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ABSTRACT 

We study the use of a statistical phone duration model for 
separating intact utterances from corrupted ones in a 
computer-assisted pronunciation training system.   Our 
system performs forced alignment between the input 
utterance and the canonical transcription of the prompted 
text.  Intact utterances contain spoken content that 
correspond to the text prompt.  For these utterances, our 
system performs detailed phonetic analysis of the alignment 
and generates corrective feedback to highlight the 
occurrence of phonetic errors.  Corrupted utterances result 
from disfluencies, truncated recordings, or spoken content 
that does not correspond to the text prompt.  For these cases, 
the appropriate feedback is to invite the user to record again.  
We develop a filtering mechanism for intact input utterances 
by means of phone duration modeling.  The likelihood-ratio-
test involving the phone-specific duration probability and an 
antimodel probability gave the best EER of 17.16%, which 
is a 20% relative improvement over the baseline approach 
that incorporates phone-posterior probabilities. 
Index Terms— computer-aided pronunciation training, 
phone duration modeling, user interface 
 

1. INTRODUCTION 
Computer-Assisted Pronunciation Training (CAPT) [1, 2] 
uses automatic speech recognition (ASR) technology to help 
improve the learner’s pronunciation.  Pronunciation 
exercises and objective feedback are critical for language 
learning. The major benefit of CAPT is that language 
learners can practice speaking in a private, self-paced and 
possibly round-the-clock environment. 

We have developed a research prototype for a CAPT 
system.  The system presents a pre-designed sentence to the 
learner and prompts for an input utterance. It then performs 
a forced alignment between the input utterance and extended 
phonetic transcriptions of the text prompt.  The canonical 
phonetic transcription is obtained by dictionary lookup. 
From the canonical version, our system automatically 
predicts possible mispronunciations using phonological rules 
or a data-driven approach [3, 10] and generates extended 
phonetic transcriptions that are also made available in forced 
alignment.  Thereafter, the system performs detailed analysis 
for the phonetic alignment to perform mispronunciation 
detection and diagnoses. This enables generation of 
corrective feedback messages that inform the user about 
detailed phonetic errors. 

In this usage context of a self-directed learning tool, most 
users (i.e. learners) are cooperative. However, anecdotal 
observations based on new users show that there are several 
common factors that may cause corruptions to the input 
utterances.  For instance, there may be disfluencies (such as 
false starts, repairs, repetitions). Users may stop reading 
before completing the prompt text, due to distractions, side 
conversations, etc. The recording may also be truncated at 
its end-points, possibly due to the user pressing the <stop> 
button too early. These corrupted utterances should be 
handled differently by the system, as compared with an 
intact utterance whose spoken content corresponds well with 
the text prompt.  More specifically, our system generates 
corrective feedback for an intact input utterance to inform 
the user of discovered phonetic errors.  However, 
appropriate feedback for a corrupted input should prompt 
the user to record again.  Hence, there is strong motivation 
to develop a filtering mechanism that separates the two types 
of utterances, as illustrated in Figure 1. 
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Figure 1: CHELSEA: A CAPT system equipped with a 
filtering process that separates intact utterances from 
corrupted ones. 

Confidence measures have been used in earlier work to 
verify that an input utterance has appropriate content for the 
speech application [4]. For example, a phone-dependent 
confidence measure is used for utterance rejection in [5]. In 
[6], the generalized word posterior probability is computed 
for each word and utterance rejection is performed based on 
a combination of word scores. Phone duration has been used 
as feature for computing confidence measures in ASR 
applications for embedded and noise environments [7, 8] as 
well as verifying selected utterances in a language learning 
application [9]. In this work, the forced alignment nature of 
our CAPT approach (explained in the next section) can 
exaggerate the phone duration variations in corrupted 



utterances. We will investigate the use of a statistical phone 
duration model to filter for intact utterances that can further 
undergo detailed phonetic analysis for mispronunciation 
detection and diagnosis. 

2. THE CHELSEA CAPT SYSTEM 
CHELSEA is a CAPT system developed specifically for 
Chinese learners of English, i.e. learners whose primary 
language (L1) is Chinese (either Cantonese or Putonghua) 
and secondary language (L2) is English. The system 
incorporates specially designed text prompts to elicit L2 
utterances that may contain mispronunciations due to 
negative language transfer. Mispronunciation detection is 
achieved through forced phonetic alignment by the 
automatic speech recognizer, between the recorded utterance 
and the extended (canonical and variants) pronunciations of 
the text prompt. 

The recognizer uses acoustic models trained with (US) 
English speech from the TIMIT corpus. The models are 
cross-word triphone HMMs (3 emitting states, 12 Gaussian 
mixtures, 13 PLP+∆+∆∆, with cepstral mean normalization). 
The recognizer’s vocabulary consists of an extended 
pronunciation dictionary (EPD). The EPD augments 
canonical word pronunciations extracted from a standard 
pronunciation dictionary with non-native pronunciation 
variants typical of Chinese learners of English [3, 10]. These 
variants are generated via phonological rules or a data-
driven approach [3, 10, 11] in order to capture the common 
mispronunciations of Chinese learners. This approach for 
CAPT can be applied to any language pairs by providing the 
appropriate rules. 
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Figure 2: Example EPD showing the canonical pronunciation 
(in bold) and pronunciation variants for the word “north”. 

The recognition grammar in CHELSEA is generated 
dynamically from the words in the text prompt by 
pronunciation lookup from the EPD. An illustration is 
provided in Figure 2 for the word “north”. When presented 
with an input utterance, the system will forced-align it with 
all the possible pronunciations of the text prompt, with 
reference to the EPD. Should the best alignment be one of 
the variants (as opposed to the canonical pronunciation), the 
system will be able to pinpoint the location(s) and type(s) of 
the mispronunciation(s), as shown in Figure 3. This forced 
alignment procedure also generates phone boundaries, from 
which phone durations may be obtained. 
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Figure 3: An illustration of captured mispronunciations that 
are highlighted in the system’s feedback for the user – more 
specifically, /r/ is deleted and /th/ is misread as /f/. 

3. DURATIONS OF FORCED-ALIGNED PHONES 
We need to filter for intact utterances (i.e. those of 
reasonable quality and relevance) that can be appropriately 
subjected to detailed phonetic analysis for mispronunciation 
detection and diagnosis. We assume that the phones in an 
intact utterance should largely carry their respective inherent 
durations. Our filtering approach references the durations 
obtained by the recognizer through forced alignment. 
  As an illustration, Figure 4 shows the word “north” in 
a sentence which is one of the system’s text prompts. If the 
learner utters the text prompt with correct pronunciation as 
in (a), the phone durations should resemble their inherent 
values. In (b), the learner mispronounces the word and the 
best alignment selects the pronunciation variant that is 
among those predicted in the EPD. The phone durations in 
the forced alignment should also resemble their inherent 
values.  
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Figure 4: This figure illustrates forced alignment between an 
input utterance and the best-matching phone sequence from the 
extended pronunciation dictionary (EPD). Forced alignment 
produces reasonable phonetic durations for an intact utterance. 
On the other hand, phonetic durations of corrupted utterances 
tend to be overly long or short.  

In (c), the input utterance (with a phone sequence of /dh 
eh n ao/) does not correspond in any way to the prompted 
text (that includes the word “north” with reference phoneme 
sequence /n ao r th/). Forced alignment makes the best effort 
possible to align the input utterance with one of the 
pronunciations in the EPD. This results in the frames of 
spurious phones (e.g. /dh/ and /eh/ that do not appear in the 
pronunciation of “north”) being absorbed by the SILENCE 
segment or a non-silence phone segment(s) (e.g. /eh/ being 
absorbed into the /n/ segment). The latter causes lengthening 
of the absorbing phone segment. As for missing phones (e.g. 
/r/ and /th/ that occurs in the word “north” but are absent in 
the input utterance) in the EPD pronunciation that do not 
correspond to any acoustic frames, they tend to be assigned 
very short durations by the alignment algorithm. Hence, if 
forced alignment produces phone durations that are overly 
long or short, as compared with their inherent values, it may 
suggest that the input utterance is not intact and should not 
be subjected to further detailed phonetic analysis. As such, 
we can design a filtering approach based on phonetic 
durations to identify intact utterances that are analyzed 
phonetically for further mispronunciation detection and 
diagnoses. 



4. THE CU-CHLOE CORPUS 
We have designed and collected the Chinese University 
CHinese Learners Of English (CU-CHLOE) corpus. This 
contains English recordings from 100 speakers (50 male and 
50 female) whose mother tongue is Cantonese. Each speaker 
records (i) The Aesop’s Fable “The North Wind and the 
Sun” (NW), which includes six sentences and has a good 
coverage of English phones; as well as (ii) a set of 20 
phonemic sentences (PS) that are specially designed by 
experienced English teachers to cover common English 
mispronunciations. 

We divide the corpus into disjoint training and testing 
sets. Recordings of the NW from 50 speakers (25 male and 
25 female) are used for training parameters and tuning 
decision thresholds. Recordings of both the NW and PS of 
the remaining 50 speakers are used for testing. 

Anecdotal observations when the CHELSEA system was 
demonstrated to general users shows several main types of 
“corruption” that causes an input utterance to be filtered out: 
(i) the input utterance does not follow the prompted text 
(e.g. due to side conversations); (ii) the user did not speak 
the complete prompt; (iii) the recording is truncated (e.g. the 
user presses the stop button prematurely) and (iv) the input 
utterance includes a restart (e.g. “I said … I said that he is a 
good student”). Based on such observations, we augment the 
test set by simulating the respective types of corruptions by: 
shuffling among text prompts and their corresponding 
utterances, taking a partial initial segment of an utterance, 
truncating some of the test utterances, as well as duplicating 
the initial part of an utterance to simulate a restart. Figure 5 
illustrates the organization of our experimental corpus: 
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Figure 5: Organization of the CU-CHLOE corpus for our 
investigation. The normal corpus data are used as intact 
utterance. Corrupted utterances are simulated with 4-types of 
corruptions: shuffled, partial, truncated, and restarted. 

5. MODELING PHONE DURATIONS WITH THE 
GAMMA DISTRIBUTION 

Phone durations vary across speakers and utterances and 
have often been modeled statistically by the Gamma 
distribution [7, 12, 13]. We verified this based on the corpus 
statistics of the NW recordings in the CU-CHLOE training 
set which contains speech data from non-native speakers 
(see Figure 6). The duration distributions of certain phones 
(especially consonants) tend to fit well with the exponential 
distribution – a special case of Gamma. 
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Figure 6: Phone duration histograms from the CU-CHLOE 
corpus: (a) for the vowel /ao/, (b) for the plosive /t/. Corpus 
statistics (bars) are fitted with Gamma distributions (lines). 

We have also examined the phone duration statistics of 
the “shuffled” corpus. We observed a concentration of 
phone with durations near zero millisecond, while the 
remaining phones exhibit a general exponential distribution. 
This confirms our speculation that when the input utterance 
does not correspond to the text prompt, forced alignment 
tends to produce phone durations that are overly short or 
long Hereafter we adopt the Gamma distribution in the 
model and anti-model for phone durations. 

6. FILTERING FOR INTACT UTTERANCES BY 
PHONE POSTERIOR PROBABILITIES 

Our baseline filtering approach scores an utterance with the 
normalized product of phone posterior probabilities [11, 14]. 
The equation is: 
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where a is the acoustic score returned by the ASR, O is the 
acoustic observation, ts is the starting time, te is the ending 
time, dur(r) is the duration of the phone r, S is the set of 
phones in the utterance and L is the set of phones in the 
language. This gives an EER of 21.48% over the test set. 

7. FILTERING FOR INTACT UTTERANCE BY 
PHONE DURATION MODELS 

7.1. Phone Sequence Duration Model 
We devise a phone sequence duration model by estimating 
the joint duration probabilities for the phones in the 
utterance and incorporating length normalization: 
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where S is the set of phones in the utterance, ║S║ is the 
number of phones in the utterance. The statistical phone 
duration model P is the Gamma distribution with trained 
parameters (based on the training set). Evaluation on the test 
set gives 22.62% in EER. 
7.2. Likelihood Ratio Test between the Phone Duration 

Model and an Anti-model 
We also incorporate an anti-model in phone duration 
scoring, with the aim to increase the discriminative power of 
the phone duration model. A likelihood ratio test (LRT) is 
applied as shown in Equation (3): 
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7.2.1. Highest-scoring Competing Phone as Anti-model 

One method of realizing an anti-model is to find the phone 
(among all the alternatives in the inventory) that maximizes 
the observed phone duration probability, as follows: 
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where L is the set of phones in the language. This approach 
achieves a test set EER of 17.33%. 

7.2.2. The “Catch-All” Anti-model 
Another method of realizing an anti-model is to train a 
Gamma distribution based on a “shuffled” training set (here 
we use the NW subset). The rationale is to obtain a “catch-
all” anti-model for use in the LRT where each phone 
duration model is trained with non-corresponding phonetic 
segments in the utterance. This method achieves an EER of 
17.16% over the test set. 
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Figure 7: ROCs of the tested approaches for identifying 
corrupted utterances (test set). LRT between phone-specific 
duration model and anti-model performs the best. 

8. OBSERVATIONS AND ANALYSIS 
Results in Figure 7 indicate that the use of an anti-model in 
the LRT offers additional discriminative power in filtering to 
yield favorable performance. In particular, the catch-all anti-
model performs better than the one that uses the highest-
scoring competing phone. This is because the former method 
can better target the phone durations resulting from forced 
alignment with corrupted utterances. 

9. CONCLUSIONS 
We explore the use of phone duration modeling to filter for 
intact utterances that are input into a CAPT system. The 
experimental corpus contains non-native English speech 
from 100 Chinese learners. The Gamma distribution is 
verified to achieve a good fit with the data and is adopted as 
the phone duration model. Filtering methods based on a 

variety of phone duration models, anti-models and 
likelihood ratio tests (LRT) were investigated. The best 
filtering performance (i.e. in rejecting corrupted utterances) 
is attained with the LRT involving the phone-specific 
duration model and an anti-model that is specially trained 
with simulated corrupted utterances. Evaluation is conducted 
with test data that involves 50 speakers which are disjoint 
from the set of training speakers. A relative improvement 
(reduction of EER) of 20% is achieved in comparison with 
the baseline method that uses phone posterior probabilities. 
In additional to CAPT system, this proposed filtering 
approach can also be applied to other applications that need 
to verify the recorded speech content to a user prompt. 
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