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ABSTRACT
This paper is about language understanding using Belief
Networks.  Language understanding is a key technology in
human-computer conversational systems.  These systems often
need to handle information-seeking queries from the user
regarding a restricted domain.   We devised a method for
identifying the user’s communicative goal(s) out of a finite set
of within-domain goals.  The problem is formulated as N
binary decisions, each performed by a Belief Network.  This
formulation allows for the identification of queries with
multiple goals, as well as queries with out-of-domain goals.
Experiments with the ATIS corpus shows that around 90% of
the user queries are correctly handled via goal classification,
rejection or multiple goal identification.
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I.  INTRODUCTION

One of the key technologies in a human-computer
conversational system is spoken language understanding.
State-of-the-art conversational systems can respond to the
user’s information-seeking queries for a restricted domain.
These queries can often be classified into several domain-
specific types. However, for a given query type, i.e. the
communicative goal for a query, the possible ways of
expression are legion. Understanding involves identifying the
communicative goal from the query’s semantics, and
subsequently retrieving the relevant information to produce a
coherent response.

    As an example, we can consider an enormously simplified
weather domain, which only consists of three semantic
concepts: <weather>, <location> and <date>.  A query which
specifies two of the three concepts is likely to be asking for the
missing one, e.g. “What do we expect for Hong Kong
tomorrow?”   A query containing all three concepts is likely to
be asking for a yes/no response, e.g. “Will there be sunshine in
Hong Kong  tomorrow?”  Another example is call-routing in
AT&T’s “How May I Help You?” task [1] and other similar
call center tasks [2].  Here the caller’s communicative goal
determines the destination for call-routing.

     Previous approaches to this problem include: (i) The use of
heuristics to map a parsed query into an interpretation.  The
“parse” may be the output of a grammar-based parser [3], [4],
or a stochastic concept decoder, e.g. HMMs [5], or
probabilistic recursive transition networks [6].  Here the
interpretation adopted depends primarily on an evaluation
among parse alternatives, and sometimes the heuristics may not
identify the best interpretation if task knowledge were to be
considered.  As a result, [4] had proposed a “beam of
interpretations” approach, where multiple interpretations from
multiple parses are used. (ii) The use of a vector-based
information retrieval technique [2].  The problem is formulated

as a topic identification or document classification problem,
and for every input query the system outputs a single identified
topic.

    Our work bears resemblances to both streams.  We use a
semantic tagger to transform the input query into a sequence of
semantic concepts.  These form the input to our Belief
Networks (also known as Bayesian Networks) for inferring the
query's communicative goal.  We believe that BNs offer
several advantages to our problem [7].  First, the dependencies
between a query’s communicative goal(s) and the relevant
semantic concepts may be effectively captured in the topology
of the BN.  Second, BNs identify the communicative goal by
means of probabilistic inferencing.  Under situations where
massive data is involved, this provides an attractive alternative
to handcrafting the heuristics between parses and their
interpretations.  Third, BNs can handle situations where the
input observations are incomplete, and thus may model spoken
queries well.  Fourth, the BN framework is suited for the
optional incorporation of prior knowledge in order to aid the
inference process.

II. TASK DOMAIN

We have chosen the ATIS (Air Travel Information System)
domain [8] to investigate the feasibility of using BNs for
language understanding.   ATIS is a common task in the
ARPA (Advanced Research Projects Agency) Speech and
Language Program in the USA.

    Our experiments are based on the Class A sentences of the
ATIS-3 corpus, with disjoint training and test sets of 1,564,
448 (1993 test) 444 (1994 test) transcribed utterances
respectively. Each  utterance (or query) is accompanied with
its corresponding SQL query for retrieving the relevant
information.  Thus we derive the communicative goal for each
utterance from the main attribute label of its SQL query.  In
our training set, we counted a total of 32 communicative
goals.  We also found 43 training utterances with more than
one communicative goal. Examples include:

QUERY: “chicago to san francisco on continental”
GOAL:  FLIGHT_ID

QUERY: “give me the least expensive first class round trip
ticket on  u s air from cleveland to miami”
GOALS: FLIGHT_ID, FARE_ID

III.  SEMANTIC TAGGING

Semantic tagging abstracts the words in a query into a set of
semantic concepts.  While the main attribute label(s) in the
SQL query is adopted as the communicative goal(s), the
remaining attribute labels are identified as key semantic
concepts for the ATIS domain, and served as a reference when
we design our semantic tags for labeling an input
transcription. We have a total of 60 hand-designed semantic
tags.  We have also devised an automatic procedure for



discovering such semantic categories from unannotated
corpora [9].

    Training utterances are automatically tagged, using a two-
pass transformational procedure.   This identifies the semantic
concepts in the utterance transcriptions.  The following shows
an example of an utterance transcription and its corresponding
tags:

QUERY: what are the dinner flights from indianapolis to san
diego on Wednesday may twelfth

TAGS:<what><dummy><meal_description>
         <flight><from><city_name><to>
         <city_name><prep><day_name>
         <month><day>

Henceforth each training query is represented by its annotated
goal and a sequence of semantic concepts.  These are used to
train our BNs, as described in the following.

IV.  N BINARY DECISIONS vs. ONE N-ARY DECISION
We need to infer an appropriate goal for a query, out of the
finite set of goals in a restricted domain.  One may formulate
the problem as N binary decisions, or a single N-ary decision.
We have chosen the former approach to facilitate the
identification of cases with multiple goals, as well as the
rejection of cases with previously unseen, out-of-domain goals
[10]. We have also implemented the latter approach for
benchmarking purposes.

    Our approach utilizes multiple BNs – each a distinct
classifier for making the binary decision regarding a unique
goal.  A BN outputs the confidence level for its decision
regarding an input query, in terms of the aposteriori
probability.   One decision scheme is to adopt the goal with
maximum aposteriori probability for the input query.  With
the use of a probability threshold, the BN output for a
particular goal may be quantized into a binary decision.   In
this case we may utilize an alternative decision scheme:
Queries for which all BNs vote negative are rejected as out-of-
domain, and otherwise we revert to the maximum aposteriori
rule.

V.  THE BELIEF NETWORK

Each BN adopts a pre-defined structure as depicted in Figure
1.  This simple structure models the causal relation between
the concepts and the goal.  Concepts within the query are
assumed independent of each other.

Figure 1  The pre-defined structure of our Belief Network.
The arrows of the acyclic graph are drawn from cause to effect.

V.1 Concept Selection

For a given goal Gi, and its instantiations in the training set, we
record the semantic concepts that are indicative of Gi.  The
recorded set is limited to M or below in size, in order to
constrain computation during training.  We compare the use of
two measures to select the concepts with strongest dependency
on Gi:

(i) Mutual Information, which measures the degree of co-
occurrence (i=0,1,2…N and k=1,2…M).
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(ii) Information Gain, which considers both the presence and
absence of the concept and the goal.

    Based on these measures, the top M semantic concepts will
be selected as the features set for the ith goal, hence each goal
may have a different set of selected concepts.

V.2  Bayesian Inferencing

Probabilities are estimated by tallying the counts from the
training data.  Each BN applies Bayes’ Theorem:

Two assumptions of marginal and conditional independence
simplifies the above expression to:

V.3  Thresholding

As mentioned previously, the BN outputs its confidence level
for the case that the input query is conveying its corresponding
goal.   Choosing a probability threshold allows for quantization
of this confidence level into a binary decision.  The threshold
should be chosen such that we can maximize the performance
on goal inference.  Related performance measures include
recall (R), the percentage of queries correctly inferred by the
BN for Gi out of all the Gi queries; and precision (P), the
percentage of queries correctly inferred by the BN for Gi out of

all the inferred Gi queries.  We combine both into a single
score by optimizing with the F-measure [11]:  (β =1 in our
experiments to treat precision and recall with equal
importance).

VI. EXPERIMENTS

Inspection of the training utterances reveals that out of
32 goals, only 11 of them are instantiated 10 times or
more.  These 11 goals cover over 95% of the training set.
Consequently, we have constructed 11 BNs, to avoid the
use of sparsely trained BNs.  The remaining goals and
their utterances are treated as out-of-domain.
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VI.1  Comparison between Mutual Information and
Information Gain

For each of the 11 goals,  we select (M=20) concepts with
strongest dependency on the goal .  Mutual Information (MI)
and Information Gain (IG) are compared as  the dependency
measure.  Only the selected goals in the training query are
considered during classification, which maximizes the
aposteriori probability according to Equation (4). 1

    Since IG considers both the presence and absence of
concepts for goal classification, it can extract 20 concepts for
all our goals. MI considers only the cases when a concept is
present, and extracts fewer than 20 concepts for a number of
goals.  Therefore when MI is used we normalize the
aposteriori probability prior to goal classification, by padding
with a multiplicative constant of 0.5. Results of the comparison
are tabulated in Table 1.

Concept  Selection Measure Performance (Training)

Mutual Information (MI) 85.42% (1336/1564)

Information Gain (IG) 93.67% (1465/1564)

Table 1.  Comparison between the use of two different
measures for concept selection (MI vs. IG), based on the goal
classification accuracies on the training set.

    It is observed that IG performs better than MI in concept
selection for goal classification.  This implies that the absence
of certain concepts may be indicative of the communicative
goal under some situations.  To illustrate with an example,
consider a query from our training set:

QUERY: may I have a listing of flight numbers from
columbus ohio to minneapolis minnesota on monday

TAGS: <dummy><have><dummy><listing>
            <prep><flight_num><from><city_name>

<state_name><to><city_name>
<state_name><prep> <day_name>

REFERENCE GOAL:  FLIGHT_NUMBER

    According to the set of concepts selected by MI for the goal
FLIGHT_ID, all the query's semantic tags are indicative of the
goal.  The set of concepts selected by IG was similar, but it is
also augmented by the absence of <flight_num>. The
occurrence of  <flight_num> in the input query lowered the
aposteriori probability for FLIGHT_ID, which was eventually
outweighed by  FLIGHT_NUMBER.

VI.2  Varying the Input Dimensionality

A series of experiments were conducted in which we varied the
BN input dimensionality, which is equivalent to the number of
stored concepts per goal.  Variation covered the range from 15
concepts to the full set of 60 concepts.  The goal classification
accuracies for the training set, the 1993 test set as well as the
1994 test sets are shown in Figure 2.

    Performance accuracies in the plot are normalized based on
the full size of the training / test sets.  Hence queries which do
not belong to the 11 goals are counted as errors.  As observed
in Figure 2, training accuracies increase with input
dimensionality, while testing accuracies tend to decrease
beyond 20 concepts per goal, possibly due to overfitting of the
training data.  This suggests that 20 concepts per goal is  a

                                                       
1 Since the number of concepts per goal is capped at M, our probability
space does not sum to 1.  However, we assume that it approximates 1
by using a large number of concepts with strong dependencies on the
goal.

suitable parameter setting.   Performance with different
normalizations are shown in Table 2.

Figure 2.  Goal classification performance for different belief

network input dimensionalities.

Normalization Training 1993 Test 1994 Test

Over  all
queries

93.7%
(1465/1564)

87.9%
(395/448)

86.7%
(385/444)

Queries of the
11 goals

97.1%
(1465/1509)

95.4%
(394/413)

94.59%
(385/407)

Table 2.  Goal classification accuracies computed using
different normalizations – over the entire training/test sets,
versus normalizing only over the relevant queries that belong
to the 11 goals.  20 concepts per goal was used.

VI.3 Multiple Goals and Rejection

Thresholding enables the BN to make a binary decision about
its goal. For a given query, we can look across all BNs to see if
more than one network has voted positive (the case of multiple
goals), or if all networks have voted negative (the case of
unseen goal).  A conversational system, which identifies an
information-seeking query to have multiple communicative
goals, may provide additional relevant information in the
response.  Alternatively if the query is identified with an
unseen goal, it may be rejected as an out-of-domain query.

    It may be reasonable to set the probability threshold at 0.5,
since P(G=1|C) + P(G=0|C)=1.  Alternatively we may also
set the threshold at a value which maximizes the F-measure, as
described in Section V.3.  Comparative results are shown in
Table 3.

    Table 3 suggests that the threshold should be set by the F-
measure, rather than at 0.5.  This increases the rejection rate,
but also improves the rejection accuracy.  Moreover, it
drastically reduces the number of queries identified to have
multiple goals, while maintaining the same correct
identification rate.  Correctly handled cases include queries
with correct goal classification, as well as those with correct
rejection.  Multiple goal queries are neither rewarded nor
penalized.  Comparison with our previous results (Table 3,
bottom row) suggests that there is a slight performance
advantage if an appropriate probability threshold is used.

VII.  BENCHMARKS

As mentioned previously, to benchmark our approach we have
also implemented the alternative approach using decision trees
[12].  A single decision tree is grown to make the 11-way
decision on goal classification. (without confidence levels in
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the output).   The full set of 60 semantic concepts is used as
input, and attribute selection for tree branching is based on the
IG measure.   Since the decision tree has no rejection
capability, out-of-domain queries are counted as errors.
Performance was 90.0% (403/448) for the 1993 test set, and
88.7% (394/444) for the 1994 test set.  Comparison with the
results in Table 3 (second last row) suggests that both
approaches deliver comparable performance for our task.

    We have also evaluated our outputs in terms of their
extracted semantic category  sequence [13]. This accounts for
both concept and goal categories.  Considering insertions and
deletions, our error rates were 10.9% and 13.3% for the 1993
and 1994 test sets respectively.

1993 Test 1994 Test

Threshold 0.5 F 0.5 F

Classified √ 389 386/413 378 377/407

# rejected 19 39 30 35

Rejection √ 8/35 23/35 12/37 13/37

# multiple goals 119 51 69 22

Multiple goals √ 5/8 5/8 4/6 4/6

Handled √ 88.6%
(397 of
448)

91.3%
(409 of

448)

87.8%
(390 of

444)

87.8%
(390 of

444)

Handled √

(No Threshold)
87.9%  (394/448) 86.7% (385/444)

Table 3.  Comparing the use of different probability thresholds
– the use of 0.5 vs. other values which maximizes the F-
measure.  Comparison is based on test set performance –
correct classification, number of rejected queries, correct
rejection, number of multiple goal queries, correct multiple
goal classification, and correctly handled queries overall.

VIII.  CONCLUSIONS AND FUTURE WORK
This work is our initial attempt in applying Belief Networks for
the identification of communicative goals in information-
seeking queries.  At present our BNs only model the causal
relations between the query’s semantic concepts and the
underlying communicative goal.  By formulating our N-way
classification problem as N binary classifications, we are able
to (i) identify queries with multiple communicative goals, and
(ii) reject queries whose goals are outside of the prescribed
knowledge domain, without significant loss in goal
classification performance.   Our experiments also found IG
and the F-measure to be favorable, for their respective tasks of
feature selection and probability thresholding in binary
classifications.  Future work includes experimentation with
different BN topologies to capture inter-dependencies amongst
concepts, as well as the incorporation of external knowledge
(e.g. discourse) to improve goal inference performance.
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