw-LDA-PLDA 3.504 0.1916 8.242 0.3537
sw-LPLDA-PLDA 3.774 0.1699 8.242 0.3553

Table 4: Results on NIST2016 with the x-vector system
equalized unequalized

EER% mDCF16 EER% mDCF16

LDA-PLDA 11.41 0.8580 11.21 0.8914
NDA-PLDA 10.87 0.8377 11.00 0.8644
LPLDA-PLDA 11.20 0.8280 11.21 0.8473
sw-LDA-PLDA 11.12 0.8509 11.15 0.8895
sw-LPLDA-PLDA 10.57 0.8160 10.66 0.8424

two specific points on the detection cost function (DET) curve
[18], and evaluations are conducted in equalized and unequal-
ized modes. With the proposed speaker-aware strategy, im-
provements in EER and mDCF16 are consistent for both LDA
and LPLDA methods, which shows the effectiveness of this
strategy in the end-to-end speaker embedding system.

6. Conclusion
In this paper, a speaker-aware strategy is proposed at the back-
ends of the GMM/DNN i-vector and x-vector systems. A set
of local linear projection matrices are used to learn the distinc-
tive information on the local structure in different regions. Ex-
periments using the SRE2010 and SRE2016 datasets show that
both LDA and LPLDA methods show consistent and significant
improvements with the speaker-aware strategy. On the SRE10
dataset, sw-LDA-PLDA outperforms LDA-PLDA with a rela-
tive improvement of 13.7% in EER and 17.0% in MDCF, and
sw-LPLDA-PLDA outperforms LPLDA-PLDA with a relative
improvement of 10.3% in EER and 13.4% in MDCF.
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