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Semiautomatic Acquisition of
Semantic Structures for Understanding
Domain-Specific Natural Language Queries

Helen M. Meng, Member, IEEE, and Kai-Chung Siu

Abstract—This paper describes a methodology for semiautomatic grammar induction from unannotated corpora of information-
seeking queries in a restricted domain. The grammar contains both semantic and syntactic structures, which are conducive to (spoken)
natural language understanding. Our work aims to ameliorate the reliance of grammar development on expert handcrafting or on the
availability of annotated corpora. To strive for reasonable coverage on real data, as well as portability across domains and languages,
we adopt a statistical approach. Agglomerative clustering using the symmetrized divergence criterion groups words “spatially.” These
words have similar left and right contexts and tend to form semantic classes. Agglomerative clustering using mutual information groups
words “temporally.” These words tend to co-occur sequentially to form phrases or multiword entities. Our approach is amenable to the
optional injection of prior knowledge to catalyze grammar induction. The resultant grammar is interpretable by humans and is
amenable to hand-editing for refinement. Hence, our approach is semiautomatic in nature. Experiments were conducted using the ATIS
(Air Travel Information Service) corpus and the semiautomatically-induced grammar Gg, is compared to an entirely handcrafted
grammar Gy. G took two months to develop and gave concept error rates of 7 percent and 11.3 percent, respectively, in language
understanding of two test corpora. Gs4 took only three days to produce and gave concept errors of 14 percent and 12.2 percent on the
corresponding test corpora. These results provide a desirable trade-off between language understanding performance and grammar
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development effort.

Index Terms—Grammar induction, semantic processing, natural language understanding, concepts extraction, knowledge

acquisition.

1 INTRODUCTION

OUR current age of information is characterized by the
convergence of computing, communication, and con-
tent. Round-the-clock, ubiquitous access to information and
services is increasingly becoming a necessity in our daily
lives. It is desirable to develop a human-computer interface
which enables a broad range of users to consult computers
for electronic information in a variety of application
domains. One promising solution is the use of natural
language, i.e., to ask verbal questions just as we do in
human-human communication. Natural language under-
standing, (NLU) is the core technology behind natural
language interfaces. NLU can be applied as a front-end
technology to a search engine for the Web. This will enable
both technical and nontechnical users to conduct advanced
searches (more powerful than keyword searches) without
rote memorization of syntax, e.g., for Boolean expressions.
The NLU technology can also be interfaced with speech
recognition in human-computer conversational systems,
which can handle the user’s queries in spoken form.
Natural language interfaces, and the NLU technology, will
become indispensable in the widespread provision of
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informational and transactional services, in speech-enabled
electronic commerce and other similar applications.

“Understanding” a natural language query refers to the
computer’s ability to transform the verbal form into
machine-readable semantics. In this work, we aim to
understand users’ information-seeking queries with a
degree of semantic precision needed for future incorpora-
tion into human-computer conversational systems, i.e., for
the human and computer to engage in a spoken language
dialog [1]. This is distinct from the NLU technologies
intended for processing free-form running text-passages,
where a designated meaning frame may be given [2], [3].
Presently, we choose to focus on NLU and regard the
integration of speech recognition as a next step, which is
beyond the scope of the current work.

NLU involves the extraction of key concepts from the
query, as well as inferring the informational goal(s) therein.
State-of-the-art NLU technologies are typically applied to
restricted domains in order to limit the scope of under-
standing. Most approaches involve parsing with a grammar
that is handcrafted by a grammarian. The key concepts in
an incoming query are derived from its parse tree. The
underlying informational goal is in turn obtained by direct
mapping according to heuristics designed by a knowledge
domain expert. Due to extensive handcrafting and heuristic
design in the approach, developing an NLU component for
a new domain or a new language often involves significant
time and effort on the part of the experts. This forms a major
bottleneck in the development of spoken natural language
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understanding systems. Furthermore, there is no guarantee
that the handcrafted grammar will have good coverage of
real data when deployed in real applications. Natural
language, especially in spoken form, is rife with aggrama-
tical constructs and disfluencies. This may be further
complicated with imperfect transcriptions due to speech
recognition errors.

To automate the grammar generation process, a corpus-
based grammar induction may be adopted as an alternative
[4], [5]. Corpus-based approaches are desirable in that the
grammar can model real data closely. The corpora are
annotated with some domain-dependent semantic tags or
domain-independent syntactic tags [6], [7].! Various gram-
mar induction algorithms can automatically capture pat-
terns in which syntactic structures and semantic categories
interleave into a multitude of surface forms. However,
hand-annotation of corpora may also be costly.

We attempt to devise a methodology to semiautomati-
cally capture language structures from unannotated corpora.
These structures need to be conducive towards language
understanding. This is essentially a grammar induction
process. The resultant grammar should contain language
structures that tightly couple semantics with syntax. Our
work is an attempt to expedite the process of grammar
design for natural language understanding in a prescribed
domain. We conceive of several desirable features for such a
methodology:

I. It may be corpus-based, but should ameliorate
reliance on annotated corpora.

2. Itshould be easily portable across different restricted
domains, as well as across languages.

3. The output grammar should have reasonable cover-
age of domain-specific data, and reject out-of-domain
data.

4. The output grammar should be intuitive and
amenable to interactive refinement by a human.

5. The process should accommodate the optional injec-
tion of prior knowledge to aid grammar induction.

We conceive of possible applications in data mining,
information extraction, and meta-data abstraction.

This paper is organized as follows: Section 2 describes
some previous work in semiautomatic NLU. Section 3
details our statistical, data-driven approach. Sections 4 to 7
recounts the application of our approach in the ATIS (Air
Travel Information Service) domain. Section 8 presents our
experimental results, as well as their analyses. Conclusions
and future directions are provided in Section 9.

2 PREVIOUS APPROACHES

NLU for restricted domains has been an active area of
research since the late 1980s. NLU forms a core component
in spoken language systems (SLS), most of which are
developed as question-answering systems within the dialog
context of a human-computer conversation. Research in
NLU was spurred by the launch of the DARPA Spoken
Language Systems (SLS) program in the United States, the

1. For example, part-of-speech tags, as in the Penn Treebank [6] and the
tagged Brown Corpus [7].

Esprit SUNDIAL? (Speech Understanding and DIALog)
and SUNSTAR programs in Europe, [1], [8]. Related
projects resulted in the development of SLU components
for a number of restricted domains that correspond to real
applications. The domains range from air travel (e.g., the
Air Travel Information Systems, ATIS [9], train schedules
(e.g., Railway Telephone Information Service, RAILTEL [10],
ESPIRIT Multimodal-Multimedia Automated Service Kiosk,
MASK [11], restaurant guide (e.g., The Berkeley Restaurant
Project, BeRP [12], ferry timetables (e.g., WAXHOLM) [13],
weather [14] and electronic automobile classifieds [15]. The
languages concerned include English and a variety of
European languages. Similar research was also initiated
recently for Mandarin Chinese in the navigation [16] and
banking domains [17].

There are generally, two streams in approaches to NLU,
one is primarily rule-based, while the other mainly data-
driven. However, there is no harsh distinction between
them. Each has its pros and cons and ideas and techniques
continue to cross-pollinate between the two streams.

2.1 The Rule-Based Approaches

Rule-based approaches generally involve hand-engineering
a grammar [12], [13], [18] to be used in parsing (with chart
parsers, GLR parsers, finite-state parsers, etc.). Grammars
may handle syntax only, semantics only, or a mixture of
both. In systems where parsing only involves syntax
checking [19], understanding (semantic checking) is per-
formed by a “semantic interpreter.” This maps the content
words in the parsed constituents into meaningful entries in
the semantic frame and the mapping is also based on hand-
engineered heuristics. Parsing with a grammar which
intermixes syntax and semantics [18] produces a parse tree
whose nonterminals may be directly mapped into entries in
the semantic frame. To handle disfluencies in spoken
queries, robust parsing was used [20], [21] to allow the
production of partial parsers from fragments of the input, as
well as the skipping of nonsensical filled pauses and false
starts. Parsed fragments are individually converted into
semantic frames, these are subsequently combined by hand-
designed heuristics to produce an overall semantic frame
for the entire input [20]. An emerging trend for tackling
robustness is to write purely semantic grammars [22], [23],
[24]. These systems gain flexibility by spotting key words
and phrases in a query as semantic fragments, which are
later combined according to handcrafted heuristics.

The rule-based approach has been demonstrated in a
number of systems to achieve NLU for restricted
domains. However, handcrafting grammar and heuristics
remains an expensive process which requires substantial
expertise and time. As the rules need to capture domain-
specific knowledge, pragmatics, semantics, and syntactics
altogether, it is difficult to write a rule-set that has good
coverage of real data without becoming unwieldy.
Furthermore, expansion of the scope of the domain, or
migration to other domains, often requires significant
effort [11]. The only leverage is to reuse prior grammars
for new domains whenever appropriate [25].

2. SUNSTAR focuses on the integration and design of speech under-
standing interfaces.
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2.2 The Data-Driven Approaches

This approach attempts to decode the semantics of an input
query by means of a stochastic model. Examples of this
approach include AT&T-CHRONUS [26], BBN-HUM [27],
and the LIMSI-CNRS systems [28]. Semantic decoding is
accomplished by searching for some meaning A/ such that
P(M|W) is maximized for the word sequence W. This
approach involves learning the correspondence between
designated semantic labels (concepts) and words from a
large annotated corpus. A suite of modeling techniques
have been applied. For example, Hidden Markov Models
(HMMs) were used [26], [28], where words are modeled as
observations and concepts are the hidden states. Probabil-
istic recursive transition networks were also used [27],
where understanding involves searching through the state
space for the “best” path, which corresponds directly to a
meaning tree. In addition, an information-theoretic source-
channel model [29] has been used to map spoken language
into a formal language especially designed to represent
meaning. Finally, decision trees were grown stochastically
with reference to annotated training data [30].

Stochastic approaches attempt to circumvent the tedium
and expertise required in handcrafting grammar rules.
Since model parameters are estimated directly from training
data, these approaches tend to have good data coverage.
However, stochastic modeling requires large training
corpora annotated with semantic units or concepts and
performance degrades drastically with sparse training data
problems. Therefore, the problems with these approaches
are that manual annotation is costly and the acquisition of
sufficient amounts of training data may be formidable for
some knowledge domains, e.g., the Yellow Pages.

There is also the “phrase-spotting” approach that has
emerged in some recent work. It involves the process of
automatic phrase extraction using some association or
similarity measures, such as, Mutual Information and
Kullback-Liebler distance. Some of these are considered to
be “salient” phrases that are “significant and frequently
co-occurring patterns relevant to the domain-specific
subject.” These phrases are clustered into “grammar
fragments” in [4], which are subsequently used for call-
type classification in AT&T’s “How May I Help You?”
telephone application. Call-type classification is achieved
by computing and maximizing the association probabil-
ities between the grammar fragment and various call-
types. Alternatively, call-type classification may be
achieved by vector-based information retrieval techniques
applied to keywords [31]. The phrase-spotting approach
is also used in a Chinese system for telephone directory
assistance in the banking domain [32]. The extracted
phrases are clustered and each cluster is labeled with a
concept tag name.

3 A SEMIAUTOMATIC, DATA-DRIVEN APPROACH

In this work, we devise a semiautomatic methodology to
capture language structures from unannotated corpora. We
strive to induce a grammar for natural language under-
standing in a prescribed domain. Ours is a statistical, data-
driven approach, inspired by previous work on language
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modeling for speech recognition by McCandless and Glass
[33]. We would like to extend a similar framework to
accomplish understanding of natural language.

An iterative procedure is used to cluster the words from
a corpus of sentences in a restricted domain. Clustering is
implemented both spatially and temporally. By spatially
clustering, we are grouping words which have similar left
contexts as well as right contexts. These clusters generally
consist of words with similar semantics. By temporal
clustering, we are grouping words which tend to co-occur
sequentially. These clusters generally constitute phrases or
multiword named entities.

For spatial clustering, we considered the Kullback-
Liebler distance [34]—an information-theoretic distance
between two probability distributions p; and p, (1):

Vv

Dlpllp) = Ym0 o2, (1)

where V' is the vocabulary size within the given context. It
should be noted that D(pi[|p:) =0 if p; and p, are
equivalent. In order to acquire a symmetric distance
measure, we used the divergence measure (2):

Div(py, p2) = D(p1||p2) + D(p2||p1), (2)

All probabilities are estimated by tallying counts from
the training sentences, with appropriate smoothing. At the
onset of spatial clustering, all the words in the training set
(with at least the preset minimum occurrence) are con-
sidered pairwise. We compute the “distance” (see (3))
between a pair of words (or word clusters for later
iterations), which is the sum of the divergences of
probability distributions of the words to the left and right
of the entities (e, es):

Dist(ey,e9) = Div(p]'fﬁ,pgeﬁ) + Div(p?ghr’,p;ght). (3)

The N most similar pairs are clustered and assigned the
spatial cluster label SC;, where ¢ is a counter which
increments automatically as spatial clusters are formed.
Subsequently, all the words in the training set are
substituted with their corresponding spatial cluster label.
Spatial clustering is expected to produce semantic cate-
gories. After spatial clustering, the process proceeds to
temporal clustering.

For temporal clustering, we adopt Mutual Information
(MT1) [24] as our distance measure (see (4)), to indicate the
degree of cooccurrence of two consecutive entities (words,
or word sequences).

Plesler)

MI(e1,e2) = Pley,eq)log Ples) (4)

Again, only words with at least the minimum number of
occurrences are considered. The NN pairs of entities with the
highest M1I are selected to form temporal clusters, which
are labeled TC;, where i is a counter which increments
automatically as the temporal clusters are formed. The
training sentences then undergo a pass whereby appropriate
entities are substituted with their T'C' labels. Temporal
clustering is expected to produce phrasal structures. The
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TABLE 1
The ATIS-3 Class A Corpus
1993 Training | 1993 Test | 1994 Test
Transcribed Utterances 1,564 448 444

process then alternates to the next iteration of spatial
clustering.

Iterative clustering produces a context-free grammar,
which is postprocessed with hand-editing. Hence, our
approach is semiautomatic. The hand-revision process
serves to organize grammar nonterminals (SC and T'C),
identify those that contribute to language understanding
and label them with semantically relevant tags. The
resultant grammar should reflect the ontology of the
domain. The grammar may be evaluated by either compar-
ing the semiautomatically derived language structures with
those which are handcrafted, should the latter be available
or by implementing a semantic parser which utilizes the
grammar to parse data sets, and examining the language
understanding performance.

4 EXPERIMENTAL CORPUS

Our experimental corpus is based on the training and test
sets of the ATIS (Air Travel Information Service) domain
[9]. ATIS is a common task in the ARPA (Advanced
Research Projects Agency) Speech and Language Program
in the USA. We used the Class A sentences of the ATIS-3
corpus. ATIS-3 [35] is based on a domain-specific
database, the Official Airline Guide (OAG). The corpus
of spontaneous speech utterances is divided into disjoint
training and test sets, as shown in Table 1. Text
transcriptions of these utterances are provided, as well
as the corresponding SQL queries for retrieval from the
relational database. “Class A” sentences refer to ones
whose interpretation is independent of the dialog context.
Some examples include:

e  “chicago to san francisco on continental,”

e  “give me the least expensive first class round trip ticket on
u s air from cleveland to miami,”

o “what is the smallest aircraft available flying from
pittsburgh to baltimore arriving on May seventh?”

Each query also has its corresponding SQL tag for database
retrieval, e.g.:

e “Show me the northwest flights from detroit to boston on
sunday.”

e Select FLIGHT_ID from ORIGIN, DESTINATION where
AIRLINE_NAME = “northwest” and ORIGIN.CITY_-
NAME = “detroit” and DESTINATION.CITY_NAME =
“boston” and DAY_NAME = “sunday.”

5 UNSUPERVISED AGGLOMERATIVE CLUSTERING

Our unsupervised agglomerative clustering procedure
requires two parameters: M, the minimum number of
occurrences of a word before the procedure will operate
and N, the number of clusters (merges) produced per

iteration. We intend to use M to prevent grammar induction
based on sparse data and N to prevent overly aggressive
clustering which forms heterogeneous clusters. Based on
several experimental trials, we chose to set M =5. We
experimented with the number of merges per iteration, NN,
for the values N =1 and N =5.

With N = 1, each iteration searches through the space of
all entity-pairs, to produce an SC and a T'C. This process is
computationally expensive. Having proceeded through
17 iterations of clustering, our algorithm produced 34 spatial
and temporal categories, two of which we deemed
irrelevant because their constituents do not form a coherent
semantic class for database access. Example rules, including
the two irrelevant rules, are shown in the following;:

SCy — layover | stopover

SC3; — numbers | times irrelevant
SCs — cheapest | last irrelevant
SCyy — could | can

SCj2 — mnashville | toronto

TCy, — (flights from

TCs — round trip

TCy — show me all

TCy5 — los angeles

TCis — salt lake.

Upon investigation, SC3 and SC; may be pardonable
offenses. The words “numbers” and “times” were merged,
due to many instances of “...flight numbers from...” and “...
flight times from...”. The words “cheapest” and “last” were
merged, due to many instances of “...the cheapest flight...”
and “...the last flight...”.

With N =5, our algorithm produced 47 spatial and
temporal categories after only five iterations, equivalent to
one fifth of the previous processing time. One might expect
to obtain more spatial and temporal categories, because five
iterations each with five spatial merges and five temporal
merges should produce 50 categories. However, there are
cases when multiple merges from the same iteration were
collapsed. For example, three of the five proposed merges
from one iteration were (nashville, toronto), (nashville, tampa),
and (detroit, nashville). In this case, our algorithm produced
a single spatial category and, therefore, we are able to
quickly generate nonterminals with a greater number of
terminals. For example:

SC; — nashville | toronto | tampa | detroit.

Similar phenomena emerged for the temporal categories.
For example, in one iteration the proposed merges were
(salt lake), (lake city), etc. Our algorithm considers across the
proposed merges and looks for cases where the second
candidate of a pair coincides with the first candidate of
another pair. For these cases, the algorithm exhaustively
generates the possible combinations, e.g., “salt lake city.” All
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Fig. 1. Growth of grammar units along increasing iterations in the grammar induction process.

the generated combinations are merged first. The merge
sequence is in descending order according to the size of
combinations. Then, merging of proposed pairs is in
decreasing order of MI. As a result, we produced T'Cis —
salt lake city, TChyg — salt lake, but the merge of (lake city) is
discarded as all the occurrences have been replaced.

Our resultant grammar (47 categories, N = 5) is a superset
of the previous grammar (34 categories, N = 1). The extra
13 categories are all relevant, e.g.,

SCyy — francisco | jose
SCi5 — los angeles
SCis — san SCy.

We concluded that NV =5 is a better parameter setting for
this domain. The merging is more aggressive and seems to
produce an equally good grammar with fewer iterations.

Clustering was allowed to proceed to 100 iterations. We
monitored its progress by keeping track of the nonterminal
(SC and T'C) and terminal categories in the grammar (see
Fig. 1). As the grammar grows, the number of terminals
saturated at around iteration 50, to a count of 280. This
covers a fraction of the vocabulary (531 words in all) from
the training set. The remaining words are those which did
not meet our minimum count requirement. The number of
SCs grew slowly to 161 at iteration 100, and they were
mainly semantic categories and inflectional variations. The
growth rate of 7'C's dominated the overall growth rate of the

nonterminals, reaching 474 T'C's at iteration 100.
The TCs were mainly phrasal structure as expected.

Examples of SCs and T'C's include:

50 60 70 80 90 100
Iterations

SCy —  december|february month

SC7;  —  nashville[toronto|tampa|detroit| SCs  city name
SCh7 —  june | march month
SCy  —  serve | serves infectional forms
SChs  —  monday |wednesday | thursday day of week
TCo —  to SC; to stopover
TCos —  S8C; to origin

TCo7 —  to SC; destination
TC3  —  first class class type
TCy5 —  one way
TCyy —  flights from SC; to SCyo a phrase.

As we tracked the clustering process, we noticed that
within the first 10 iterations, the algorithm has already
discovered 11 useful semantic categories as SC's, as well as
some proper names spanning two words, e.g., “los angeles.”
Between the iterations 10 and 20, only two more useful
semantic categories were discovered. The T'C's produced at
this stage begin to have three words e.g., “new york city,”
Beyond iteration 20, we begin to see merging of SCs and
TC's into phrase fragments e.g.,

T0323 — SCQ7 ﬂlghts from SC7 to
where
SC7 — nashville | toronto | tampa | detroit | ...
5027 —  list ‘ show | TCQg (liSt the) |
TCyy (show me all the ) |
SCs7 | TCss (please list the)
SCs;  —  TCy (show me) | TCy; (what are the),

It is noticeable that some automatically discovered
categories capture domain-specific knowledge that one
could have easily given to the algorithm such as, city name,
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Fig. 2. Growth of grammar units alongside increasing iterations, for grammar induction seeded with prior knowledge.

digit, etc. We also observe rules that are close renditions of
one another:

TCy9 — flights from SC; to SCi
TCQgg — ﬂights from SC7 to SCQ(;
TCs6y — flights from SC7 to SCs.

Since SCs, SC7, SC12, and SCy are all city names, we
manually collapsed T'Chyg, T'Cag9, and T'Csss into a single
category. We compared our automatically derived clusters
(SCs and T'Cs) with the SQL annotations that accompany
the training utterances. We found direct relevance between
20 of our clusters with the SQL attribute labels. These
20 categories have previously been automatically discov-
ered and, thus, may not possess the complete set of
terminals (e.g., SC%). Alternatively, a single semantic
category may be distributed over multiple categories (e.g.,
SC4 and 5017).

These observations prompted our idea of seeding the
clustering algorithm with basic domain-specific knowledge.
This should serve to jump-start our grammar induction
process, and enable the algorithm to proceed further with
even fewer iterations.

6 INJECTION OF PRIOR KNOWLEDGE

As we referenced the grammar nonterminals formed from
unsupervised clustering, we tagged 20 of them with
semantic labels (to replace SC; and T'C;). These are basic
semantic classes for our domain, which were automatically
derived. Our tags include AIRLINE_NAME, AIRPORT_NAME,
CITY_NAME, etc. We further compiled these categories to

become seed categories (SCj to SC)y) for initializing our
clustering algorithm. Compilation involves the consolida-
tion of multiple SC's into a single semantic class, as well as
completion of the set of terminals belonging to a given
nonterminal. Clustering was allowed to run through
80 iterations with N = 5. Again, we monitored the grammar
inference process—Fig. 2 shows the clustering that was
initialized with 398 terminals from the seed categories.
These include vocabulary entries below the minimum count
of five, as well as inflectional forms of words that have not
occurred in the training data. The growth of terminal
categories began to saturate within 20 iterations to 508. We
manually found iteration 40 to be a suitable termination
point, beyond which over-clustering aggravated and
produced many heterogeneous groupings. At this point,
we recorded 74 SCs, 213 TCs, and 532 terminals.
Inspection reveals that seed categories catalyzed the
formation of longer phrasal structures with fewer iterations.
Weattempt toillustrate this with the following example rules:

TCis3 — SCj flights between SCs and SCo

TCw; — SCH SCl ﬂights SCH) SCQ SCU SCQ

TC’186 — ﬂight SCLL') SClG SCQ SCU SCZ

where

SCy — air canada | alaska airlines | america west...
SCy — atlanta | baltimore | boston

SC3 — business class | economy | first class | ...
5015 — Sclr, SClr) ‘ oh ‘ Zero | one

SCyg — from

SCy;  —  to

SCy9 — list | show | list the | ....
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7 POSTPROCESSING

The grammar produced from 50 iterations of unsupervised
clustering was postprocessed by hand-editing. The editing
procedures include:

1. Replacing some of the SC; and T'C; tags with
meaningful labels, e.g., city name, month, etc.

Before : SC; — nashville | toronto | tampa |
detroit | ...
After : CITY.NAME — nashville | toronto |

tampa | detroit | ....

2. Completing the set of terminals for some categories,
e.g., days of week.

Before : SC; — monday | wednesday | thursday
After :SC; — monday | wednesday | thursday |
tuesday | friday |saturday |sunday.

3. Consolidating grammar categories which belong to
the same semantic class.

Before : SC; — december | february
SC; — june | march

After SC; — december | february | june | march.

4. Pruning irrelevant nonterminals and terminals.®

Before: SC5 — e-wr |mc.o|SCis
SCLI', — ff | h_p
SC5 — number | tomorrow

After SC5 — e-wr | m-c.o

5015 — ff | h,p

Such hand-editing produced 20 seed categories for the
subsequent process of seeded grammar induction. This time
the grammar produced from 40 iterations was also hand-
edited using Procedures 1, 2, and 4 described above.
Postprocessing took around five hours to produce a
grammar with 36 nonterminals and 446 terminals.

8 EVALUATION

The grammar inferred from 40 iterations was post-processed
manually, and this semiautomatically generated grammar
(Gsa) was compared with a handcrafted grammar (G). Gsa
and Gr were developed independently by two different
individuals. Gy took two months to develop, while the
development of G4 took only three days. Gy was manually
designed to capture the key semantic categories from the
training set. Gg4 has 36 nonterminals and 446 terminals. Gy
has 66 nonterminals and 483 terminals. Out of the 36 non-
terminals in Gy, 20 were inferred seed categories used for
semiautomatic grammar induction. This set of nonterminals

3. SC5 : airport name.
4. SCy5 : airline name.
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TABLE 2
The Size of Semiautomatically Generated
and Handcrafted Grammars

Grammar Non-terminals | Terminals
Semiautomatically generated (Gga4) 36 446
Handcrafted (Gyr) 66 483

was also found to be present in a similar form in the
handcrafted grammar Gp. The remaining 16 nonterminals in
Gg4 were obtained from automatic clustering, and survived
pruning during the hand-revision, e.g.,

FLIGHT NUMBER — FLIGHT DIGIT
(e.g.,” flight four seventeen”)
TIME_VALUE — PRE_TIME DIGIT

(e.g.,”after ten twenty sixz”).

Using each of these grammars, we parsed our data sets to
retrieve the key semantic concepts of each query. The SCs
in our grammars specify the key semantic categories to be
extracted from the utterance and entered into a case frame.
These are compared with the reference set of semantic
categories from the SQL query (see Table 2).

Fig. 3 illustrates our experimental procedure. In the
ATIS-3 corpora, each informational query from the user is
accompanied by its reference SQL query for database
retrieval. The SQL query provides a list of attribute label-
value pairs for our reference and evaluation. For each
grammar, we parsed the natural language query to obtain
a semantic frame from the parse tree. This is the semantic
representation of what was understood from the natural
language query. During this experimental process, we can
evaluate each grammar in turn based on its coverage of
the test set. We can also compare the semantic frame with
the reference attribute label-value list, to see how many of
the concepts have been correctly extracted.

Results on parse coverage are shown in Table 3. “Full
Understanding” refers to utterances with exact matches
between the semantic categories in the case frame and
those in the SQL. “Partial Understanding” refers to partial
matches. “No Understanding” occurs when no semantic
categories were extracted, due to out-of-domain words/
word sequences. Our results show that Gy has extremely
high coverage and accuracy in understanding. Coverage
of the Ggy is slightly lower and, generally, has a lower
rate than Gy in full understanding. This is somewhat
compensated by a higher rate in partial understanding.
The error rate for test set 1994 is higher, in general, since
the training set was collected in 1993 and bears greater
resemblance to the test set for 1993.

We also compared the grammars based on concept
sequence evaluation. This is based on the evaluation
method used in the SUNSTAR program [8] and also similar
systems [28]. Concepts that are missing from the semantic
frame are regarded as deletions. Additional concepts that
appear in the semantic frame, but did not appear in the
reference frame are regarded as insertions. The remaining
differences are substitutions. The rates of substitution,
deletion and insertion are summed to form the overall
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Utterance

“‘show me the northwest flights
from detriot to boston on sunday’

Parse with grammar

Simplified SQL Query

select FLIGHT_ID from ORIGIN, DESTINATION
where AIRLINE_NAME = “‘northwest’’

and ORIGIN.CITY_NAME = “‘detroit”

and DESTINATION.CITY_NAME = “*boston”
and DAY_NAME = “‘sunday”’

Gsaor Gy
Direct mapping
Semantic Frame Attribute Labels and Values
ORIGIN : detroit Evaluation ORIGIN : detroit
DESTINATION : poston ¢ > DESTINATION : poston
AIRLINE_NAME : yorthwest AIRLINE_NAME : northwest
DAY_NAME : sunday DAY_NAME : sunday

Fig. 3. Process of evaluating the performance of understanding ATIS queries—each semantic frame generated is compared against the attribute

labels from the corresponding SQL query.

error rate. Table 4 shows that the two grammars have
comparable training set performance. Gg4 suffers from
degradation in test set performance when compared to
G p—this is a sign of overfitting to the training data due to
our statistical approach.

Inspection reveals that the main cause of the inferior
performance of Gg4 (lower coverage, higher error rate),
when compared to G, was the absence of a number of
semantic grammar rules which can contribute to under-
standing. These rules were not generated during the
automatic grammar induction process because they in-
volved entities whose occurrences were fewer than our
minimum count threshold (parameter M =5 in the gram-
mar induction algorithm), e.g.,5

AIRCRAFT_CODE — d ten | seven fifty seven | m eighty |...

MANUFACTURER —  boeing | medonell douglas

TRANSPORT_TYPE —

limousine | train | rental car | ...

The effect of missing grammar rules propagated and
affected higher levels in the grammar structure such as:

AIRCRAFT_INFORMATION—-MANFACTURER AIRCRAFT_CODE
e.g.,"show me all flights from orlando to san diego on a boeing seven thirty”
AIRCRAFT_INFORMATION—AIRCRAFT AIRCRAFT_CODE

e.g.,"how many canadian airlines iternational flights use aircraft three twenty.”

A second reason for a lower performance in the Gg4 was
due to ambiguities in semantics within the domain. For
example, “washington” and “new york” can either be in
category CITY_NAME or STATE_NAME. Our grammar induc-
tion algorithm was able to extract temporal clusters such as
“tacoma washington” and “westchester county new york” from

5. This is a type of aircraft, (see below aircraft code).

utterances such as: However, similar occurrences were too
few to allow the induction of the rule:

CITY_STATE_PAIR — CITY_NAME STATE_.NAME

"what flights do you have from burbank to tacoma washington”

" flights from denver to westchester county new york weekdays”

Additionally, a third reason for lower performance for the
Gga was due to the inability to infer more complex rules
such as:

TIME_RANGE —  DIGIT CONNECTIVE TIME_VALUE

where
TIME_VALUE —  DIGIT TIME_UNIT
DIGIT —  DIGIT DIGIT| zero | one |...

which covers sentences, e.g.,

“tell me about flights from toronto to salt lake city leaving

toronto between five thirty and seven pm.”

These factors all contribute towards concept extraction
errors in the semantic frame. Such error analyses provide
valuable information for grammar postprocessing and the
necessary rules can be easily inserted to augment our
automatically induced grammar.

We do not know of other work that utilizes a semiauto-
matic grammar induction approach in similar tasks. Minker
[28] has reported on the use of a rule-based approach to
produce annotated corpora to train a Hidden Markov
Model (HMM) for language understanding. Performance
on the 1994 test set gave a concepts error rate of 14.4 percent.
A semiautomatic approach was also devised where an
HMM is trained on a small amount of data, and used to
annotate the entire training data set. The annotation was
hand-corrected and the HMM was retrained with the
refined annotation. This produced a concept error rate of
13.7 percent on the 1994 test set. Hence, we believe that our
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TABLE 3
Result of Semantic Parsing Based on the Semiautomatically Generated
Grammar (Gs4) and Handcrafted Grammar (Gy)

Training Set 1993 Test Set | 1994 Test Set
Understanding | Gga Grr Gsa G Gsa G
Full 86.9% | 875% | 804 % | 83.5% | 76.8 % | 786 %
Partial 130% | 1256% | 165 % | 145 % | 21.8% | 202 %
No 01% 0.0 % 31 % 0.0 % 1.4 % 1.1 %

semiautomatic grammar induction approach achieves a
performance comparable to other similar work.

9 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented our semiautomatic approach
for grammar induction to achieve language understanding in
restricted domains. Our agglomerative clustering technique
strives to construct a grammar from unannotated corpora
since annotation with semantic tags is both time-consuming
and expensive. Our approach is semiautomatic because the
inferred grammar is intended to be hand-revised for quality
improvement. The clustering algorithm is amenable to
initialization with prior domain-specific knowledge to
catalyze grammar induction. This initialization produced
noticeable improvement in performance.

A handcrafted grammar Gy was designed indepen-
dently based on the same training corpus. Gy took two
months to develop and Ggy took three days. These three
days include the unsupervised grammar induction run, the
seeded grammar induction run, as well as the hand
refinement postprocess.

Comparison between Gg4 with Gy shows that the
semiautomatically acquired grammar has good coverage
for our two (disjoint) test sets in parsing for understanding.
Gsa achieved full understanding for 80.4 percent for the
1993 test set and 76.8 percent for the 1994 test set.
Corresponding values for Gy are 85.5 percent and 78.6
percent, respectively. Evaluation based on the semantic
sequences (concept accuracies) shows comparable training
set performance. Test set performances of Gg4 suffer some
degradation, giving 14.0 percent for the 1993 test set and
12.2 percent for the 1994 test set. Corresponding values for
Gy are 7.0 percent and 11.3 percent, respectively. Con-
sidering the trade-off between development time and

TABLE 4
Semantic Sequence Evaluation Based on Parsing with the
Semiautomatically Generated Grammar G4 and the
Handcrafted Grammar Gy

Error Rate of G54 | Error Rate of Gy
Traning Set 3.5 % 5.2 %
1993 Test Set 14.0 % 7.0 %
1994 Test Set 122 % 11.3 %

grammar performance, these results are encouraging.
Future work will be devoted towards improving the
grammar quality and examining portability across lan-
guages and domains.
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