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ABSTRACT

This work investigates the vulnerability of Gaussian Mixture Model
(GMM) i-vector based speaker verification systems to adversarial
attacks, and the transferability of adversarial samples crafted from
GMM i-vector based systems to x-vector based systems. In detail,
we formulate the GMM i-vector system as a scoring function of en-
rollment and testing utterance pairs. Then we leverage the fast gradi-
ent sign method (FGSM) to optimize testing utterances for adversar-
ial samples generation. These adversarial samples are used to attack
both GMM i-vector and x-vector systems. We measure the system
vulnerability by the degradation of equal error rate and false accep-
tance rate. Experiment results show that GMM i-vector systems are
seriously vulnerable to adversarial attacks, and the crafted adversar-
ial samples prove to be transferable and pose threats to neural net-
work speaker embedding based systems (e.g. x-vector systems).

Index Terms— Adversarial attack, speaker verification, GMM
i-vector, x-vector

1. INTRODUCTION

Automatic speaker verification (ASV) systems aim at confirming a
spoken utterance against a speaker identity claim. Through decades
of development, the speaker verification community has made great
progress and applied this technology in many biometric authentica-
tion cases, such as voice activation in electronic devices, ebanking
authentication, etc.

However, past research has shown that ASV systems are vul-
nerable to malicious attacks via spoofing speech, such as imperson-
ation [1, 2], replay [2, 3], speech synthesis [4, 5] and voice conver-
sion [6]. Among these four types of spoofing attack, replay, speech
synthesis and voice conversion pose the most serious threats to ASV
systems. The created spoofing speech could sound extremely close
to the voice of the target person. Moreover, ASV systems could also
be spoofed even though the spoofing speech sounds like the voice
of the imposter from human perception. It will expose the systems
to some other dangerous situations, such as controlling one’s voice-
operated devices in place of the real owner unbeknownst to him/her.
These threats could be posed by adversarial attacks.

According to [7–9], deep neural networks (DNNs) with impres-
sive performance can be vulnerable to simple adversarial attacks
in many tasks, such as face recognition [10, 11], image classifica-
tion [12, 13], and speech recognition [14]. However, to the best of
our knowledge, the only work that applied adversarial attack into
ASV systems is [15] where they verified the vulnerability of an end-
to-end ASV system to adversarial attacks. Briefly, there are three

representative ASV frameworks: i-vector speaker embedding based
systems [16–19], neural network (NN) speaker embedding based
systems [20, 21] and end-to-end approaches [22–24]. While end-
to-end based systems have proved to be vulnerable to adversarial at-
tacks, the robustness of other approaches, including GMM i-vector
based systems and NN speaker embedding based systems (e.g. x-
vector systems we implement), still remains to be explored. GMM
i-vector based systems are widely applied to biometric authentica-
tion, and it is imperative to investigate their robustness to such ad-
versarial attacks.

Adversarial attacks aim at perturbing the system input in a pur-
posefully designed way to make the system behave incorrectly. The
perturbations are usually subtle so that human cannot perceive dif-
ferences between the adversarial and original inputs. There are two
main attack scenarios: white box attack and black box attack. The
white box attack allows the attacker to access the complete param-
eters of the system, so that the system function could be directly
involved to optimize the input perturbations. The black box attacker
only has the access to the system’s input and output, and the adver-
sarial samples are usually crafted by other substitute systems.

For adversarial samples generation, many algorithms were pre-
viously proposed to solve the perturbation optimization problem,
such as fast gradient sign method (FGSM) [9], basic iterative method
(BIM) [25] and DeepFool [26]. In this work, we simply adopt FGSM
to verify the ASV system’s vulnerability to adversarial attacks.

This work focuses on the vulnerability of GMM i-vector systems
to adversarial attacks, and the transferability of adversarial samples
crafted from i-vector systems to x-vector systems. Specifically, we
perform both white and black box attacks on GMM i-vector systems
and black box attacks on x-vector systems. The detailed attack con-
figurations are illustrated in Section 3. In this work, FGSM [9] is
adopted for adversarial perturbations optimization. Our codes have
been made open-source1.

This paper is organized as follows. Section 2 introduces the
ASV systems adopted in our experiments. The adversarial attack
configurations and the FGSM optimization algorithm are illustrated
in Section 3. Section 4 and 5 describe the experimental setup and
results, respectively. Finally, Section 6 concludes this work.

2. AUTOMATIC SPEAKER VERIFICATION SYSTEMS

This work includes the GMM i-vector and x-vector systems in the
experiments. Both kinds of systems have two parts: a front-end

1https://github.com/lixucuhk/adversarial-attack-on-GMM-i-vector-
based-speaker-verification-systems



Fig. 1. The illustration of GMM i-vector extractor

for utterance-level speaker embedding extraction and a back-end
for speaker similarity scoring. The probabilistic linear discriminant
analysis (PLDA) back-end is adopted in all the experiments.

2.1. Gaussian Mixture Model i-vector extraction

The illustration of GMM i-vector extractor [16] is shown in Fig. 1. It
consists of a Gaussian Mixture Model-universal background model
(GMM-UBM) and a total variability matrix (T matrix). Given the
acoustic features of utterance i, GMM-UBM is used to extract the
zeroth (Ni) and first (f̃i) order statistics by Baum-Welch statistics
computation. The statistics information is incorporated with T ma-
trix to extract i-vector ωi as Eq. 1,

ωi = Li
−1T>(Σ(b))−1f̃i (1)

where Li = I + T>(Σ(b))−1NiT , I is the identity matrix and
Σ(b) is the covariance matrix of GMM-UBM.

2.2. x-vector extraction

The x-vector extractor [21] leverages DNNs to produce speaker-
discriminative embeddings. It consists of frame- and utterance-level
extractors. At the frame level, acoustic features are fed forward by
several layers of time delay neural network (TDNN). At the utter-
ance level, statistics pooling layer aggregates all the last frame-level
layer’s outputs and computes their mean and standard deviation. The
mean and standard deviation are concatenated together and propa-
gated through utterance-level layers and finally softmax output layer.
In the testing stage, given acoustic features of an utterance, the em-
bedding layer output is extracted as the x-vector.

2.3. Probabilistic linear discriminant analysis back-end

PLDA is a supervised version of factor analysis [27]. It models i-
vectors/x-vectors (ω) by Eq. 2,

ω =m+ Φβ + εr (2)

where m is a global bias term, the columns of Φ provides a basis
of speaker-specific subspace, and β ∈ N(0, I) is a latent speaker-
identity vector. The residual term εr ∈ N(0,Σ) has a Gaussian
distribution with zero mean and a full corvariance matrix Σ. The
model parameters {m, Φ, Σ} are estimated with the expectation-
maximization (EM) algorithm on the training set.

In the testing stage, score S is estimated as a log likelihood
ratio of two conditional probabilities (Eq. 3). ω1 and ω2 are i-
vectors/x-vectors extracted from enrollment and testing utterances,
respectively. Hs is the hypothesis that two utterances belong to the

Fig. 2. The adversarial attack configuration. Each arrow represents
an attack setting, where it points from the source model to the target
model.

same identity, whereasHd is the opposite.

S = log
P (ω1,ω2|Hs)
P (ω1,ω2|Hd)

= log
P (ω1,ω2|Hs)

P (ω1|Hd)P (ω2|Hd)
(3)

3. ADVERSARIAL SAMPLES GENERATION

In this work, we investigate the vulnerability of ASV systems
to adversarial attacks, including the white box attack and black
box attacks in terms of cross-feature, cross-model architecture and
cross-feature-model settings. Three ASV models are well-trained in
our experiments: Mel-frequency cepstral coefficient (MFCC) based
GMM i-vector system (MFCC-ivec), log power magnitude spec-
trum (LPMS) based GMM i-vector system (LPMS-ivec) and MFCC
based x-vector system (MFCC-xvec). The white box attack and
black box mutual attack settings are illustrated in Fig. 2. Two white
box attacks are performed on MFCC-ivec and LPMS-ivec systems,
respectively. The three black box attack settings are designed as
follows: LPMS-ivec attacks MFCC-ivec (cross-feature), MFCC-
ivec attacks MFCC-xvec (cross-model architecture) and LPMS-ivec
attacks MFCC-xvec (cross-feature-model). The last two settings are
to investigate the transferability of adversarial samples crafted from
GMM i-vector systems to x-vector systems.

To perform the attacks above, adversarial samples need to be
crafted from the source models, i.e. LPMS-ivec and MFCC-ivec
in our case. In this work, we generate adversarial samples at the
acoustic feature level, i.e. either MFCC or LPMS. In the black box
attacks of cross-feature and cross-feature-model settings, the gener-
ated adversarial features (LPMS) are first inverted to audios, then the
acoustic features adopted in the target models are extracted from the
audios to perform attacks. In other cases, the adversarial features
could be directly used for attacks.

3.1. Fast gradient sign method

In a general case, we denote a system function as f with param-
eters θ. Given the original input x, we search for an adversarial
perturbation δx to be added to x to generate the adversarial sam-
ple x? = x + δx. This adversarial perturbation δx is optimized
by maximizing the deviation between the system’s prediction given
adversarial input x? and the ground truth y, as shown in Eq. 4,

δx = arg max
‖δx‖p≤ε

L(fθ(x+ δx), y) (4)



The deviation is measured by a loss function L between the system
prediction and the ground truth, which is usually adopted as either
cross entropy for classification tasks or mean square error for re-
gression tasks. The p-norm constraint on δx guarantees that human
cannot distinguish the adversarial sample x? from the original x,
and the upper bound ε represents the perturbation degree. Note that
the system parameters θ are always fixed during the optimization
procedure, which means adversarial attackers only revise the input
to attack systems instead of the system parameters.

In this work, we adopt fast gradient sign method (FGSM) [9] to
solve the optimization problem in Eq. 4. It perturbs the original input
x towards the gradient of the loss function L w.r.t. x to generate
adversarial samples. Specifically, it specializes the norm p in Eq. 4
as∞, and gives the solution as Eq. 5,

δx = ε× sign(∇xL(fθ(x), y)) (5)

where the function sign(·) takes the sign of the gradient, and ε rep-
resents the perturbation degree.

3.2. Problem formulation

Adversarial samples are generated from GMM i-vector systems
(LPMS-ivec and MFCC-ivec systems). To formulate it into an op-
timization problem, we denote the GMM i-vector system by two
functions: i-vector extractor f with parameters θ1 and PLDA scor-
ing function S with parameters θ2. Normalization steps, such as
i-vector normalization, are implicitly included within the functions.

The acoustic features of each utterance i are denoted as ma-
trix Xi, where each column represents the acoustic feature of each
frame and the horizontal axis represents the time sequence. Given
the acoustic features of two utterances Xi and Xj , the correspond-
ing i-vectors are derived as ωi = fθ1(Xi) and ωj = fθ1(Xj),
respectively. Then the final similarity score (PLDA score adopted
in our experiments) based on these two i-vectors is derived as
Sθ2(fθ1(Xi), fθ1(Xj)).

In the ASV testing stage, each testing trial consists of one en-
rollment utterance Xi and one testing utterance Xj . According to
the speaker identities behind these two utterances, there could be two
kinds of trials: target trials and non-target trials. In target trials, the
speaker identities behind the enrollment and testing utterances be-
long to one person. In non-target trials, the identities belong to two
different persons. To mimic a realistic model attack, we keep the en-
rollment features Xi and the system parameters {θ1, θ2} fixed and
revise the testing features Xj for adversarial samples generation.
For target trials, we search perturbations δX to be added to Xj to
minimize the similarity score. For non-target trials, we search per-
turbations to maximize the score. This could lead the ASV systems
to make wrong decisions for both target and non-target trials. The
optimization problem formulation is shown in Eq. 6, and the solution
given by FGSM is derived as Eq. 7 and 8.

δX = arg max
‖δX‖p≤ε

k × Sθ2(fθ1(Xi), fθ1(Xj + δX)) (6)

δX = ε× k × sign(∇XjSθ2(fθ1(Xi), fθ1(Xj))) (7)

k = { −1, target trial
1, non-target trial (8)

4. EXPERIMENTAL SETUP

The dataset used in this experiment is Voxceleb1 [28], which con-
sists of short clips of human speech. There are in total 148,642 ut-

terances for 1251 speakers. Consistent with [28], 4874 utterances for
40 speakers are reserved for testing, to generate trials and perform
adversarial attacks. The remaining utterances are used for training
our SV models. In addition, we apply data augmentation [21] when
training x-vector embedding networks.

Mel-frequency cepstral coefficients (MFCCs) and log power
magnitude spectrums (LPMSs) are adopted as acoustic features in
this experiment. To extract MFCCs, a pre-emphasis with coefficient
of 0.97 is adopted. “Hamming” window having size of 25ms and
step-size of 10ms is applied to extract a frame, and finally 24 cepstral
coefficients are kept. For LPMSs, “blackman” window having size
of 8ms and step-size of 4ms is adopted. No pre-emphasis is applied.

4.1. ASV model configuration

In the GMM i-vector system setup, only voice activity detection
(VAD) is applied for preprocessing acoustic features. 2048-mixture
UBM with full covariance matrix cooperates T matirx with a 400-
dimension i-vector space. The i-vectors are centered and length-
normalized before PLDA modeling.

In the x-vector system, cepstral mean and variance normaliza-
tion (CMVN) and VAD are adopted to preprocess the acoustic fea-
tures. The setup of x-vector embedding network is commonly con-
sistent with [21]. Extracted x-vectors are centered and projected
using a 200-dimension LDA, then length-normalized before PLDA
modeling.

4.2. Evaluation metrics

The evaluation metrics of ASV systems could be false rejection rate
(FRR), false acceptance rate (FAR) and equal error rate (EER). The
FRR and FAR measure the classification error for target and non-
target trials, respectively, and EER is the balanced metric where two
error rates are equal. As realistic attack situations are mostly similar
with non-target trials, we are more concerned with the FAR increase
of the system after adversarial attacks. Actually for target trials, in-
stead of adversarial perturbations, simple random noise added to the
input could also cause the system to fail in recognizing the owner’s
voice, so the FRR increase could not reflect the vulnerability of ASV
systems to adversarial attacks well. With the considerations above,
we measure the system vulnerability to adversarial attacks by the
increase of FAR and EER.

4.3. ABX test

To evaluate the auditory indistinguishability of adversarial audios
compared with the original audios, we perform the ABX test [29],
which is a forced choice test to identify detectable differences be-
tween two choices of sensory stimuli. The adversarial samples are
generated from the LPMS-ivec by using FGSM with ε equal to 1.
Each adversarial audio is reconstructed from the perturbed LPMSs
and the phase of its corresponding original audio. In this work, 50
randomly selected original-adversarial audio (A and B) pairs are pre-
sented to the listeners, and from each pair, one audio is chosen as the
audio X. Eight listeners join this test, and they are asked to choose
one audio from A and B, which is the audio X.

5. EXPERIMENT RESULTS

5.1. ABX test results

Experiment results show that the average accuracy of ABX test is
51.5%, which verifies that human cannot distinguish between the



Table 1. EER (%) of the target systems under black box attack with different perturbation degrees (ε).
ε = 0 ε = 0.3 ε = 1 ε = 5 ε = 10 ε = 20 ε = 30 ε = 50

LPMS-ivec attacks MFCC-ivec 7.20 8.83 13.82 50.02 69.04 74.62 74.59 63.24
MFCC-ivec attacks MFCC-xvec 6.62 8.52 14.06 57.43 74.32 60.85 54.07 51.34
LPMS-ivec attacks MFCC-xvec 6.62 7.42 9.49 25.47 37.51 43.89 48.48 48.39

Table 2. FAR (%) of the GMM i-vector systems under white box
attack with different perturbation degrees (ε).

ε = 0 ε = 0.3 ε = 1 ε = 5 ε = 10
MFCC-ivec 7.20 82.91 96.87 18.14 16.65
LPMS-ivec 10.24 96.78 99.99 99.64 69.95

Table 3. EER (%) of the GMM i-vector systems under white box
attack with different perturbation degrees (ε).

ε = 0 ε = 0.3 ε = 1 ε = 5 ε = 10
MFCC-ivec 7.20 81.78 97.64 50.25 50.72
LPMS-ivec 10.24 94.04 99.95 99.77 88.6

adversarial and corresponding original audios.

5.2. White box attacks

We perform the white box attack on both MFCC-ivec and LPMS-
ivec systems. The FARs of the two systems under different per-
turbation degree ε are shown in Table 2. Specifically, the columns
where ε equals 0 exhibit the system performance without attack. It is
observed that the FARs for both systems are dramatically increased
by around 90% when ε equals 1, where humans still cannot distin-
guish between the adversarial samples and the original ones. Similar
results can be observed in the EER performance of the two systems,
as shown in Table 3. This verifies that GMM i-vector systems are
vulnerable to white box attacks. Moreover, from the columns where
ε = 5, 10 in Table 2 and 3, we also observe that continuously in-
creasing ε beyond some value can decrease attack effectiveness. One
possible explanation is that continuously increasing εmakes the per-
turbations go beyond adversarial effectiveness and simply become
noise. Noise cannot degrade ASV systems in terms of non-target tri-
als, so the FARs begin to decrease. But the noise can still degrade
ASV systems in terms of target trials, so the balanced metric EER
tend to converge to around 50%. This phenomenon is also observed
in the experimental results of black box attacks.

5.3. Black box attacks

As configured in Section 3, three black box attack settings are in-
volved, i.e. LPMS-ivec attacks MFCC-ivec (cross-feature), MFCC-
ivec attacks MFCC-xvec (cross-model architecture) and LPMS-ivec
attacks MFCC-xvec (cross-feature-model). The FAR fluctuations
under these attack settings are illustrated in Fig. 3. It is observed
that the FAR is dramatically increased in all three attack settings.
Specifically, FAR increases the most by around 60%, 50% and 30%
in cross-feature, cross-model architecture and cross-feature-model
settings, respectively. The most effective attack appears in the cross-
feature setting, while the least effective attack appears in the cross-
feature-model setting. This suggests that black box attack effective-
ness can be affected by the gap between source and target system set-
tings. The FAR degradation confirms that both GMM i-vector and

Fig. 3. FAR (%) of the target systems under black box attack with
different perturbation degrees (ε).

x-vector systems are vulnerable to black box attacks. Specifically,
the adversarial samples crafted from i-vector systems are transfer-
able to x-vector systems. Similar results can be observed in the EER
performance, as shown in Table 1. The phenomenon that x-vector
systems are vulnerable to black box attacks also indicates their vul-
nerability to a more severe attack, i.e. white box attacks.

Moreover, we observe that a large ε value can still make an effec-
tive attack, e.g. 20 in the cross-feature setting. In this case, humans
can perceive a small noise in the spoofing audios, but still confirm
that the speaker identity does not change between the original and
the corresponding spoofing audios. Some adversarial samples and
the corresponding system responses are illustrated in this URL2.

6. CONCLUSION

In this work, we investigate the vulnerability of GMM i-vector sys-
tems to adversarial attacks and the adversarial transferability from
i-vector systems to x-vector systems. Experimental results show that
GMM i-vector systems are vulnerable to both white and black box
attacks. The generated adversarial samples also prove to be trans-
ferable to NN speaker embedding based systems, e.g. x-vector sys-
tems. Further work will focus on protecting ASV systems against
such adversarial attacks, e.g. involving adversarial training strategy
to develop ASV systems.
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