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Abstract
Synthesizing expressive speech with appropriate prosodic varia-
tions, e.g., various styles, still has much room for improvement.
Previous methods have explored to use manual annotations as
conditioning attributes to provide variation information. How-
ever, the related training data are expensive to obtain and the
annotated style codes can be ambiguous and unreliable. In this
paper, we explore utilizing the residual error as conditioning at-
tributes. The residual error is the difference between the predic-
tion of a trained average model and the ground truth. We encode
the residual error into a style embedding via a neural network-
based error encoder. The style embedding is then fed to the
target synthesis model to provide information for modeling var-
ious style distributions more accurately. The average model and
the error encoder are jointly optimized with the target synthesis
model. Our proposed method has two advantages: 1) the em-
bedding is automatically learned with no need of manual style
annotations, which helps overcome data sparsity and ambiguity
limitations; 2) For any unseen audio utterance, the style embed-
ding can be efficiently generated. This enables rapid adaptation
to the desired style to be achieved with only a single adaptation
utterance. Experimental results show that our proposed method
outperforms the baseline model in both speech quality and style
similarity.
Index Terms: speech synthesis, residual error, prosodic varia-
tion, expressiveness

1. Introduction
In recent years speech synthesis technologies have made rapid
progress with successful application of deep learning tech-
niques [1–5], generating synthesized speech with excellent in-
telligibility and naturalness. However, expressiveness, i.e.,
prosodic variations appropriate for the speech context, still has
much room for improvement. One key challenge is how to in-
corporate prosodic control information.

In previous work, style controls have been explored with
various conditioning attributes providing variational informa-
tion, e.g., discriminant codes [6], unsupervised clustered la-
bels [7], style tokens [8], etc. [9] proposed to learn style con-
trol information by training separated decision trees for differ-
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ent styles in hidden Markov model (HMM)-based synthesis sys-
tem. [6] and [10] proposed to feed speaker codes to input or
hidden layers of deep neural network (DNN) for performing
multi-speaker synthesis. [11] incorporated latent variables to
model emotional variation in training data with predefined par-
titions. [12] investigated different representations of emotional
labels. In deep learning, with manual annotations, embeddings
learned from the attributes can be jointly optimized with net-
works weights using backpropagation. However, the required
training data used in these approaches are expensive to obtain.
Besides, since there is no commonly accepted hard categoriza-
tion of styles, manual style annotations can be ambiguous and
unreliable [8].

To avoid annotation errors, researchers have proposed to
learn the embeddings in an unsupervised way, i.e., without man-
ually annotated conditioning attributes. [7] clusters the training
data into several style classes. The learned cluster labels are
used as automatic annotations for generating specific styles in
an HMM-based synthesis. The annotation component and the
synthesis model are constructed separately [13]. In order to con-
sistently optimize the style representation and back-end synthe-
sis model, [14] proposed to learn a sentence-level control vector
by feeding the sentence index as conditioning input. The projec-
tion from the sentence index to the control vector is jointly opti-
mized with the synthesis system. [8] proposed to automatically
learn embeddings, called latent style factors, directly during the
training of speech synthesis system in an unsupervised data-
driven way. The style factors are combined to provide informa-
tion for modeling the prosodic variations. However, synthesis
of speech with unseen styles requires the inference of style em-
bedding to be learned first [15], typically by backpropagation to
obtain the style embeddings [10], hidden representations [16] or
adapting an already trained model to a specific style model [17].

Inspired by the successful application of deep residual
learning in tasks such as image classification [18], our previ-
ous research found that the residual error between the predicted
outputs by using the average style model and the corresponding
target outputs of specific styles can be used as auxiliary fea-
tures to improve style during adaptation [19]. In this paper, we
further explore the use of prosodic style residual errors as an
efficient form of conditioning attributes to improve the perfor-
mance of expressive speech synthesis [20]. The motivation of
utilizing the residual error is that the average style model can
capture phonetic information and average prosodic style, while



Figure 1: The architecture of error encoding networks (EEN).
At the training stage, the residual error r is calculated based
on the prediction of the average model ŷ(avg) and the corre-
sponding ground truth y. The style embedding e is generated
using the error encoder with r as input. The target model gen-
erates the output ŷ(sty) based on input text x and the dense
layer outputs. At the adaptation stage, the embedding ẽ is cal-
culated with the adaptation sample (x̃, ỹ). At the testing stage,
the outputs y′ are generated using the target model with the
embedding ẽ and the testing inputs x′.

the style variation information can be obtained from the residual
errors. It is also efficient to use the residual error as condition-
ing attributes to save the effort in separating the average style
and style variations. Recently, Tacotron, a successful applica-
tion of encoder-decoder architecture, has achieved state-of-the-
art performance in speech synthesis in neutral prosody [3, 21].
We extend the use of Tacotron to model prosodic styles for ex-
pressive speech synthesis using a diverse and expressive speech
corpus of children’s audiobooks [22].

We propose to incorporate an error encoder to encode resid-
ual errors into style embeddings, which are used as control fac-
tors for modeling varying prosodic styles in the Tacotron based
synthesis model [21]. Our method has two advantages:

• The embedding is automatically learned with no need
of manual style annotations, which helps overcome data
sparsity and ambiguity limitations.

• For any unseen audio utterance, the style embedding can
be efficiently generated. This enables rapid adaptation to
the desired style to be achieved with only a single adap-
tation utterance.

This paper is organized as follows: Section 2 reviews the
encoder-decoder structure and the error encoding network based
on Tacotron’s structure. Section 3 presents the details of the
experiments. The conclusion is drawn in Section 4.

2. Model Architecture
2.1. Encoder-Decoder Structure

The encoder-decoder structure has been applied successfully
to various sequence modeling problems [21, 23]. Both the
encoder and decoder are composed using neural networks.
In speech synthesis, assume the input is linguistic vector
x = {x1, x2, ..., xn} and the output is acoustic vector y =
{y1, y2, ..., yt}. The encoder first encodes the linguistic vectors
into hidden representations. The information of input is stored
in the hidden representations. In the decoding stage, a weighted
sum of the hidden representations, the attended context, is gen-

Figure 2: The structure of error encoder.

erated for each step. The acoustic outputs are decoded condi-
tioning on the context.

2.2. Error Encoding Networks

In order to provide the needed information source for model-
ing style variation in the outputs, we propose to incorporate
the residual errors as conditioning attributes into the Tacotron
framework [21]. Encoding errors for modeling multiple dis-
tributions in outputs has been utilized to predict video frames
conditioned on previous frames [24]. In this work, we apply
the idea to modeling multiple style distributions in the acoustic
outputs.

As shown in Fig. 1, error encoding networks (EEN) consists
of four parts: 1) the average model, 2) the error encoder, 3)
dense projection layers and 4) the target model. The average
model has the same structure as Tacotron, directly trained with
multi-style data. The loss function of the average model is:

L(avg) =‖ y − ŷ(avg) ‖ (1)

where y and ŷ(avg) are the ground truth of acoustic vectors and
the prediction of the average model, respectively. By optimizing
the loss function L(avg), the average model will be generally
driven to predict average acoustic outputs ŷ(avg) given input
linguistic features x.

The error encoder is designed to encode the frame-level
residual error sequence into a style embedding vector. The
residual error is defined as:

r = y − ŷ(avg) (2)

where r is a sequence of t frame-level residual error [25]. The
structure of error encoder is shown in Fig. 2. The residual error
sequence is first fed to dense layers. To capture the temporal
information, bi-direction recurrent neural networks (RNN) are
utilized to encode the dense layer outputs. The state values at
the final timestep of the forward direction and the first timestep
of the backward direction are concatenated as the style embed-
ding vector e.

The style embedding vector e is then fed to dense projection
layers before connected to the decoder RNN of the target model.
Similarly, the loss function of the target model is:

L(sty) =‖ y − ŷ(sty) ‖ (3)

where ŷ(sty) is the prediction of the target model generating
speech with desired prosodic styles. Note that the acoustic fea-
tures generated by the trained average model capture the pho-
netic information with an average style learned from training



data. The part that still needs to be learned is the difference
between the average style and the target style. Thus we utilize
the residual errors from the trained average model to provide
information for the target model to model the style distributions
more accurately.

At the training stage, the two losses can be optimized
together or sequentially by first optimizing L(avg) and then
L(sty). The error encoder is optimized jointly with the target
model. At the adaptation stage, given an adaptation utterance
with the desired style, including the acoustic outputs ỹ and the
corresponding linguistic inputs x̃, the residual error r̃ is first
calculated using the trained average model with the adaptation
utterance. The residual error r̃ is then fed to the error encoder
to obtain the style embedding ẽ. At the synthesis stage, the
style embedding ẽ obtained in the adaptation stage is first pro-
jected to the input space of the decoder in the target model. The
testing linguistic inputs x′ are then fed to the target model to
generate the target acoustic outputs y′, with the projected style
embedding added to the inputs of the target model decoder.

2.3. Tacotron-based Error Encoding Networks

One successful model of encoder-decoder structures applied in
speech synthesis is Tacotron [21]. Tacotron can generate high-
quality speech with neutral style. However, when it is applied
to synthesizing speech with high style variations, the error ac-
cumulation problem at the output becomes serious, as the errors
contained in the average-style output are larger [26]. [8] tried to
solve this problem by introducing latent style factors to control
Tacotron to synthesize various styles. Following [8], we add the
style control factor, i.e., the residual error style embedding, to
the input of RNN in the Tacotron decoder to implement EEN.

2.4. Zero Style Embedding

Assume that the model training ultimately converges, the out-
puts of the target model are sufficiently close to the ground truth
model, i.e., ŷ(sty) ≈ y. When the residual error is zero, ac-
cording to Eq. 2, the prediction of the average model equals
to the ground truth, i.e., ŷ(avg) − y = 0. Thus we have
ŷ(sty) ≈ ŷ(avg), and can infer that when the style embedding
is close to zero, the output style is close to the average style in
the training data. We also evaluate this special embedding value
in our experiments.

3. Experiments

3.1. Corpus

We evaluate our proposed method on the audiobook corpus
from Blizzard Challenge 2016, which is recorded by a native
female speaker [27]. The speaker tries to utter in different styles
in the recording, including emotions, mimicked role charac-
ters’ voice. There are 50 books in the audiobook data. We use
the books of “A Midsummer Night’s Dream” and “Romeo and
Juliet” as testing data, and the other 48 books as training data
(around 4.3 hours). Alphabet character sequences are used as
linguistic inputs. We extract the logarithmic magnitude linear-
scale spectrograms and 80-band mel-scale spectrograms with
50-ms Hanning window, 12.5-ms shift, and 2048-point Fourier
transform. The output spectrogram magnitudes are converted to
waveforms with the Griffin-Lim algorithm.

Figure 3: Pearson correlation coefficients between each dimen-
sion of the style embeddings and the mean F0 values of training
data.

3.2. Systems

Our baseline is the Tacotron system [21]. We aim to inves-
tigate the EEN from two aspects: 1) whether EEN can have
better prosodic control for expressive speech than the baseline
Tacotron; 2) whether EEN can adapt to the target style with only
a single adaptation utterance. As far as we know, existing meth-
ods, e.g., backpropagation of input codes [10] and adaptation of
top layers [17], cannot perform well with only a single utterance
sample for adaptation.

We implement the Tacotron system strictly following [21].
For the EEN system, the structure of the average model is the
same as Tacotron. The error encoder consists of three layers,
i.e., two dense layers and one bi-directional gated recurrent
unit (GRU) layer from bottom to top, as shown in Fig. 2. The
two dense layers have 128 units per layer, activated by ReLU,
dropped out with rate of 0.5. The bi-directional GRU layer has
32 memory blocks in each direction. The state values of the
final timestep in forward direction and the first timestep in the
backward direction are concatenated as the 64-dimension style
embedding. The residual error is calculated with the teach-
forced prediction of the average model [8]. We use one dense
projection layer between the error encoder and the decoder of
target model. The dense layer has 256 units without the bias
vector, activated by a linear function. The target model has the
same structure as Tacotron, except that the inputs of RNN in the
decoder are added with the output of the dense projection layer.
Though it is suggested that training the average model and the
target model sequentially works better in [24], our preliminary
experiments show that training the two models simultaneously
together with error encoder works better. We compare the syn-
thesized audio samples of three systems:

• Tacotron—This system is trained directly with the train-
ing data.

• EEN with style embedding e = 0 (EEN-0)—This sys-
tem is based on the EEN trained with training data. The
acoustic outputs are generated with the target model in
the EEN, fed with linguistic input from testing sample
and conditioned on style embedding with zero values.

• EEN with style embedding obtained from the adapta-
tion sample (EEN-adpt)—This system is the same as
the EEN-0, except that the style embedding is calculated
based on the adaptation sample, with the average model
and the error encoder.

3.3. Style Embedding Analysis

To investigate how the learned style embedding vectors control
the synthesized prosodic variations, we calculate Pearson corre-
lation coefficients between each dimension of the embeddings



Figure 4: Smoothed F0 trajectories of the manipulated embed-
dings.

and the mean fundamental frequency (F0) of all training sam-
ples. As shown in Fig. 3, the 23-rd dimension of the embedding
has strong negative correlation with the mean F0 values. To
verify the control ability of the embedding, we compare the F0
trajectories of the synthetic speech when the embedding varies
only in the 23-rd dimension. We first extract an embedding
vector, denoted as emb-0, from a random reference sample in
the training set. Then we add +0.2, −0.2, −0.4 and −0.6 to
the 23-rd dimension of emb-0 to obtain four new embeddings,
denoted as emb+0.2, emb-0.2, emb-0.4 and emb-0.6. We then
use these embeddings to generate audio samples. The smoothed
F0 trajectories (linear interpolation in unvoiced frames) of syn-
thetic speeches are shown in Fig. 4. We can observe that the
F0 trajectories increase as the value of the 23-rd dimension de-
creases. This demonstrates that the learned embedding is able
to control the synthesis of prosody in different scales1.

3.4. Subjective Evaluation

We perform subjective evaluation using the mean opinion score
(MOS) and ABX tests. 20 utterances are each synthesized based
on unseen text inputs by the Tacotron and the EEN-0 system.
For the EEN-adpt system, 20 utterances with texts are first ran-
domly selected from the testing data as the adaptation samples.
For each adaptation sample, the style embedding is calculated.
Based on the style embedding, 20 utterances are synthesized
with the same unseen text inputs as the Tacotron and EEN-0
system. In the MOS test, each subject listens to each utterance
synthesized by the three systems and give a 5-point scale score
of naturalness (5: excellent, 4: good, 3: fair, 2: poor, 1: bad).
In the preference tests, each subject listens to 20 pair of utter-
ances synthesized by two different systems, and the correspond-
ing reference utterance. The listeners are required to provide a
style similarity choice among 3 options: 1) the former in the pair
is more similar to the reference utterance; 2) the latter is more
similar; 3) no preference or neutral (i.e., the difference between
the paired utterances cannot be perceived or can be perceived
but it is difficult to choose which one is more similar). We con-
duct our subjective evaluation on the crowdsourcing platform
of Amazon Mechanical Turk. 27 feedbacks are solicited for the
MOS test and 34 feedbacks for each of the preference tests.

As shown in Fig. 5, both the EEN-0 system (p <1e-9) and
the EEN-adpt system (p <1e-5) achieve better performance
than the Tacotron system, which indicates that the introduction

1Some samples are available in
“http://www1.se.cuhk.edu.hk/~wuxx/IS18/eenstyle.html”

Figure 5: MOS test results of various systems.

Figure 6: Preference test results of various systems.

of style embedding can provide prosodic information for the
EEN to better model the high prosodic variations in the train-
ing data. Interestingly, the EEN-0 outperforms the other two
systems. Possible reasons may be: (1) In the training data,
the number of utterances with less style variations or neutral
prosody are larger than that of utterances with high variations,
i.e., the ratio of style embedding reaching zero is high. Hence
the EEN-0 gets trained better than the EEN-adpt. (2) There ex-
ist multiple style distributions in the training data. Without con-
ditioning information, Tacotron cannot model the distributions
separately and tends to compromise to an average of the multi-
ple distributions. While for the EEN system, the conditioning
residual error provide separate information to the weights to fit
each distributions accurately.

The results of the preference tests are given in Fig. 6. The
EEN-adpt system significantly outperforms both Tacotron (p <
0.001) and EEN-0 (p < 0.01) system, which demonstrates that
EEN can efficiently capture the style in the adaptation sample1.

4. Conclusions
In this paper, we propose to apply error encoding network to
model the prosodic styles with the prosodic variation informa-
tion provided by style embeddings, which are encoded from the
residual error between the prediction of trained average model
and the ground truth. The embeddings are fed to the Tacotron
based synthesis model as the conditioning control factors. Our
proposed methods can simultaneously provide the following
advantages: 1) obtaining style variation information from the
residual error; 2) learning the style embedding based on the
residual error in an unsupervised way and 3) rapid adaptation
with a single adaptation utterance. Experimental results show
that introducing style embeddings helps to improve synthetic
speech quality and similarity, and the learned embeddings can
efficiently control the output prosodic style. In the future, we
will investigate the combination of prosodic styles learned from
training data into desired unseen styles.
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