
SEMI-AUTOMATIC ACQUISITION OF DOMAIN-SPECIFIC
SEMANTIC STRUCTURES

Kai-Chung Siu and Helen M. Meng
Human-Computer Communications Laboratory

Department of Systems Engineering and Engineering Management
The Chinese University of Hong Kong

Shatin, N.T.,
Hong Kong, China

{kcsiu, hmmeng}@se.cuhk.edu.hk

ABSTRACT
This paper describes a methodology for semi-automatic
grammar induction from unannotated corpora belonging to a
restricted domain. The grammar contains both semantic and
syntactic structures, which are conducive towards language
understanding. Our work aims to ameliorate the reliance of
grammar development on expert handcrafting or the
availability of annotated corpora. To strive for a reasonable
model for real data, as well as portability across domain and
languages, we adopt a statistical approach. Our approach is
also amenable to the optional injection of prior knowledge to
aid grammar induction, and subsequent hand editing for
grammar refinement. This constitutes the semi-automatic
nature of the approach. Experiments with the ATIS corpus
showed positive results in semantic parsing, when compared to
an entirely handcrafted grammar.

Keywords: grammar induction, semantic processing.

I. INTRODUCTION

Research and development of spoken language systems for
restricted domains has been gaining much momentum in recent
years [1]. Many approaches to spoken language understanding
require a grammar for parsing the input utterance to acquire its
semantics. The grammar is often handcrafted by a grammarian
and / or a knowledge domain expert. This is a daunting and
expensive task, which forms a major bottleneck in the
development of spoken language understanding systems.
Furthermore, there is no direct control that the grammar so
designed will model the target language well – under-
generation or over-generation (or both) may be severe when
the grammar and parser are applied to realistic spoken queries.

 Another related approach is to automate the grammar writing
process. Grammar induction is typically corpus-based [2],[3].
Corpus-based approaches may be desirable, as the grammar
produced may model real data closely. The corpus may be
annotated with some domain-dependent semantic tags, or
domain-independent syntactic tags.1 Various grammar
induction algorithms can automatically capture patterns in
which syntactic structures and semantic categories interleave
into a multitude of surface forms. However, annotation of
corpora may be costly.

 We wish to devise a methodology to semi-automatically
capture language structures from unannotated corpora. These
structures need to be conducive towards language
understanding. This is essentially a grammar induction
process. The resultant grammar should contain language
structures that may be semantic, syntactic, or a tight coupling
of both. Our work is an attempt to expedite the process of

1 E.g. part of speech tags, as in the Penn Treebank [4], and the
Tagged Brown Corpus [5].

grammar design for spoken language understanding in a
prescribed domain. We conceive of several desired features for
such a methodology:

(i) It may be corpus-based, but should ameliorate reliance on
annotated corpora.

(ii) It should be easily portable across different restricted
domains, as well as across languages.

(iii) The output grammar should provide reasonable coverage
of within-domain data, and reject out-of-domain data.

(iv) The output grammar should be intuitive, and amenable to
interactive refinement by a human.

(v) The process should accommodate the optional injection of
prior knowledge to aid grammar induction.

We conceive of possible applications of this work in data
mining, information extraction, and meta-data abstraction.

II. A STATISTICAL APPROACH

We adopt a statistical approach, which is inspired by previous
work on language modeling for speech recognition b
McCandless and Glass [6]. We wish to extend a similar
framework in order to accomplish understanding of natural
language.

 An iterative procedure is used to cluster the words from a
corpus of sentences in a restricted domain. Clustering is
implemented both spatially and temporally. For spatial
clustering, we considered the Kullback-Liebler distance -- an
information-theoretic distance between two probability
distributions p1 and p2:

where V is the vocabulary size within the given context. It
should be noted that D(p1 || p2) = 0 if p1 and p2 are equivalent.
In order to acquire a symmetric distance measure, we used the
divergence measure:

 All probabilities are estimated by tallying counts from the
training sentences, with appropriate smoothing. At the onset of
spatial clustering, all the words in the training set (with at least
the pre-set minimum occurrence) are considered pair-wise. We
compute the distance between a pair of words (or word clusters
for later iterations), which is the sum of the divergences of
probability distributions to the left and right of the entities
(e1, e2):

D p p p i
p i

p ii

V

(||) () log
()

()1 2 1
1

21

=
=
∑ (1)

Div p p D p p D p p(,) (||) (||)1 2 1 2 2 1= + (2)

 The N most similar pairs are clustered, and assigned the
spatial cluster label SCi, where i is a counter which increments
automatically as spatial clusters are formed. Subsequently, all
the words in the training set are substituted with their
corresponding spatial cluster label. Spatial clustering is
expected to produce semantic categories. After spatial
clustering, the process proceeds to temporal clustering.

 For temporal clustering, we adopt Mutual Information (MI)
as our distance measure, to indicate the degree of co-
occurrence of two consecutive entities (words, or word
sequences).

Again only words with at least the minimum occurrences are
considered. The N pairs of entities with highest MI are
selected to form temporal clusters, which are labeled TCi,
where i is a counter which increments automatically as the
temporal clusters are formed. The training sentences then
undergo a pass whereby appropriate entities are substituted
with their TC labels. Temporal clustering is expected to
produce phrasal structures. The process then alternates to the
next iteration of spatial clustering.

 Iterative clustering produces a context-free grammar, which
is post-processed with hand editing. Hence, our approach is
semi-automatic. The hand-revision process serves to organize
grammar non-terminals (SC and TC), identify those that are
contributive towards language understanding, and label them
with semantically relevant tags. The resultant grammar should
reflect the ontology of the domain. The grammar may be
evaluated by: (i) comparing the semi-automatically derived
language structures with those which are handcrafted, should
the latter be available; or (ii) implementing a semantic parser
which utilizes the grammar to parse data sets, and examine the
language understanding performance.

III. EXPERIMENTAL CORPUS

Our experimental corpus is based on the training and test sets
of the ATIS (Air Travel Information System) domain [7].
ATIS is a common task in the ARPA (Advanced Research
Projects Agency) Speech and Language Program in the USA.
We used the Class A sentences of the ATIS-3 corpus. The
disjoint training and test sets consist of 1,564, 448 (1993 test)
444 (1994 test) transcribed utterances respectively. Each
utterance is accompanied with its corresponding SQL quer
for database retrieval.

IV. UNSUPERVISED ITERATIVE CLUSTERING

For iterative clustering, the minimum count M is set at 5. We
experimented with the number of merges per iteration, N, for
the values N=1 and N=5.

 With N=1, each iteration will produce an SC and a TC, as it
searches through the space of all entity-pairs, which is a ver
computationally intensive process. Having proceeded through
17 iterations of clustering, our algorithm produced 34 spatial
and temporal categories, 2 of which were deemed irrelevant.
Examples include:

SC0 � layover | stopover
SC3 � numbers | times (irrelevant)
SC6 � cheapest | last (irrelevant)

SC10 � could | can
SC12 � nashville | toronto
TC0 � flights from
TC8 � round trip
TC15 � los angeles

 Upon investigation, SC3 and SC6 may be pardonable
offenses. The words "numbers" and "times" were merged, due
to many instances of "…flight numbers from…" and "…flight
times from…" The words "cheapest" and "last" were merged,
due to many instances of "…the cheapest flight…" and "…the
last flight…"

 With N=5, our algorithm produced 46 spatial and temporal
categories after only 5 iterations (and 0.2 of the previous
processing time). One might expect to obtain more spatial and
temporal categories, because 5 iterations each with 5 spatial
merges and 5 temporal merges should produce 50 categories.
However, there are cases when multiple merges from the same
iteration were collapsed. For example, three of the five
proposed merges from one iteration were (nashville, toronto),
(nashville, tampa) and (detroit nashville). In this case, our
algorithm produced a single spatial category, and therefore we
are able to quickly generate nonterminals with a greater
number of terminals. For example

SCi � nashville | toronto | detroit | tampa

 Similar phenomena emerged for temporal categories. For
example, in one iteration the proposed merges were (salt lake),
(lake city), etc. Our algorithm considers across the proposed
merges, and looks for cases where the second candidate of a
pair coincides with the first candidate of another pair. For
these cases, the algorithm exhaustively generates the possible
combinations, e.g. "salt lake city". All combinations are
considered in decreasing order of MI, while the algorithm also
confirms the existence of the sequence in the training data. As
a consequence, we generated TC17 � salt lake, performed
the subsequent training data replacements, and then
considered the proposed (lake city) merge. By now all the
occurrences of (lake city) have been replaced, and non-
existence renders the proposed merge to be discarded. Finall
we proceeded to (salt lake city), given the knowledge of
TC17. Since (TC17 city) still occurs in the training set at
this point, we generated TC18 � TC17 city.

 Our resultant grammar (46 categories, N=5) is a superset of
the previous grammar (34 categories, N=1). The extra 12
categories are all relevant, e.g.

SC14 � francisco | jose
TC15 � los angeles
TC16 � san SC14

We concluded that N=5 is a better parameter setting. The
merging is more aggressive, and seems to produce an equall
good grammar with fewer iterations. (In the future, we will be
experimenting with even higher values of N.)

 Clustering was allowed to proceed to 100 iterations. We
monitored its progress by keeping track of the nonterminal
(SC and TC) and terminal categories in the grammar (see
Figure 1). We observe that as the grammar grows, the number
of terminals saturated at around iteration 50, to a count of 276.
This covers a fraction of the vocabulary (531 words in all)
from the training set. The remaining words are those which
did not meet our minimum count requirement. The number of
SCs grew slowly to 129 at iteration 100, and they were
mainly semantic categories and inflectional variations. The
growth rate of TCs dominated the overall growth rate of the
nonterminals, reaching 510 TCs at iteration 100.

Dist e e Div p p Div p pleft left right right(,) (,) (,)1 2 1 2 1 2= +

MI e e P e e
P e e

P e
(,) (,) log

(|)

()1 2 1 2
2 1

2

=

(3)

(4)

Figure 1. Growth of grammar units along increasing
iterations in the grammar induction process.

The TCs were mainly phrasal structure as expected. Examples
of SCs and TCs include:

SC4 � december | february
SC7 � nashville | toronto | tampa | detroit ...
(i.e. city names)
SC17 � june | march
SC24 � serve | serves
SC28 � monday | wednesday | thursday
TC39 � first class
TC44 � one way
TC21 � to SC7 (i.e. a destination)
TC25 � SC7 to (i.e. an origin)
TC26 � to SC7 to (i.e. a stopover)
TC145 � flights from SC7 to SC7 (i.e.a phrase)

 It is noticeable that some automatically discovered
categories capture domain-specific knowledge that one could
have easily given to the algorithm. We also observe rules that
are close renditions of one another, e.g.

TC211 � flights from SC7 to SC12
TC274 � flights from SC7 to SC29
TC292 � flights from SC12 to SC7

Since SC7, SC12 and SC29 are all city names, we should
collapse TC211, TC274, TC292 into a single category.
 Our observations prompted our idea of seeding the
clustering algorithm with basic domain-specific knowledge.
This should serve to jump-start our grammar induction
process, and enable the algorithm to proceed further with even
fewer iterations.

V. INJECTION OF PRIOR KNOWLEDGE

As we referenced the grammar nonterminals formed from
unsupervised clustering, we selected 20 which we considered
to be basic semantic classes for our domain. These include
AIRLINE_NAME, AIRPORT_NAME, CITY_NAME, DIGIT,
MEAL_DESCRIPTION, FARE_CLASS, etc., which were compiled
to become seed categories for initializing our clustering
algorithm. Compilation involves the consolidation of
multiple SCs into a single semantic class, as well as
completion of the set of terminals belonging to a given
nonterminal. Seed categories were labeled SC1 to SC20.
Clustering was thus initialized to run through 100 iterations
with N=5. Again we monitored the grammar inference
process, as shown in Figure 2.

 Figure 2 shows that clustering was initialized with 397
terminals in the seeding categories. These include vocabular

Figure 2. Growth of grammar units alongside increasing
iterations, for grammar induction seeded with prior
knowledge.

entries below the minimum count of 5, as well as inflectional
forms of words that have not occurred in the training data. The
growth of terminal categories began to saturate within 20
iterations to 485. We found iteration 40 to be a suitable
termination point, beyond which over-clustering aggravated
and produced many heterogeneous groupings. At this point,
we recorded 76 SCs, 214 TCs and 491 terminals.

 Inspection of the grammar output reveals that seed
categories catalyzed the formation of longer phrasal structures
with fewer iterations. We attempt to illustrate with the
following example rules:

SC2 � atlanta | baltimore | boston | …
SC3 � monday | tuesday | wednesday | …
SC5 � morning | afternoon | evening | …
SC15 � from | departing from | leave from | …
SC16 � to | arriving to | arrive to | …
SC24 � airfare | fares | ticket
TC38 � flights SC15 SC2 SC16 SC2 on SC3
(a phrasal fragment)
TC109 � round trip SC24 SC15 SC2 SC16 SC2
TC125 � flights SC15 SC2 SC16 SC2 on SC3 SC5

A couple of artifacts were created by the seed categories
DIGIT � zero | oh | one | two | …
DAY � first | second | third | …

The substitution of seed category labels prior to clustering
created many instances of “DIGIT dollar” from queries about
pricing, as well as the frequent occurrence of “DIGIT way”
due to “one way”. Consequently, we saw the inappropriate
merger SCi � dollar | way Another case is due to “first
class”, which was seeded to become “DAY class”. Subsequent
clustering produced TC35 � DAY class, which is also
inappropriate. These were corrected during postprocessing.

VII. POSTPROCESSING

The resultant grammar from 40 iterations of clustering (with
seeding) was post-processed by hand editing. The procedure
involved: (i) replacing some of the Ti or SCi tags with
meaningful labels, e.g. city_name, month, etc., (ii) completing
the set of terminals for some categories (e.g. days of the
week), (iii) consolidating grammar categories which belong to
the same semantic class, and (iv) pruning irrelevant
nonterminals and terminals. Postprocessing took about an
hour, to produce a grammar with 36 nonterminals and 369
terminals.

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80 90 100

Iterations

C
ou

nt

SC
TC
Nonterminals
Terminals

0
100
200
300
400
500
600
700
800

0 10 20 30 40 50 60 70 80 90 100

Iterations

C
ou

nt

SC

TC

Nonterminals

Terminals

VIII. EVALUATION

The semi-automatically generated grammar (GSA) was
compared with a handcrafted grammar (GH). GH was
manually designed to capture the key semantic categories
from the training set [8]. GSA has 36 nonterminals and 369
terminals. GH has 6 nonterminals and 483 terminals. The
grammars share 20 common nonterminals due to seeding. The
remaining 16 nonterminals in GSA were obtained from
automatic clustering, and were selected during hand-revision
as they have close counterparts in GH. For example:
FLIGHT_NUMBER � flight DIGIT (e.g. “flight four
seventeen”)
TIME_VALUE � PRE_TIME DIGIT (e.g. “after ten
twenty six”)
The grammars were coupled with a parser, to operate on our
data sets for retrieving key semantic concepts. The SCs in our
grammars specify the key semantic categories to be extracted
from the utterance and entered into a case frame. These are
compared with the reference set of semantic categories from
the SQL query.

 Results on parse coverage are shown in Table 1. “Full
Understanding” refers to utterances with exact matches
between the semantic categories in the case frame and those in
the SQL. “Partial Understanding” refers to partial matches.
“No Parse” occurs when no semantic categories were
extracted, due to out-of-domain words / word sequences. Our
results show that GH has extremely high coverage and
accuracy in understanding. Coverage of GSA is slightly lower,
and generally has lower rate in full understanding, which is
somewhat compensated by a higher rate in partial
understanding.

Understand
-ing

Training
(GSA, GH)

1993 Test
(GSA, GH)

1994 Test
(GSA, GH)

Full 78.9%,
84.8%

67.4%,
82.8%

62.6%,
73.9%

Partial 21.0%,
15.2%

29.3%,
17.2%

36.0%,
25.5%

None 0.1%,
0%

3.3%,
0%

1.4%
0.6%

Table 1. Results of semantic parsing based on the semi-
automatically generated grammar GSA and the handcrafted
grammar GH. Numbers are percentages.

 We also compared the grammars based on semantic
sequence evaluation. Both insertions and deletions were
considered. Table 2 shows that the two grammars have
comparable training set performance; GSA suffers from
degradation in test set performance when compared to GH.

Error Rate (GSA) Error Rate (GH)
Training Set 6.9% 6.3%
1993 Test Set 16.1% 8.3%
1994 Test Set 17.1% 13.0%

Table 2. Semantic sequence evaluation based on parsing with
the semi-automatically generated grammar GSA and the
handcrafted grammar GH.

IX. PORTABILITY ACROSS LANGUAGES

We have begun to investigate the portability of our approach
across languages. As a first step, we translated the ATIS
sentences from English to Chinese. Chinese is a character-
based language, and a word may range from one to multiple
characters. Using a segmentation algorithm based on forward
and backward maximum matching, together with a lexicon,

we tokenized each Chinese sentence in to a sequence of
Chinese words. We have a total of 370 sentences in all.

 Clustering proceeds with a minimum count of 5, and at N=5
merges per iteration. No prior knowledge was incorporated.
At iteration 12, the grammar inferred had 100 nonterminals
and 110 terminals. We observe some SCs that are overl
heterogeneous, and TCs that are too specific, mainly due to
sparse training data. However, we also see the formation of
reasonable semantic categories and phrase fragments, which is
encouraging. Rule examples include

SC2 � ���|��|����	
SC6 �
��|��|����
SC10 � ��|TP10, SC16 � ��|��
SC21 � ��|TP8, SC28 � �|��
SC29 � TP45|TP25|��
TP0 � � ��, TP1 � ! "
TP5 � #$ �%, TP8 � �� &
TP25 � '(� �) �% � �* +, �� &
TP45 � " - ./

X. CONCLUSIONS AND FUTURE WORK
 In this paper, we have presented our initial work on semi-
automatic grammar induction, for language understanding in
restricted domains. Our iterative clustering approach strives to
construct a grammar from unannotated corpora, since
annotation is time-consuming and expensive. Our approach is
semi-automatic, because the grammar inferred is intended to be
hand-revised for quality improvement. The clustering
algorithm is amenable to initialization with prior domain-
specific knowledge to catalyze grammar induction. The
algorithm also shows promise in portability across languages.
Comparison between GSA with a handcrafted grammar GH
shows that the semi-automatically acquired grammar has a
decent coverage in parsing for semantics. Semantic sequence
evaluation shows comparable training set performance. Test set
performance of GSA suffers some degradation but remained
above 83%. Results thus far are encouraging. Future work
will be devoted towards improving the grammar quality and
examining portability issues.

REFERENCES:

[1] Zue, V., "Conversational Interfaces: Advances and
Challenges," The 5th European Conference on Speech
Communication and Technology, keynote speech, pp. KN9-18.
[2] Arai, K., J. Wright, G. Riccardi and A. Gorin, “Grammar
Fragment Acquisition using Syntactic and Semantic
Clustering,” Proceedings of the ICSLP 1998.
[3] Chen, S., "Bayesian Grammar Induction for Language
Modeling," Proceedings of the COLING/ACL, 1995.
[4] Marcus, M., B. Santorini and M. Marcinkiewicz, "Building
a Large Annotated Corpus of English: The Penn Treebank,"
Computational Linguistics, 19(2), pp. 313-330, 1993.
[5] Francis, W. and H. Kucera, Frequency Analysis of English
Usage: Lexicon and Grammar, Houghton Mifflin Company,
1982.
[6] McCandless, M. and J. Glass, "Empirical Acquisition of
Word and Phrases Classes in the ATIS Domain," The 3rd

European Conference on Speech Communication and
Technology, 1993.
[7] Price, P., “Evaluation of Spoken Language Systems: The
ATIS Domain,” Proceedings of the ARPA Human Language
Technology Workshop, 1990, pp. 91-95.
[8] Meng H., W. Lam and C. Wai, “To Believe is To
Understand,” these proceedings.

