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ABSTRACT 

We propose a new framework for speaker recognition, 
referred as Fishervoice.  It includes the design of a feature 
representation known as the structured score vector (SSV), 
which relates acoustic structures with “key” frames in an 
input utterance in capturing relevant speaker characteristics.  
The framework also applies nonparametric Fisher’s 
discriminant analysis to map the SSVs into a compressed 
discriminant subspace, where matching is performed 
between a test sample and reference speaker samples to 
achieve speaker recognition.  The objective is to reduce 
intra-speaker variability and emphasize discriminative class 
boundary information to facilitate speaker recognition.  
Experiments based on the XM2VTSDB corpus shows that 
the Fishervoice framework gave superior performance, 
compared with other commonly used approaches, e.g. 
GMM-UBM and Eigenvoice. 
Index Terms— speaker recognition, GMM, subspace 
model, discriminant analysis, Fishervoice 
 

1. INTRODUCTION 
Approaches to the speaker recognition have often gravitated 
towards the use of Gaussian Mixture Models (GMM) [1] 
and a variety of related techniques, e.g. GMM-UBM [2]. 
These approaches are faced with several challenging issues 
that are inherent in the  speaker recognition task:  (1) the 
need for an efficient representation of speaker 
characteristics that reflects structure in the acoustic speech 
signal that corresponds to different vocal tract 
configurations; (2) the need for robustness against intra-
speaker variabilities due to speaking style differences, noise 
and other interferences; and (3) the need for discriminant 
information among speakers that is conducive to improving 
recognition performance.   
      Regarding the first issue – the speech signal is laden 
with a variety of information that are intricately integrated, 
including the characteristics of the speaker, language, 
speaking style, etc.  Feature representations that are 
commonly used, e.g. MFCC, PLP, etc. [15] may not readily 
reflect the structures1 specific to speaker characterization.  
       To address the second issue, subspace analysis [3] 
techniques have been applied.  They include Principal 
Component Analysis (PCA) [9] and Fisher’s Discriminant 

                                                 
1 An analogous problem is present in person identification through 
facial images, where the useful “structures” to extract from the 
facial image are the eyes, nose and mouth. 

Analysis (FDA) [10].  These techniques work efficiently by 
adapting each speaker model from the high-dimensional 
feature space into a reduced dimension subspace.  The mean 
vectors from each speaker’s GMM are reconstructed by a 
linear weighted combination of basis eigenvectors called 
eigenvoices.  In addition, factor analysis (FA) [4] has been 
used to separate speaker and channel variability and has 
been shown to be effective in the NIST test set [4].  The 
approaches proposed in [2-5] have achieved good 
performance through model adaptation in a GMM-based 
subspace adaptation.  It seems desirable to augment the 
approach with the use of discriminant information.   
      To address the third issue, Campbell et al. [6] applied 
SVMs in speaker recognition that involves a nonlinear 
mapping from the input space to an SVM expansion space. 
A similar approach called Nuisance Attribute Projection 
(NAP) [7] has been applied to suppress channel effects. In 
addition, Stolcke et al. [8] applied rank-normalization to 
create nonparametric features and improve SVM 
performance.   The performance of SVMs is critically 
dependent on the selection of efficient kernel functions. 
      In this work, we propose a novel speaker recognition 
framework that applies nonparametric Fisher’s discriminant 
analysis (refered as Fishervoice).  The approach is currently 
introduced for speaker recognition, inspired by work in face 
recognition [12].  In the Fishervoice framework, we first 
design a feature representation referred as structured score 
vector (SSV).  The main idea is to consider the unified 
GMM that models the entire space of speakers’ utterances, 
and use each Gaussian to select a small set of key frames 
(top-scoring frames) from a speaker’s input utterance.  The 
key frames are considered representative of the acoustic 
class structure represented by the Gaussian.  The mean 
score of the key frames for Gaussian are grouped together to 
form the SSV.  Second, we apply nonparametric Fisher’s 
discriminant analysis that maps SSV into a compressed 
(reduced dimension) subspace.  The analysis is performed in 
an attempt to suppress intra-speaker variations and to 
emphasize the discriminative information for speaker 
recognition.  Third, the method of subspace analysis is 
applied directly to speaker recognition by computing the 
distance between an input testing sample with the reference 
vector of each known speaker. 
 

2. THE FISHERVOICE FRAMEWORK 
We propose a framework (which we name “Fishervoice”) to 
explore the use of subspace analysis to model speaker 

 
 



characteristics in a low-dimensional discriminant subspace.  
More specifically, the framework integrates a novel feature 
representation (which we name “Structured Score Vector”), 
with nonparametric Fisher’s discriminant analysis.  Figure 1 
illustrates the overall organization of the proposed 
framework.  We will describe the respective components of 
the framework in the following subsections.   
 
 
 
 
 
 
 
 
Figure 1.  Illustration of the proposed framework for speaker 
recognition framework, to which we refer as “Fishervoice”.   
 
2.1 Structured score vector (SSV) extraction 
The SSV is designed to leverage the acoustic class structure 
captured in the unified GMM (see Figure 1) in order to 
locate the “key” frames in an input utterance. This unified 
GMM is trained from all training data (akin to the universal 
background model commonly used in speaker recognition), 
which captures the probabilistic distribution of acoustic 
feature classes (or structures2) in the overall acoustic space 
in terms of a mixture of Gaussians.  Given an input 
utterance, we extract specific MFCC frames that have high 
likelihood scores with respective to each Gaussian 
distribution, with the assumption that these are the more 
representative frames (i.e. “key” frames) for the 
corresponding acoustic class. Mathematically, suppose there 
are Hi utterances in total for the speaker i across all 
recording sessions, of which the h-th utterance consists of 
Ni,h MFCC frames {vi,h(n)|n = 1,2,…Ni,h}.  We can compute 
the likelihoods scores of these frames for each Gaussian 
distribution to form the matrix Bi,h: 
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(3) 

where M is the number of Gaussian mixtures and bj(vi,h(n)) 
is the weighted likelihood score of the n-th frame with 
respect to the j-th Gaussian that has mean vector μj, 
covariance matrix ∑j and weight wj.3  If we assume that a 
higher likelihood score for an MFCC frame is more 
representative of the acoustic structure characterized by the 
Gaussian, then we may regard the top-scoring K frames to 
be the key frames in the utterance for the specific acoustic 
structure.  Let tj,e denote the original index of the e-th (e = 

 
2 In this context, we refer to acoustic feature classes as structures. 
3 In practice we take the log of the scores. 

1,2,…K) key frame of the j-th Gaussian, we compute the 
mean likelihood score si,h,j of K key frames to represent each 
structure as follows:  
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Furthermore, we represent the h-th utterance from the i-th 
speaker in terms of an M dimensional vector xi,h:  
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We refer to xi,h as the structured score vector (SSV), which 
represents its acoustic structure with selected key frames to 
capture relevant speaker characteristics. This step differs 
slightly from [16], which uses Gaussian scores of all frames. 
 
2.2 Nonparametric Fisher’s discriminant analysis 
The SSV represents each input utterance in terms of a score 
vector in a high-dimensional space (M dimensions).  If we 
assume that there is a low-dimensional discriminant 
subspace for effective speaker discrimination, we may 
attempt to apply nonparametric Fisher’s discriminant 
analysis for mapping into the subspace. 
      The traditional Fisher’s discriminant analysis (FDA) 
aims to maximize class separability [10]. It seeks to 
determine an optimal projection W, which maximizes the 
ratio of the determinant of the between-class scatter matrix 
Sb to that of the within-class scatter matrix Sw. Given the 
SSVs from all training speakers, we let C denote the total 
number of speakers, Hi be the number of samples (or 
sessions) in the speaker i, ξi be the sample mean of the class 
i and ξ be the sample mean of all training data.  The optimal 
projection W for FDA is calculated as follows:  
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      In the proposed Fishervoice framework, we aim to 
enhance Sw and Sb to extract discriminant information more 
effectively.  First, the space of all SSVs derived from the 
entire set of training samples undergoes dimension 
reduction by principal component analysis (PCA) and is 
projected into a subspace to make Sw nonsingular. Then two 
procedural steps are applied in solving W:  
Step 1: In the PCA projected space, we further enhance Sw 
by whitening [11], in an attempt to remove intra-speaker 
variations. This is achieved by a whitening transform matrix 
T, which is computed as follows: 

1/2,T
wT S T I T −= = ΦΛ  (7) 

where Φ is the normalized eigenvector matrix of Sw, Λ is the 
eigenvalue matrix of Sw and I is the identity matrix.  
Step 2: We enhance Sb by applying nonparametric subspace 
analysis [11] [12] to obtain a nonparametric between-class 
scatter matrix S′b. This aims to better characterize inter-
speaker variations.  For an arbitrary utterance h from 
speaker i, let x′i,h denote the new SSV that has undergone 

 
 



two projections (PCA and whitening), a process which is 
consistent with step 1 above.  We consider the contribution 
of x′i,h towards the nonparametric between-class scatter 
matrix S′b by focusing on its proximity to the boundary that 
separates speaker class i and any other class k.  S′b is 
computed according to the following equations:  
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where φk,q(x’
i,h) is q-th sample from speaker k that among the 

nearest neighbors (projected SSV) of x’
i,h, R is the total 

number of such nearest neighbors considered, mk(x’
i,h) is the 

mean of these R nearest neighbors, and g(i,k,h) is a 
weighting function  defined as:  
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where exponential parameter α controls the variation of the 
weighting function with respect to the distance d(o1, o2), 
which is the Euclidean distance between two vectors o1 and 
o2.  The parameter R is often set as the median of the total 
sessions for each speaker in the training data [12]. The 
weighting function g(i,k,h) assesses the proximity of the 
projected SSV x’

i,h to a local speaker class boundary and 
weights the SSV’s contribution towards constructing the 
matrix S′b.  This weight approaches the highest value of 0.5 
if x’

i,h is near the classification boundary and decreases as  
x’

i,h moves far away from the classification boundary.   
 To summarize, subspace projections involved in the 
overall Fisher’s discriminant analysis include the following:   

(i) Subspace projection for dimension reduction:  
Compute the PCA projection matrix W1 from the entire 
training set and use it to project all SSVs into the PCA 
subspace.  The subspace projection f1 is obtained by: 

1 1 1,  where arg maxT

W

Tf W x W W W= = Ψ

= ΦΛ

 (10) 

where x is an arbitrary SSV from Eq. (5) and Ψ is the 
covariance matrix of all the SSVs in the training set. 
(ii) Subspace projection to reduce intra-speaker 
variations:  In the PCA subspace above, compute the 
whitened subspace according to Eq. (7) and adjust the 
dimension of the whitened subspace to reduce intra-speaker 
variability.  The subspace projection f2 is obtained by: 

1/ 2
2 2 1 2 2 2,  where ,  T T

wf W f W S W I W −= =  (11) 
where W2 is the whitening transformation matrix applied to 
the within-class scatter matrix Sw via Eq. (10), Φ is the 
normalized eigenvector matrix of Sw, Λ is the eigenvalue 
matrix of Sw.  
(iii) Subspace projection to extract discriminant speaker 
class boundary information:  In the projected subspace 
above (after PCA and whitening), compute the matrix S′b 
according to Eq. (8-9).  Perform PCA on the nonparametric 

between-class scatter matrix S′b and choose dominant 
eigenvectors to form the PCA projection matrix W3.  The 
subspace projection f3 is obtained by:  

'
3 3 2 3,  where arg maxT T

bW
f W f W W S W= =  (12) 

(iv) Finally, the overall subspace transformation matrix WN 
is denoted as: 

1 2 3NW W W W=  (13) 
WN is computed from all training utterances.  For each 
speaker in the training set, we calculate the mean of the 
subspace projections from all of his/her training utterances 
to form the reference vector of that speaker in the projected 
SSV space. 
 
2.3 Testing procedure 
Based on the training data set, we compute the overall 
Fisher’s discriminant subspace projection matrix WN in Eq. 
(13).  During testing, we compute the SSV of the input test 
utterance and perform the subspace projections in WN .  This 
projected testing sample (an SSV) is compared with the 
reference vector for each speaker (see the subsection 
above), in terms of distance metrics [1] such as the 
Euclidean distance (EUC) and the normalized correlation 
(COR), in order to perform speaker recognition. The two 
distance metrics are shown in Eq. (14): 
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where o1 and o2 are two projected SSVs. 
 

3. EXPERIMENTAL RESULTS AND ANALYSIS  
We experimented with the XM2VTS database [14], which 
is comprised of 295 speakers, recorded from four different 
sessions. Each speaker reads two numeric sequences with 
audio and face recordings. The first three sessions are used 
for training and the last for testing. We have previously 
used this corpus for face recognition and currently extend 
our work to speaker recognition. The corpus offers multiple 
sessions with a relatively large number of subjects, and 
supports future work in multimodal person recognition. 

  Front-end processing includes: (i) Down-sampling the 
audio data from 32 kHz to 8 kHz, to follow the common 
experiment setup with reference to previous works [2] [3]. 
(ii) Extracting thirteen MFCCs and their time derivatives 
(delta and delta delta MFCCs) using a 30ms Hamming 
window, with a step of 15 ms between successive windows.  

  We reference the other (common) approaches to 
speaker recognition such as the GMM-UBM [2] and 
Eigenvoice GMM [3].  The UBM combines two gender-
dependent GMMs trained respectively on male and female 
training data.  Each speaker model is adapted (mean-only) 
with one iteration and the relevance factor is 16. As for the 
Fishervoice approach, the UBM is used as the unified 
GMM.  We compute the SSVs with M=1024. The parameter 

 
 



R is set to 2 (as explained earlier) and α is set to 2 (in order 
to empirically balance the rate of decrease of the weighting 
function g). The Fisher’s discriminant subspace projection 
matrices, W1, W2 and W3, have the dimensions of 884, 590 
and 294 respectively, corresponding to the upper limit of 
their matrix ranks.  
       The first experiment investigates the sensitivity of 
speaker recognition performance with regards to the number 
of key frames (K) used in the SSV.  As mentioned, we apply 
the Fishervoice framework along with the two distance 
metrics – Euclidean distance (EUC) and normalized 
correlation (COR).  Results are shown in Figure 2.  We 
observe that the speaker recognition performance remains 
largely stable across a range of K values above 6.  This 
suggests that a relatively small number of key frames can 
contribute significantly towards modeling speaker identities.  

 
 

 
Figure 2. Speaker recognition accuracy (%) based on the 
Fishervoice framework with two distance metrics – Euclidean 
distance (EUC) and normalized correlation (COR). 
 
        The second experiment compares the Fishervoice 
framework (with K=6) with two other approaches, namely, 
GMM-UBM [2] and Eigenvoice [3].  In the Eigenvoice 
approach, each speaker’s GMM mean vectors are 
reconstructed by a linear weighted combination of 
eigenvectors. A maximum likelihood solution called MLED 
(Maximum Likelihood Eigen-Decomposition) is used to 
estimate the weights. The number of Gaussian mixtures is 
set at 1024 and 2048.  The number of eigenvectors used in 
Eigenvoice method is set to 270 with 98% of the variational 
energy retained in eigenspace.  Results are shown in Table 
1.  They suggest that the integration of SSV with 
nonparametric Fisher’s discriminant analysis in the 
Fishervoice framework leads to superior performance 
(100%) in the XM2VTSDB test set with 295 utterances. 
 
Table 1. Comparison among three approaches to speaker 
recognition accuracy (%):  GMM-UBM, Eigenvoice and the 
proposed Fishervoice framework  
Gaussian 
Mixtures 

GMM-
UBM 

Eigenvoice Fishervoice 
(EUC) 

Fishervoice 
(COR)  

1024 98.0 96.3 100 100 
2048 98.9 96.9 100 100 

 
4. CONCLUSIONS 

This paper proposes a new framework for speaker 
recognition, referred as Fishervoice.  It includes the design 
of a feature representation known as the structured score 
vector (SSV), which relates acoustic structures (obtained 
from a Gaussian mixture model) with key frames in an input 

utterance in capturing relevant speaker characteristics.  The 
framework also includes the application of nonparametric 
Fisher’s discriminant analysis to map the SSVs into a 
discriminant subspace, where matching is performed 
between a test sample and reference speaker samples.  The 
objective is to reduce intra-speaker variability that is 
unfavorable for the speaker recognition task, as well as 
extract discriminant speaker class boundary information that 
is conducive to the task.  Experiments based on the 
XM2VTSDB shows that the Fishervoice framework gave 
superior performance, compared with other commonly used 
approaches, e.g. GMM-UBM and Eigenvoice. Future work 
includes experimentation with NIST database and SVM-
based methods. 
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