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Abstract—This paper aims to improve neural TTS with vector-
quantized, compact speech representations. We propose a Vector-
Quantized Variational AutoEncoder (VQ-VAE) based feature
analyzer to encode acoustic features into sequences with different
time resolutions, and quantize them with multiple VQ code-
books to form the Multi-Stage Multi-Codebook Representation
(MSMCR). The TTS system, MSMC-TTS, is proposed to predict
better speech via this representation. In prediction, the multi-
stage predictor is trained to map the input text sequence to
MSMCRs in stages, by minimizing Euclidean distance and
“triplet loss”. In synthesis, the neural vocoder converts ground-
truth or predicted MSMCRs into speech waveforms. The pro-
posed system is trained with single-speaker TTS datasets and
tested in various scenarios for comprehensive evaluation. In
TTS evaluation, MSMC-TTS obtains MOS of 4.34 and 4.10 on
English and Chinese datasets, which significantly outperforms
VITS with scores of 3.78 and 3.90. Meanwhile, compared with
Mel-Spectrograms, the domain discrepancy between prediction
and ground truth is lower in MSMCRs with the higher Domain-
classification Error Rate (DER). Furthermore, this system shows
lower modeling complexity and data size requirements, preserv-
ing excellent performance even with fewer model parameters or
training data. The noticeable improvement in analysis-synthesis
and TTS from multiple codebooks and stages also validate
them as vital components in seeking a more profitable speech
representation and building high-performance neural TTS.

Index Terms—Multi-stage Multi-codebook (MSMC), Speech
Representation, VQ-VAE, Neural TTS, Speech Synthesis

I. INTRODUCTION

T ext-to-speech synthesis (TTS) is a technology converting
text to the corresponding speech audio. It is widely used

in human-machine interaction [1], and promotes many cutting-
edge technologies, such as Video Dubbing [2, 3], Dysarthric
Speech Reconstruction [4], Speech Translation [5], etc. Hence,
it is crucial to develop a high-quality TTS system to support
various AI applications.

Neural TTS [6], constructed with advanced neural networks,
has shown outstanding naturalness and fidelity in synthesized
audios, spawning more related research works to build stronger

Hanhan Guo and Helen Meng are with the Human-Computer Com-
munications Laboratory (HCCL), Department of Systems Engineering and
Engineering Management, Chinese University of Hong Kong, Hong Kong
SAR, China (e-mail: hguo@se.cuhk.edu.hk; hmmeng@se.cuhk.edu.hk). Xixin
Wu is with Stanley Ho Big Data Decision Analytics Research Centre,
The Chinese University of Hong Kong, Hong Kong SAR, China (e-mail:
xixinwu@cuhk.edu.hk). Fenglong Xie is with Xiaohongshu, Beijing, China
(e-mail: fenglongxie@xiaohongshu.com). Frank K. Soong is with Microsoft,
China (Retired, e-mail: fkpsoong@outlook.com)

This research was supported by the Center for Perceptual and Interactive
Intelligence (CPII) Ltd under the Innovation and Technology Commission’s
InnoHK scheme.

Corresponding author: Xixin Wu

TTS systems. The mainstream framework of neural TTS
comprises three parts, i.e. analysis, synthesis, and prediction,
as shown in Fig. 1. The system does not directly convert input
text into waveform, but maps it to acoustic features via a neural
network-based acoustic model in prediction. It then converts
the features to the waveform in synthesis. In analysis, the
raw waveform is compressed via signal processing into the
acoustic feature sequence, such as pitch [7], line spectrum
pair [8], Mel cepstra [9], etc., as speech representations.
Compared with the waveform, these features can represent
speech with shorter sequence lengths and fewer parameters,
which are easier to predict from the text. Meanwhile, to
reconstruct the waveform from these features well, the neural
vocoder is trained to map acoustic features of speech training
data to corresponding waveforms. It can generate high-fidelity
waveforms using various advanced generative models, such
as WaveNet [10], WaveRNN [11], WaveGlow [12], MelGAN
[13], etc. In this way, the text can be successfully converted
to speech waveforms by processing acoustic features predicted
from the acoustic model.

Fig. 1. The framework of the neural TTS system. The feature extractor is
implemented with signal processing-based methods. The acoustic model and
vocoder are implemented with neural networks.

However, the audio synthesized from predicted acoustic
features cannot achieve the same fidelity as the audio generated
by analysis-synthesis, i.e. synthesized from the ground-truth
acoustic features. Due to the prediction error caused by the
acoustic model, the predicted features have lower quality,
showing worse fidelity and naturalness in the synthesized au-
dio. More seriously, this error also puts the predicted features
in a different distribution from ground-truth data [14, 15].
Since the neural vocoder is trained only with the ground-
truth features and may not generalize well to out-of-domain
data [16–19], the predicted features cannot be processed well,
which further degrades the quality of the synthesized audio.
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Recent work mainly concentrate on enhancing the acoustic
model to mitigate this problem. First, the prediction error
decreases by improving the modeling complexity with more
complex sequential models, such as RNN [20, 21] and Self-
Attention-based models [22, 23]. Secondly, the generative
algorithms are also applied to model the target distribution
directly, such as Auto-Regressive models [24, 25], Generative
Adversarial Networks (GAN) [26, 27], Flow-based models
[28, 29], etc. Moreover, the prediction error can also be miti-
gated in the neural vocoder by fine-tuning the vocoder on the
predicted acoustic features aligned with the target waveforms
[30, 31]. The End-to-End TTS [32–34], i.e. mapping text
features to the waveform directly, is also being investigated
to avoid the use of acoustic features. However, these model-
oriented methods either put high requirements on modeling
complexity, or need more computing resources for training and
inference. Hence, this work proposes re-thinking the research
problem from the perspective of speech feature representation
to avoid those newly introduced burdens.

The reconstruction quality of analysis-synthesis determines
the upper bound of TTS performance [35]. Hence, the speech
representation is usually allocated with a higher dimension
or larger space volume to preserve richer speech information.
However, it also makes modeling harder, as the curse of
dimensionality [36] indicates. A feature representation with
an overly large space may make models over-fit or under-
fit when used as inputs [37] or outputs [38]. It leads to
increased prediction error in the acoustic model, and worse
generalization of the neural vocoder. Hence, to ensure high-
quality TTS performance, a good speech representation must
consider these two dimensions:

• Completeness [39]: The target speech can be recon-
structed well from this representation (also called self-
consistency).

• Compactness: The target speech is represented by fewer
parameters or a smaller space volume.

Although high completeness offers high fidelity of speech
reconstructed from the representation, it is also critical to
ensure high compactness to predict well for TTS.

The autoencoder, widely used in representation learning
[40–42], can directly learn a latent representation from the
target data with an encoder-decoder model. The input features
are converted to the latent representations by the encoder,
and reconstructed by the decoder. The better reconstruction
quality indicates the higher completeness of this representa-
tion. Meanwhile, various constraints can be applied to control
the sparsity and compactness of the latent representation, e.g.
dimensionality reduction [43], feature sparsify autoencoders
[44], and vector quantization [45]. Specifically, the discrete
latent representation based on vector-quantized variational
autoencoders (VQ-VAE) has shown outstanding compactness
in speech codec [46, 47]. This inspires us to explore a VQ-
VAE based compact speech representation for TTS.

This work first aims to train a feature analyzer to construct
compact speech representations based on Mel spectrograms, a
commonly used acoustic feature with sufficient completeness
as the input of neural vocoders [48]. The trade-off between
completeness and compactness is revealed by investigating

VQ-VAE and its derived speech representation. Then, a
multi-stage multi-codebook (MSMC) approach is proposed
to compensate for the insufficient completeness in this high-
compactness representation. Multiple codebooks are employed
to quantize a vector to achieve a richer representation, and
to quantize the speech sequence into multiple sub-sequences
for equal preservation of speech information at different
time resolutions. Then, a novel TTS system, MSMC-TTS,
is proposed to generate speech audio from the text via the
multi-stage multi-codebook representation (MSMCR). In this
system, MSMCRs are extracted through the feature analyzer,
and reconstructed back to audio by the neural vocoder. The
multi-stage predictor is proposed as the acoustic model to
predict MSMCRs progressively in resolution from the input
text, and trained with the proposed loss function combining
MSE and a “triplet loss”.

Experiments are conducted from two aspects – TTS eval-
uation and analysis-synthesis evaluation. In TTS evaluation,
aside from the MOS test used to evaluate different methods
subjectively, domain discrepancy is also measured directly
via Domain-classification Error Rate (DER) to evaluate the
difference between predicted and target features. In standard
single-speaker TTS, MSMC-TTS is compared with the Mel-
spectrogram based TTS system, FastSpeech, and the SOTA
end-to-end TTS system, VITS [34], on both English and
Chinese datasets. We also investigate the impact of multi-
codebook VQ and multi-stage modeling on TTS synthesis.
Moreover, MSMC-TTS is also evaluated in resource-limited
scenarios to investigate the impact of modeling complexity
and data size on the TTS quality. In analysis-synthesis evalu-
ation, we compare different representations by measuring the
reconstruction quality of speech.

In the rest of this paper, Section II introduces the VQ-
VAE based compact speech representation. Sections III and
IV illustrate the proposed multi-stage multi-codebook VQ-
VAE and the corresponding MSMC-TTS system, respectively.
Then, experiments are described in Sections V - VII. Finally,
Section VIII gives the conclusion to this paper.

II. VECTOR QUANTIZATION-BASED
COMPACT SPEECH REPRESENTATION

In this section, we will introduce Vector-Quantized Vari-
ational AutoEncoder (VQ-VAE), and its derived Vector-
Quantized Representation (VQR).

A. Vector Quantized Variational AutoEncoder

VQ-VAE aims to learn a discrete latent representation from
target data with an encoder-decoder model. As shown in Fig.
2, VQ-VAE comprises three parts, encoder, decoder, and the
VQ operation in between. The input speech sequence x =
{x1, x2, ..., xL} is first encoded by the encoder E:

z̃ = E(x) (1)

Then, the vector-quantized latent representations z are ob-
tained as follows:

z = Q(z̃; c) (2)



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 3

Fig. 2. The framework of VQ-VAE for speech data. E and D denote the
encoder and decoder, respectively. x and x̂ refer to the input and output speech
sequence with the length of L. z̃ and z refer to latent sequences before or
after vector quantization “Q” with the codebook c composed of M codewords
with the dimension of N .

where c denotes the codebook containing M codewords with
the dimension of N . For each latent vector z̃i, the quantizer Q
compares it with all codewords, and chooses the one nearest to
it according to the Euclidean distance as the quantized output
zi, which is written as follows:

zi = cj∗ where j∗ = argmin
1≤j≤M

∥z̃i − cj∥22 (3)

Finally, the output speech sequence x̂ is generated by the
decoder D for reconstruction:

x̂ = D(z) (4)

In training, VQ-VAE learns to reconstruct speech by mini-
mizing the Euclidean distance between x and x̂. However, due
to the non-differentiable VQ operation, the gradient from the
decoder cannot be back-propagated to the encoder directly.
Hence, another loss term is introduced to train the encoder
by minimizing the Euclidean distance between z and z̃. The
complete loss function is written as follows:

Lvqvae = De(x̂,x) + α ∗ De(z̃, sg(z))

=
1

L

L∑
i=1

||x̂i − xi||22 +
α

L

L∑
i=1

||z̃i − sg(zi)||22
(5)

where De(∗, ∗) denotes Euclidean distance between two ob-
jects, sg(∗) denotes the operation stopping its gradient back-
propagating, and α is a coefficient to balance these two loss
terms. Meanwhile, codewords in the codebook are updated
using the exponential moving average-based method [49] as
follows:

û
(t)
j = βû

(t−1)
j + (1− β)uj

v̂
(t)
j = βv̂

(t−1)
j + (1− β)vj

cj =
v̂
(t)
j

û
(t)
j

(6)

where uj and vj denote the number and sum of hidden vectors
{z̃i} quantized to cj in the mini-batch at t-th training iteration,
β is a coefficient between 0 and 1, and set to 0.99 as default.

B. Compactness of Vector-Quantized Representation

In this framework, an acoustic feature sequence can be
represented by an index sequence. When a vector composed
of N numbers (B bits per number) is compressed to one
integer with the range from 1 to M representing the number
of codewords, the compression ratio R can be calculated as
follows:

R =
N ∗B
log2(M)

(7)

In this way, the 80-dim Mel spectrogram (32-bit float-point
number) can be compressed 2560/log2(M) times. The higher
compression ratio brings higher feature compactness, but also
reduces feature completeness due to increased information
loss, making it insufficient for high-quality speech reconstruc-
tion and prediction. To compensate for this loss, we further
optimize VQR, and propose a multi-stage multi-codebook
approach.

III. MULTI-STAGE MULTI-CODEBOOK VQ-VAE

The MSMC-VQ-VAE based feature analyzer aims to en-
code a speech sequence stage-wise into the Multi-Stage
Multi-Codebook Representation (MSMCR), i.e. a set of sub-
sequences at different time resolutions, and quantized by
multiple codebooks respectively. This approach comprises two
parts: multi-head vector quantization and multi-stage autoen-
coder.

Fig. 3. An example of Multi-Head Vector Quantization with H = 2, where
÷ and × denote chunking and concatenation operation. The codebook c
is divided into two sub-codebooks c(1) and c(2). The input vector is also
chunked into two sub-vectors, and quantized by corresponding sub-codebooks,
finally concatenated together to form the output vector.

A. Multi-Head Vector Quantization

To obtain the balance between compactness and complete-
ness of VQR, reducing the compression ratio may give a
richer representation, but is difficult in VQ-VAE. For exam-
ple, to half the compression ratio, we need to square the
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codebook size due to the log2(∗) operation in Eq. 7, which
exponentially increases data and computation requirements
for sufficiently training each codeword. To avoid such a
dilemma, we employ product quantization [50], also called
Multi-Head Vector Quantization (MHVQ) here, inspired by
the multi-head attention mechanism [51]. In this approach,
one VQ codebook c ∈ RM×N is chunked evenly into H sub-
codebooks {c(i) ∈ RM×N

H for i = 1, 2, ...,H}. The input
vector x ∈ RN is quantized as follows:

x(1), ..., x(H) = Chunk(x,H)

y(i) = Q(x(i); c(i)) for i = 1, ...,H

y = Concat(y(1), ..., y(H))

(8)

x is firstly chunked into H sub-vectors with the dimension-
ality of N

H , and then quantized by corresponding codebooks,
respectively. Finally, these quantized sub-vectors are concate-
nated together as the output vector y. In this approach, the
compression ratio is calculated by:

R =
1

H
∗ N ∗B
log2(M)

(9)

In this way, without introducing more parameters, the com-
pression ratio can be halved by doubling the number of
codebooks, avoiding exponentially increasing requirements
caused by log2(∗), and reducing the compression ratio more
effectively.

Fig. 4. The architecture of the multi-stage multi-codebook VQ-VAE. ES ,
QS , DS denote the S-th encoder, quantizer, and decoder. Qi and Di block
show the detailed structures of the quantizer and decoder. P and C refer to
a projection and convolutional layer. X is an arbitrary neural network based
module. U , Q, “×”, and “+” denote operations of up-sampling, quantization,
concatenation, and addition.

B. Multi-Stage AutoEncoder

In addition to improving completeness, it is crucial to well-
represent all speech attributes at different time resolutions,
such as suprasegmental prosody and segmental pronunciations
[52, 53]. Otherwise, any overly compressed attribute may
lead to severe degradation in overall quality, as the “Cannikin
Law” [54] reveals. In this work, we propose the multi-stage
autoencoder to model the speech sequence at different time
resolutions [49].

As shown in Fig. 4, this model aims to encode the in-
put sequence x into the multi-stage vector-quantized rep-
resentation Z = {z(1), ..., z(S)} using the codebook group
C = {c(1), ..., c(S)}, where S denotes the number of stages.
Notably, the codebook c(i) will also denote the group of
sub-codebooks {c(i,1), ..., c(i,H)} if MHVQ is applied. The
model first encodes the input speech sequence x to encoding
sequences {e(1), ..., e(S)} with encoders progressively:

e(i) =

{
Ei(x) if i = 1

Ei(e
(i−1)) if i > 1

(10)

Before each encoder block, a strided convolutional layer down-
samples the sequence to a lower time resolution. Subsequently,
sequences are quantized in stages from the highest stage with
the lowest resolution:

z(i) =

{
Qi(e

(i), ϕ, c(i)) if i = S

Qi(e
(i),h(i+1), c(i)) if i < S

(11)

where ϕ means no input, c(i) refers to the corresponding code-
book, and c(i) = {c(i,1), ..., c(i,H)} when MHVQ is applied.
Specifically, in the quantizer block Qi, e(i) is concatenated
with the hidden sequence h(i+1) (except when i = S) from
the higher-stage decoder, and then transformed by a projection
layer to obtain z̃(i) for the following quantization.

The quantized sequence z(i) is processed by the decoder Di

to obtain h(i) for the following quantization and decoding, and
to predict the next-stage quantized sequence z(i−1) or speech
sequence x:

h(i), ẑ(i−1) = Di(z
(i), ϕ) if i = S

h(i), ẑ(i−1) = Di(z
(i),h(i+1)) if 2 ≤ i ≤ S − 1

x = Di(z
(i),h(i+1)) if i = 1

(12)

The decoder Di first transforms the quantized sequence z(i)

with a projection, and adds it with h(i+1) when i < S. A
residual convolutional layer further processes it, which is then
up-sampled by repetition to h(i). The output sequence is also
processed by another neural network based module X for
prediction.

The loss function of this model is written as follows:

Lmsmc = De(x, x̂)

+ α ∗ 1

S

S∑
j=1

De(z̃
(j), sg(z(j)))

+ β ∗ 1

S − 1

S−1∑
j=1

De(ẑ
(j), sg(z(j)))

(13)

where α and β denote weight coefficients. The first two terms
are similar to Lvqvae, but the second term calculates De

for all latent sequences. The third term makes the predicted
latent sequences approach target ones. Due to the introduction
of multi-stage modeling, this deep network is vulnerable to
over-fitting to lower-stage modules, making higher-stage latent
sequences meaningless. Hence, deeper modules are trained
to predict the low-stage representation from the high-stage
sequence, which is validated as a practical approach in Very
Deep VAEs [55].
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IV. MSMC-TTS

This section will introduce the MSMC-TTS system, in-
cluding the system framework and the proposed multi-stage
predictor.

A. System Framework

Fig. 5 shows the framework of the proposed system, com-
posed of three modules, analysis, prediction, and synthesis.
In analysis, a speech signal s is converted to MSMCR Z .
Since signal processing-based acoustic features have shown
promising completeness in neural vocoders, the feature ana-
lyzer MSMC-VQ-VAE does not directly model s, but acoustic
features x, e.g. Mel-Spectrograms used in our experiments.
This model is first trained to minimize the loss function
Lmsmc, and then provides MSMCR Z and codebook group C
for synthesis and prediction. In synthesis, the neural vocoder
aims to convert MSMCR to the corresponding speech wave-
form. Since sequences in the MSMCR have different time
resolutions, they are first up-sampled to the same resolution by
repetition, and then concatenated to form the input sequence.
This model is trained with ground-truth data extracted from the
training set, and then serves the prediction module to generate
the audio from the predicted MSMCR P .

Fig. 5. The framework of MSMC-TTS. In analysis, acoustic features x are
extracted from the speech signal s using signal processing-based methods.
The proposed feature analyzer processes them and provides the reconstructed
features x̂, MSMCR Z , and codebook group C for the following operations.
In prediction, the acoustic model utilizes C to predict the MSMCR P from
the text sequence t. In synthesis, the neural vocoder generates speech signals
ŝ from Z or P according to the running mode, training, or inference.

In prediction, the acoustic model aims to convert the textual
sequence t to the corresponding MSMCR P of multiple
sequences. It cannot be achieved directly using current main-
stream acoustic models designed for one-to-one mapping.
Hence, there is a dire need for a one-to-many acoustic model.
Besides, since latent sequences in MSMCR are extracted in
order of higher stage to lower stage, the generation process
should also consider this pattern to maintain the correla-
tion between sequences on the timescale. Consequently, we
propose the Multi-Stage Predictor (MSP) according to these

requirements as the acoustic model to predict these sequences
in stages from the text.

B. Multi-Stage Predictor

The MSP is proposed based on FastSpeech [22], a Non-
AutoRegressive (NAR) acoustic model with explicit duration
modeling. We will introduce the model architecture, and the
corresponding loss function for training.

Fig. 6. The framework of Multi-Stage Predictor. t, d̂, ht, hu, h(S)
d denote

the text sequence, predicted durations, encoder output, up-sampled encoder
output, S-th down-sampled encoder output. p̃(S) and p(S) are S-th predicted
sequences before or after quantization. Et, DP, DS denote the text encoder,
duration predictor, and S-th decoder. SC refers to a 1-D strided convolutional
layer for down-sampling operation.

1) Model Architecture: As shown in Fig. 6, MSP is com-
posed of two parts, encoder, and decoder. The text sequence
t, i.e. phoneme sequence in our work, is first encoded to
hidden vectors ht = Et(t), and then up-sampled by repetition
according to duration sequence d̂ = DP(ht). Notably, d̂ is a
non-negative integer sequence, where each integer means the
number how many frames its corresponding phoneme lasts
in x. hu is down-sampled in stages by strided convolutional
layers to the corresponding stages {h(1)

d , ...,h
(S)
d }.

The decoder predicts P from the highest stage. First, h(S)
d is

fed to the decoder DS to obtain the predicted sequence p̃(S),
which is then quantized by the corresponding codebook cS to
p(S). The last hidden output sequence in the decoder and p(S)

are up-sampled by repetition to concatenate with h
(S−1)
d as the

input of the next decoder DS−1. The remaining sequences are
generated recursively in the same way to form the predicted
MSMCR P .

In training, the ground truth MSMCR Z and ground-truth
durations d are available in advance. Hence, we adopt teacher-
forcing to train MSP, i.e. replacing d̂ with d, and inputting
{z(S), ..., z(2)} to decoders.

2) Loss Function: To map the input text to the expected
codewords, the model is trained to estimate them directly in
continuous space. Like VQ-VAE, we first purpose to approach
targets by minimizing the Euclidean distance:

Le =
1

S

S∑
i=1

De(p
(i), z(i)) (14)
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We also adopt the “triplet loss” [56], an effective ranking
loss used in metric learning, to make the Euclidean distance
between the input vector x and target codeword t ∈ c smaller
than any other codewords c/t = {w|w ∈ c, w ̸= t}. It ensures
that the predicted vector can be quantized to the expected
codeword. Combining with MHVQ, the “triplet loss” is written
as:

Dt(x, t, c) =
1

M

∑
w∈c/t

max(0, ∥x− t∥22 − ∥x− w∥22 + ϵ)

Lt =
1

S

S∑
j=1

1

H

H∑
k=1

1

Lj

Lj∑
i=1

Dt(p
(j,k)
i , z

(j,k)
i , c(j,k))

(15)

where ϵ is a constant value called the margin number. In this
way, the output vector will not only be closer to the target, but
will also lie farther away from non-target codewords. Finally,
the loss function for MSP is written as:

Lmsp = Le + γ ∗ Lt (16)

where γ is a weight coefficient.

V. EXPERIMENTAL PROTOCOL

Our experiments are conducted to evaluate MSMC-TTS
from two aspects – analysis-synthesis and TTS. In this section,
we will introduce the experimental configurations, including
the datasets and the implementation details of the TTS system.

A. Datasets

The experiments are mainly conducted based on the English
TTS corpus, Nancy. Besides, a Chinese TTS corpus is also
used to validate the effectiveness of the proposed method in
various languages. The details of these two datasets are shown
below.

1) Nancy [57]: Nancy is a standard English single-speaker
TTS dataset used for Blizzard Challenge 2011. It includes 16-
hour clean recordings of a female voice with corresponding
transcripts. There are 11,265 utterances used to train the
English TTS system, and 95 utterances out of the training set
used for testing. The phoneme sequence with punctuation is
extracted from the text as the input sequence.1 The phoneme-
level durations are extracted from a pre-trained Tacotron2
model with stepwise monotonic attention [58] using the same
method described in FastSpeech [22].

2) CSMSC: CSMSC is a standard open-source Mandarin
single-speaker TTS dataset.2 It includes around 12 hours of
recordings of a female voice with the corresponding tran-
scripts, phonemes, and durations, which can be directly used
for Chinese TTS system training.

1The G2P tool is available at https://github.com/Kyubyong/g2p
2The data is available at https://www.data-baker.com/data/index/source

B. Implement Details

1) Signal Analysis: All audios are down-sampled to 16kHz
sampling rate, pre-emphasized with the coefficient of 0.97,
and then converted to 1025-dim magnitude spectrograms by
STFT with a window length of 50ms, the frameshift of 12.5ms,
and the FFT size of 2048. Finally, the 80-dim log-scale Mel
spectrograms are extracted and normalized to the range [−4, 4]
by min-max normalization.

2) Feature Analyzer: MSMC-VQ-VAE is implemented
based on Feed-Forward Transformer in FastSpeech. In each
encoder, the input sequence is processed by a projection layer,
and added with position encodings, then fed to 4 FeedForward
Transformer blocks. Specifically, the number of heads in multi-
head attention is 2, and the feedforward module is composed
of two convolutional layers with a kernel size of 3 and a
ReLU activation function between them. The X module in
the decoder D1 predicting x is also implemented in this way.
In other decoders, X is implemented with a projection layer.
The dimension of the models and codebooks are 256.

Each model is trained for 200,000 iterations with the Adam
optimizer [59] (β1 = 0.9, β2 = 0.98) and the batch size of 64.
The learning rate is exponentially decayed using the function:

lr =

{
max(lrfinal, 0.5

i−w
λ ) if i > w

lrinit if i <= w
(17)

where the initial learning rate lrinit, final learning rate lrfinal,
decay rate λ, warmup iterations w are set to 2× 10−4, 10−6,
20000, 20000, respectively.

3) Neural Vocoder: We adopt HifiGAN [60] as the neural
vocoder to up-sample speech features to the corresponding
audio with the sample rate of 16kHz. The hyperparameters
of the generator are based on HifiGAN-V1, and we set
upsample scales and kernel sizes to [5, 5, 4, 2] and [11, 11, 8, 4].
Moreover, time-domain and frequency-domain discrimination
are used to train the model for higher fidelity. The discrimi-
nator proposed in UnivNet [61] is employed in our work. In
the multi-resolution spectrogram discriminator, the magnitude
spectrograms extracted with three STFT parameter sets, FFT
size [256, 512, 1024], frameshift [40, 80, 160], frame length
[120, 320, 640], are used here. The multi-period waveform
discriminator has the same configuration as UnivNet-c32.3

The vocoder is trained for 400,000 iterations by the AdamW
[62] optimizer used in HifiGAN. The learning rate is decayed
using the same method mentioned in Sec.V-B2, with lrinit =
2× 10−4, lrfinal = 10−5, λ = 200000, w = 200000. In each
training iteration, 16 audio segments with a length of 1 second
are randomly selected from 16 audio files as one mini-batch. In
the loss function, the weight coefficients of Mel-spectrogram
loss and feature matching loss are set to 45 and 2, the same
as in the official implementation.

4) Acoustic Model: The acoustic model is also imple-
mented based on FastSpeech,4 which uses FeedForward Trans-
former as the text encoder and decoders. The model dimension

3The implementations of HifiGAN generator and UnivNet discrimina-
tor are available at https://github.com/jik876/hifi-gan and https://github.com/
mindslab-ai/univnet.

4The implementation of FastSpeech is available at https://github.com/
NVIDIA/NeMo
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and the number of blocks are set to 600 and 6 for better
modeling capability. The text encoder first uses the embedding
layer to convert the discrete phoneme sequence into continuous
representations. Models are trained with the same training con-
figurations as the feature analyzer for 100,000 iterations. No-
tably, the duration predictor predicts the linear-scale phoneme-
level durations. An MSE loss between predicted durations and
ground-truth ones with a weight coefficient of 0.1 is calculated
to update the model.

Meanwhile, FastSpeech, as the baseline TTS system in our
experiments, is also trained with the same model hyperpa-
rameters and training configurations. It has a similar model
structure as MSMC-TTS, but uses Mel spectrograms as the
target of the acoustic model, and then converts them to the
waveform via the HifiGAN vocoder. We also compare MSMC-
TTS with the SOTA end-to-end TTS system, VITS [34]. In
this system, a VAE model encodes the speech via a CNN-
based encoder and reconstructs the waveform by the HifiGAN-
based decoder. Then, the acoustic model based on Glow-TTS
[63] predicts the latent representations for TTS synthesis. All
modules in the end-to-end system are jointly trained for 1
million iterations on 4 GPUs with a batch size of 64 utterances.

VI. TTS EVALUATION

This section will present the evaluation results of the
proposed approach in TTS, including evaluation metrics, and
the performance in standard single-speaker TTS and resource-
limited scenarios. The two-stage MSMCR with down-sample
rates [1, 4], four heads (codebooks) per stage, 512 codewords
per head, is used in MSMC-TTS as default.

A. Evaluation Metrics

1) Subjective Evaluation: The goal of TTS is to generate
a speech that listeners find satisfactory. Hence, we conduct
subjective tests to compare the performance of different TTS
models directly. The Mean Opinion Score (MOS), a commonly
used measurement, is adopted in our experiments. As for a set
of samples corresponding to the exact input text, the listener
needs to rate each sample according to its intelligibility,
naturalness, and fidelity. The score ranges from 1 to 5 with
an increment of 0.5, where 1 means very poor and 5 means
excellent. Finally, all scores to the same method are averaged
as the final score.5

2) Domain Discrepancy: As mentioned in Section I, the
TTS quality is affected by the discrepancies between ground-
truth features and the predicted ones. In this work, we measure
the discrepancy directly to evaluate the proposed method. Two
domains can be distinguished using a classification model by
supervised learning if given sufficient data from these two
domains. The more significant the discrepancy, the higher
the classification accuracy. Conversely, a failed classification
indicates that two domains may share the same distribution.
Here, a 3-layer MLP model with a hidden size of 100 and
the ReLU activation function is trained as the classifier to
distinguish if the input vector is ground-truth or predicted by

5Samples are available at https://hhguo.github.io/DemoMSMCTTSJournal

TTS. Finally, the Domain-classification Error Rate (DER) on
the train and test sets are presented to show the discrepancy.
The training and test sets in English experiments have 80
and 20 utterances. And Chinese experiments use 160 and
40 utterances to form the training and test sets. All of these
utterances are not used in TTS training.

B. Standard TTS

To evaluate the proposed approach in different languages,
this experiment implements the standard single-speaker TTS
system using two standard TTS datasets, Nancy and CSMSC.

TABLE I
TTS EVALUATION: STANDARD SINGLE-SPEAKER TTS

Language Name MOS
(95% CI)

DER (%)
Train Set Test Set

English
Recording 4.46 ± 0.09 - -

Mel-FS 3.38 ± 0.11 1.14 5.09
Mel-FS-FT 3.42 ± 0.12 - -

VITS 3.78 ± 0.13 - -
MSMC-TTS 4.34 ± 0.09 26.81 30.47

Chinese
Recording 4.57 ± 0.10 - -

Mel-FS 3.51 ± 0.11 1.91 5.53
VITS 3.90 ± 0.12 - -

MSMC-TTS 4.10 ± 0.10 31.66 34.65

1) System Comparison: Table I shows the MOS test results.
In English TTS, Mel-FS obtains an MOS of 3.38, which has
an apparent gap compared with the original recordings with an
MOS of 4.46. Its DER, 1.14%, and 5.09%, also show that the
predicted features are easily distinguishable from the real ones,
indicating the significant discrepancy between them. Mel-FS-
FT refers to Mel-FS with the vocoder fine-tuned for 100,000
more iterations on the synthetic Mel spectrograms, generated
from the training set using ground-truth durations. This method
adapts the vocoder to the predicted features to compensate
for this discrepancy. Nevertheless, it only slightly improves
audio quality to the MOS of 3.42, which shows the limitation
of this approach. Compared with the two previous systems,
MSMC-TTS shows significantly improved performance with
an MOS of 4.41, which is very close to the quality of
the original recordings. The DER, 26.81%, and 30.47%, are
also much higher than Mel-FS, showing a much more minor
domain discrepancy. The SOTA end-to-end TTS approach,
VITS, based on VAE representations, performs better than
FastSpeech, achieving an MOS of 3.78. But it also needs
more computing resources for end-to-end training. In this
regard, MSMC-TTS requires fewer computing resources while
showing better TTS performance than VITS.

We also obtain the same conclusion in Chinese TTS. The
result shows that VITS and MSMC-TTS perform better than
FastSpeech. And VITS is enhanced by applying ground-truth
durations in training. Nonetheless, MSMC-TTS still shows the
best performance with an MOS of 4.10. It still keeps low
domain discrepancy with the DER of 31.66% and 34.65% in
the train and test sets.

Moreover, to further compare Mel-FS and MSMC-TTS,
which have a similar model structure but mainly differ in
speech representations, we visualize the audio generated by
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Fig. 7. The spectrograms of the audios synthesized by Mel-FS (above) and
MSMC-TTS (below). The areas in the left red rectangles are zoomed in to
the right part.

Mel-FS and MSMC-TTS. As shown in Fig. 7, the audio gen-
erated by Mel-FS shows a relatively fuzzy spectrogram. How-
ever, the audio generated by MSMC-TTS presents smoother
and clearer harmonics in low-frequency and middle-frequency
parts. It makes the pronunciations clearer and improves fi-
delity.

2) VQ-VAE based Approaches: Some previous works [64–
66] attempt to enhance TTS using VQ-VAE approaches but
mainly differ in training criteria and representation design
from our work. For example, the vanilla VQ-VAE (single-
stage, single-codebook) is commonly used to extract discrete
units from the speech. Then, acoustic models are trained using
cross-entropy to translate the text into these units. This section
compares TTS models using different training criteria and
representation configurations. All models are trained on Nancy
in this experiment.

We first compare acoustic models trained with different
loss functions. The single-stage single-codebook representa-
tion, i.e. vanilla VQR, is adopted as the output of acoustic
models in this experiment. For models trained with cross-
entropy, the predicted vector is a 512-dim posterior probability
distribution to the codebook, and is processed by a Softmax
function for normalization. The codeword with the highest
probability will be chosen as the output vector. Lmsp with
γ = 0 means the Mean Squared Error (MSE), i.e. only
minimizing the Euclidean distance. As shown in Table II,
CrossEntropy shows the worse results with an MOS of 3.79. It
cannot sufficiently consider the relationships among different
codewords in the continuous space, producing severe problems
in smoothness when classification fails. When MSE is applied
as the loss function, the MOS is significantly improved to
4.13, validating the effectiveness of estimating codewords in
the continuous space. The “triplet loss” with a weight of 1
further improves the MOS to 4.23, enabling TTS to generate
more expressive speech. But the choice of an appropriate
weight is also essential. Too-large weight, e.g. Lmsp(γ = 100)
with the MOS of 4.19, may degrade the quality instead. The

overly high expressiveness also causes unnatural prosody in
the synthesized speech.

TABLE II
MOS TEST: COMPARISON OF DIFFERENT LOSS FUNCTIONS

Method γ MOS (95% CI)
CrossEntropy - 3.79 ± 0.08

Lmsp 0 4.13 ± 0.07
Lmsp 1 4.23 ± 0.08
Lmsp 100 4.19 ± 0.08

Secondly, to show the effectiveness of multi-codebook VQ
and multi-stage modeling in TTS. We compare MSMC-TTS
based on three different MSMCRs: One-Stage One-Codebook
(S1C1), One-Stage Four-Codebook (S1C4), and Two-Stage
Four-Codebook (S2C4). S1C1 is the vanilla VQ-VAE com-
monly used in previous VQ-VAE based TTS approaches.
S1C4 uses 4 codebooks in multi-head quantization. S2C4
extends S1C4 to two stages with the down-sampling rates of
1 and 4. Table III shows the result of the MOS test. S1C1,
quantized by only one codebook, has the highest compactness
and obtains the highest DER in TTS. But its low completeness
also limits TTS synthesis, leading to the lowest MOS of 3.74.
By applying MHVQ, we can better balance the compactness
and the completeness of VQR, and significantly enhance TTS
to the MOS of 4.36 with a slightly reduced DER. When multi-
stage representation S2C4 is applied, TTS is further enhanced
to the MOS of 4.61, with a noticeable improvement in prosody
at both coarse-grain and fine-grain levels.

TABLE III
SUBJECTIVE TEST: MSMC-TTS WITH DIFFERENT REPRESENTATIONS

Name MOS (95% CI) DER (%)
Train Set Test Set

S1C1 3.74 ± 0.09 44.37 45.44
S1C4 4.36 ± 0.08 33.32 37.20
S2C4 4.61 ± 0.07 26.81 30.47

Fig. 8 shows spectrograms and pitch contours of audios
synthesized by S1C1 and S2C4 based TTS systems. In
the single-stage TTS, pitch generation is not stable enough,
especially when switching syllables, as shown in the red
part. The representation is easy to over-fit the short-time
information, and pays less attention to the larger context,
causing discontinuous prosody. But this problem can be solved
in S2C4 based TTS system, as shown in the right part of the
figure. Multi-stage modeling and prediction force the model
to pay sufficient attention to short- and long-time contextual
information at different time resolutions. Hence, the prosody
becomes more smooth and more natural.

C. Resource-Limited Scenarios

MSMC-TTS has been shown as a better approach to pro-
ducing high-quality speech under the scenario with high-
complexity models and sufficient data. To further investigate
the requirements of MSMC-TTS for modeling complexity
and data size, we evaluate it in resource-limited scenarios,
including lightweight TTS and low-resource TTS.
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Fig. 8. The spectrograms and pitch contours of the waveforms synthesized
from S1C4 (left) and S2C4 (right) based TTS systems. The red parts
emphasize some problems in the audio.

1) Lightweight TTS: In this experiment, we evaluate the
impact of the decreased modeling complexity on the pro-
posed approach in lightweight TTS using fewer parameters
or simpler model structures. We conduct another MOS test
to compare Mel-FS and MSMC-TTS systems with these three
model configurations as the encoder or decoder of the acoustic
model:

• M1: 4 layers of 600-dim Transformer blocks.
• M2: 3 layers of 128-dim Transformer blocks.
• M3: 4 layers of 128-dim 1-D convolutional layers.

where M1 is the standard FastSpeech model with the most
parameters, M2 is a lightweight version of M1 with fewer
parameters, and M3 is more lightweight with a more simplified
structure by replacing Transformer blocks with CNN.

The test results are shown in Table IV. The output quality
of Mel-FS is seriously degraded from 4.08 to 2.10 when the
parameters reduce from 72.50 MB to 1.75 MB. When Trans-
former blocks are replaced with the less complex CNNs, the
MOS decreases further to 1.86. Both intelligibility and fidelity
are seriously affected by the reduced modeling complexity.
However, MSMC-TTS still performs well in all situations
with only slight degradation as the parameters are reduced.
MSMC-TTS trained with M3 (fewest parameters and simplest
structure) still significantly outperforms Mel-FS with M1.

DERs of these models also show that low-performance
models are easier to produce speech with a more signifi-
cant discrepancy to the ground-truth data. As for the Mel-
spectrogram following the distribution far from the target one,
the vocoder cannot synthesize it sufficiently, producing more
noise and seriously degrading the overall quality, including
fidelity, intelligibility, and naturalness. However, in MSMC-
TTS, the fidelity is always kept high, even if DER is reduced to
9.82. Since the vocoder sees almost all codewords in training,
the biased distribution only slightly degrades prosody and
intelligibility. In general, the proposed approach shows a much
lower requirement for the modeling complexity of the acoustic
model, and offers greater potential in lightweight scenarios,
like on-device TTS [67].

TABLE IV
TTS EVALUATION: LIGHTWEIGHT TTS

Model Param
(MB)

MOS
(95% CI)

DER(%)
Train Set Test Set

Mel-M1 72.50 4.08 ± 0.10 1.14 5.09
Mel-M2 1.75 2.10 ± 0.09 0.90 1.18
Mel-M3 0.52 1.86 ± 0.09 0.40 0.78

MSMC-M1 116.58 4.65 ± 0.08 26.81 30.47
MSMC-M2 4.81 4.58 ± 0.08 13.34 15.39
MSMC-M3 3.12 4.47 ± 0.09 8.88 9.82

2) Low-Resource TTS: Except for the lightweight TTS with
limited modeling resources, we also evaluate the performance
of the proposed method in low-resource TTS [68] to investi-
gate the impact of the data size on it. In this experiment, we
build two more low-resource TTS datasets based on Nancy,
which are described as follows:

• D1: 1,000 pairs of text and audio.
• D2: 1,000 pairs of text and audio + 10,000 audios without

transcripts.
D1 means that all models in the TTS system, including the
feature analyzer, acoustic model, and vocoder, can be only
trained with 1000 utterances with both transcript and audio.
However, in D2, except for the acoustic model trained with
1000 utterances, the feature analyzer and vocoder are trained
with 11,000 audios.

TABLE V
TTS EVALUATION: LOW-RESOURCE TTS

Model Dataset MOS
(95% CI)

Mel-FS D1 3.28 ± 0.09
D2 3.42 ± 0.08

MSMC-TTS D1 4.59 ± 0.07
D2 4.74 ± 0.07

Fig. V shows the result of the MOS test. Mel-FS with D1
only obtains the MOS of 3.28, showing unnatural prosody and
insufficiently clear pronunciation. D2 improves this system
to the MOS of 3.42. Although the acoustic model is still
trained with limited data, the vocoder trained with 11,000
audios helps synthesize higher-fidelity audio for low-quality
prediction. MSMC-TTS with D1 already performs better with
an MOS of 4.59 over Mel-FS with D1 or D2. Both prosody and
fidelity are presented well. After using D2 to train the feature
analyzer and vocoder, this system obtains a higher MOS of
4.74. This result validates that MSMC-TTS has a lower data
requirement.

VII. ANALYSIS-SYNTHESIS EVALUATION

In this section, we compare different speech representations
via analysis-synthesis. Models are trained with the Nancy
dataset to evaluate their performance in single-speaker mod-
eling.

A. Evaluation Metrics

Representations are mainly evaluated in terms of compact-
ness, completeness. Compactness refers to representing speech
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TABLE VI
OBJECTIVE METRICS FOR EVALUATING THE COMPACTNESS AND COMPLETENESS OF DIFFERENT SPEECH REPRESENTATIONS. Mel REFERS TO THE

MEL-SPECTROGRAM. Z1 - Z9 ARE VECTOR-QUANTIZED SPEECH REPRESENTATIONS WITH DIFFERENT CONFIGURATIONS, INCLUDING CODEBOOK SIZE
M , NUMBER OF HEADS H , NUMBER OF STAGES S , AND DOWN-SAMPLE RATE IN EACH STAGE rd .

Name Model Configuration Compactness Completeness
M H S rd R Bitrate (bps) PESQ ↑ MCD(dB) ↓ F0-RMSE(Hz) ↓ F0-VUV(%) ↓

Mel - - - - - 204800 3.91 1.62 2.11 1.82
Z1 128 1 1 [1] 365.71 560 3.32 2.90 3.87 3.23
Z2 256 1 1 [1] 320 640 3.39 2.82 3.68 3.20
Z3 512 1 1 [1] 284.44 720 3.41 2.79 3.52 3.09
Z4 512 2 1 [1] 142.22 1440 3.63 2.43 2.74 2.61
Z5 512 4 1 [1] 71.11 2880 3.74 2.19 2.43 2.38
Z6 512 16 1 [1] 17.78 11520 3.84 1.87 2.24 2.08
Z7 512 4 2 [1,4] 56.89 3600 3.72 2.22 2.42 2.33
Z8 512 4 3 [1,2,2] 40.63 5040 3.58 2.43 3.11 2.51
Z9 512 4 3 [1,4,4] 51.72 3960 3.61 2.46 2.69 2.63

with fewer parameters. Hence, we use both compression ratio
R and the bitrate (bites per second, bps) to represent com-
pactness. The completeness is measured via analysis-synthesis.
All MSMCRs are decoded to the Mel-spectrogram, and then
converted to audio via a pre-trained vocoder. The better the re-
constructed audio, the higher the feature completeness. There
are four objective metrics used to evaluate the reconstruction
quality – Perceptual Evaluation of Speech Quality (PESQ)
[69], Mel Cepstral Distortion (MCD) [70], F0-RMSE, and F0-
VUV [71]. PESQ can rate the audio to assess the voice quality
perceived by human beings. MCD is a measurement widely
used in speech synthesis [72]. It calculates the difference
between two speech signals in Mel cepstral domain. F0-RMSE
and F0-VUV (voiced / unvoiced error rate) focus on the
difference between two audios in prosody and tone, which
are important for speech. Pitch sequences with a frameshift
of 5 ms are extracted from the audio to measure these two
terms.6

B. Results

Table VI shows the experimental results of analysis-
synthesis of nine representations with different configurations
in terms of the codebook size M , the number of heads H ,
the number of stages K, and downsampling rates rd for each
stage. The acoustic feature Mel shows the upper bound of
feature completeness with the highest PESQ of 3.91 and the
lowest MCD of 1.62 dB, F0-RMSE of 2.11 Hz, and F0-
VUV of 1.82%. It also shows the worst compactness with
the highest bitrate of 204800 bps. Z1 − Z9 are all vector-
quantized representations learned from Mel, hence showing
lower reconstruction quality.

1) VQ-VAE: The single-codebook single-stage representa-
tion Z1 is quantized from Mel using only 128 codewords,
showing the highest compactness with the highest compression
ratio of 365.71 and the lowest bitrate of 560 bps. However, it
also achieves the worst completeness with the lowest PESQ
of 3.32 and the highest MCD, F0-RMSE, and F0-VUV of
2.90 dB, 3.87 Hz, and 3.23%, resulting in low-quality speech
reconstruction. As the codebook size increases to 512 in Z3,
the bitrates slowly increase from 560 to 900. The completeness

6The tools to calculate PESQ, MCD are available at https://github.com/
ludlows/python-pesq, https://github.com/MattShannon/mcd. The tool to ex-
tract pitch is available at https://github.com/r9y9/pysptk.

is also improved slightly to the MCD of 2.79 dB, which is
only 0.11 less than Z1. It shows the difficulty of controlling
completeness by only changing the codebook size, hence
limiting its capability in TTS synthesis.

2) MHVQ: When MHVQ is applied, this problem is al-
leviated significantly. As the number of heads increases, the
bitrate increases proportionally. Meanwhile, the completeness
is also improved more obviously. Z3 with 4x codebook size
of Z1 can only decrease MCD by 0.11 dB. But Z5 with 2-
head vector quantization can already decrease the MCD by
0.36 dB further over Z3. Similarly, PESQ, F0-RMSE, and F0-
VUV are also improved significantly. And the completeness
can be further improved by giving more VQ heads to increase
the bit rate. It validates MHVQ as a more effective method
of improving completeness over enlarging the codebook size.
The TTS model based on Z5, i.e. S1C4 in the MOS test of
Table III, also shows that keeping sufficient completeness of
the compact representation, VQR, is essential for high-quality
TTS synthesis.

3) Multi-Stage Modeling: Z7 - Z9 are implemented based
on Z5, i.e. using four heads and more stages. Different from
MHVQ, these multi-stage representations aim to disentangle
the speech sequence into different stages while decreasing
the reconstruction loss in training. To balance these two ob-
jectives, the reconstruction quality from these representations
decreases, although the compactness is slightly lower than Z5.
Hence, for multi-stage modeling, we also need to investigate
if the speech is represented in stages in these representations.
First, we propose analyzing information at different stages
by reconstructing the Mel-spectrogram in different modes. In
decoding, the model can be given the predicted sequence ẑ(i)

or the ground-truth sequence z(i) at i-th stage. For instance, to
fully reconstruct speech from Z7, ground-truth z(2) and z(1) at
two stages should be given to corresponding decoders. But we
can also generate the speech with only high-stage information
by giving z(2) and ẑ(1) predicted from z(2). In this way, we
can analyze each stage through the generated audio.

We first calculate objective metrics to audio generated in
different modes for Z7 and Z9, as shown in Table VII. In
the “Stage” column, “P” and “G” denote that the sequence
at the corresponding stage is predicted or ground truth. The
sequence ẑ(i) at any stage, except for the highest stage, can
be predicted by a higher-stage sequence ẑ(i+1). Hence, in Z7-
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Fig. 9. Mel-spectrograms generated in different modes. The left column accordingly shows the ground-truth spectrogram, and reconstructed spectrograms
from Z7-2, Z7-3. And the right column shows the reconstructed spectrograms from Z9-1, Z9-2, and Z9-3. The red rectangles emphasize some areas with
salient differences.

TABLE VII
OBJECTIVE METRICS OF MSMCRS IN DIFFERENT MODES.

Name Stage PESQ MCD F0-RMSE F0-VUV1 2 3
Z7-1 P P - 0.17 15.59 59.23 44.85
Z7-2 P G - 2.62 4.03 6.43 4.25
Z7-3 G G - 3.72 2.22 2.42 2.33
Z7-4 G P - 0.65 10.50 40.31 43.67
Z9-1 P P G 0.80 8.94 21.85 11.03
Z9-2 P G G 2.17 4.34 10.08 5.34
Z9-3 G G G 3.61 2.46 2.69 2.63

1, ẑ(2) is not predictable, we can only generate it by random
sampling from the codebook. The generated speech carries
nothing related but the target timbre, showing the lower bound
of these metrics. Given only the ground-truth sequence z(2),
the reconstructed speech of Z7-2 shows the much higher PESQ
and lower MCD, F0-RMSE, F0-VUV. It shows that the high
stage carries much information about the target speech. Then,
in Z7-3, these metrics are further improved given z(1), and
the speech is fully reconstructed. It shows that the low stage
contains information that the high stage does not. Moreover,
the awful reconstruction quality of Z7-4 shows that high-
stage information is also not covered in the low stage. The
low-stage sequence is a supplement to the high-stage. This
pattern is also reflected in Z9 with three stages. With more
ground-truth latent sequences, speech reconstruction quality
is gradually improved. But the low reconstrution quality of
Z9-1 also shows the highest stage in Z9 contains less valuable
information, hence our TTS experiments are mainly based on
the two-stage MSMCR.

To further investigate the information in different stages,

we visualize Mel-spectrograms reconstructed from different
representations, as shown in Fig. 9. First, for the two-stage
representation Z7, Z7-2 with only the high-stage informa-
tion shows a coarse version of the target speech with over-
smoothed harmonics and blurry high-frequency information. It
lacks sufficient details, leading to the unclear pronunciation of
the reconstructed audio. Hence, the high-stage sequence tends
to preserve more coarse-grained or more abstract information.
Z7-3 with low-stage information shows a clearer spectrogram
with richer fine-grained information, including detailed high-
frequency components, short-time pitch changes, and even
some noise in silent parts. The low-stage modeling focuses
on capturing low-level or local information that high-stage
information lacks. And the capability of multi-stage modeling
in capturing information at different levels is more salient
in the three-stage representation Z9. Due to a 16x reduction
in time resolution, the spectrogram reconstructed from Z9-1
with only the highest-stage information is much smoother with
average pitch changes and no high-frequency details. With the
introduction of the second-stage sequence, the spectrogram
reconstructed from Z9-2 recovers most fine-grained changes
in pitch. Finally, the lowest-stage sequence with more low-
level information helps recover more fine-grained details in
the spectrogram reconstructed from Z9-3.

In conclusion, MSMCR can preserve speech information at
different levels via multi-stage modeling. And this approach
also further enhances TTS. As shown in Table III, MSMC-
TTS based on Z7-3, i.e. S2C4, shows the highest MOS of
4.61, significantly outperforming TTS approaches based on
single-stage representations.
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VIII. CONCLUSION

This paper proposes MSMC-TTS, a compact speech rep-
resentation based TTS system. The proposed feature ana-
lyzer converts Mel-spectrograms to MSMCRs composed of
sequences at different time resolutions and quantized by
multiple codebooks. A multi-stage predictor is trained as the
acoustic model to better predict MSMCRs by minimizing the
combined loss of MSE and “triplet loss”. In TTS evaluation,
experimental results of TTS evaluation on the English and
Chinese datasets show that MSMC-TTS can predict features
with minor domain discrepancy and generate higher-quality
audio over baseline systems. The MSMCR and the proposed
“triplet loss” also show their effectiveness in enhancing TTS
based on VQ-VAE. Moreover, in applications of lightweight
and low-resource TTS, the proposed system still performs
well even with much fewer model parameters or training data,
showing lower requirements for the modeling complexity and
the data size. Finally, experimental results of analysis-synthesis
validate that MHVQ is a more practical approach in improving
feature completeness, and multi-stage modeling effectively
represent the speech sequence with multiple sequences at
different time resolutions.
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