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ABSTRACT 

This paper describes a multi-biometric verification system that is 
fully adaptive to variability in data acquisition using fuzzy logic 
decision fusion.  The system uses fuzzy logic to dynamically 
alter the weight of three biometrics (face, fingerprint and speech), 
taking into account the variations during data acquisition (e.g. 
lighting, noise and user-device interactions).  A specific decision 
boundary can be determined by this dynamic weight assignment 
to make the authentication decisions.  An overall EER 
improvement of 42.1% relative to weighted average fusion has 
been achieved. 

Index Terms—Fuzzy logic, multi-modal, biometrics 
1. INTRODUCTION 

In this paper, we present a multi-biometric authentication system 
that is adaptive to variability in data acquisition using fuzzy logic.  
The system uses speaker verification, face verification and 
fingerprint verification for multi-biometric authentication.  Multi-
biometric overcame the limitation of single biometric 
authentication [1].  In multi-biometric fusion, especially in 
matching score level, weighted average fusion often out-performs 
other methods such as the product rule, min rule and max rule [2].  
However, the weighted average fusion suffers from the lack of 
adaptability when the quality of testing data samples deviates 
severely from that of the training data. 

To improve the robustness of the multi-biometric 
authentication system, we investigate the following factors that 
affect the quality of biometric samples: (1) distortions due to the 
environment (e.g. ambient noise for speech and lighting 
conditions for face), (2) user-device interactions (e.g. misplaced 
fingerprint relative to the capture device) and (3) mismatch 
between acquisition devices during enrollment and verification 
(e.g. recordings using the desktop PC or PocketPC).  However, 
the precise relationships between these factors and their influence 
on verification performance of different biometrics are complex. 

Conventional methods such as boolean logic are insufficient 
for handling the intra-user variations described above, because 
the use of a single decision threshold cannot adapt to such 
variations.  The use of fuzzy logic fusion proposed in [3] to 
model the intra-class variations resolved the uncertainties in the 
quality of biometric samples incorporating human knowledge in 
terms of fuzzy rules.  Different weights are assigned to biometric 
samples of different qualities using fuzzy logic [3] to create a 
dynamic decision boundary for determining a user’s identity by a 
dynamically weighted average fusion.   

In our previous work [3], we implemented the adaptive weight 
estimation components for the face biometrics using the user’s 
head pose and image illumination.  Similarly, for the finger 
biometrics we used fingerprint positioning and image clarity.  In 
this paper, we present a fully adaptive biometric authentication 
system by incorporating an adaptive weight estimation 

component for the speech biometrics in using Signal-to-Noise-
Ratio (SNR). 

2. EXPERIMENTAL CORPUS 
Our experimental corpus is the CUHK Bilingual Speech Corpus 
(BSC) [3], which is the pilot data subset of M3 [4].  BSC 
contains bilingual speech data (English and Cantonese) from 16 
subjects.  In addition, it also contains frames extracted from face 
movement video captured by a PC webcam or a Pocket-PC 
camera, and fingerprint images captured using an optical 
fingerprint sensor.  The data partitioning for enrollment and 
verification (development and test) are described in Table 1.  
Each subject acts as a client to his/her own profile and as an 
imposter to the other subjects’ profiles.  The data in the 
enrollment set is used for training speaker models, face master 
templates and fingerprint master templates.  We used 10 and 24 
samples of each biometrics per subjects in the development and 
test sets respectively.   
Table 1. BSC data partitioning (16 subjects in total)  

Verification Set  Enrollment 
Set Dev. Set Test Set

Client 4032  160 384  Speech 
Utterances Imposter - 2400  5760  

Client 576  160 384  Face Movement 
Video Frames Imposter - 2400  5760  

Client 96  160 384  Fingerprint 
Images Imposter - 2400  5760  

Total - 2560 6144 
# of client data = # of subjects × # of samples 
# of imposter data = # of profiles × (# of subjects - 1) × # of samples 

 

There are four different device and environment combinations 
for the face movement videos: (1) Indoor Webcam videos (WI), 
(2) Outdoor Webcam videos (WO), (3) Indoor PocketPC Camera 
videos (PI) and (4) Outdoor PocketPC Camera videos (PO).  
Frames are randomly picked from different videos for enrollment 
and testing (Fig. 1).  The verification performance under 
mismatched devices and environment are investigated to test 
whether the proposed system can adapt to these variations.   

 
Fig. 1.  Example face images recorded by diverse devices and 
environments, left to right are (1) WI, (2) WO, (3) PI, and (4) PO. 

3. UNI-MODAL BIOMETRICS 
3.1. Face Verification 
To perform face verification, we use the FaceIt Verification SDK 
from Identix [5].  It uses local feature analysis to encode facial 
images for verification [6].  During training, 36 face movement 
video frames were enrolled into the system to create 3 master 
templates per user, where each template was created from 12 



video frames.  During verification, FaceIt first locates the face to 
generate a face-finding confidence out of 5 possible values {0, 
2.5, 5, 7.5, 10}.  It then matches the face image with the master 
templates and computes the matching score for each template.  
The maximum of the three scores is the output score.  If the 
engine fails to locate the face in the image, the verification score 
will become zero.  The verification result is shown in Table 2. 
Table 2. Performance of facial verification based on facial images 
captured by different devices under different environments.  Numbers 
are equal error rates (EER) in percentages. 

Template Type (Overall EER = 26.55%) Testing 
Type Webcam 

Indoor (WI) 
Webcam 

Outdoor (WO)
Pocket PC 
Indoor (PI) 

Pocket PC 
Outdoor (PO)

WI 5.21 16.93 17.09 21.97 
WO 19.83 6.19 26.26 16.86 
PI 17.32 27.28 11.89 34.64 
PO 21.04 17.05 32.59 11.30 

3.2. Fingerprint Verification 
Our fingerprint verification engine uses a direct gray scale 
minutiae detection approach for feature extraction [7].  The core 
point of a fingerprint is used as the reference point for alignment.  
Master templates are the files that contain the features values 
from the enrollment fingerprint images.  All six fingerprint 
images in the enrollment set are converted into templates.  
During verification, the maximum among all similarity scores 
from each template is returned to a fusion server (see Section 6).  
The resulting EER of the test set is 5.05%. 
3.3. Speaker Verification  
We used the bilingual text-independent speaker verification 
system developed in [8] to perform speaker verification.  English 
and Cantonese speech utterances from the subjects are used to 
train the speaker-dependent Gaussian-Mixture Model (GMM) 
with 512 mixtures.  We used 12 mel-frequency cepstral 
coefficients (MFCC) features and their delta coefficients by 28ms 
Hamming window with 14ms (50%) window overlapping to form 
the feature vectors.  A Universal Background Model (UBM) 
trained from all subjects data with 512 mixtures was used for 
normalization [9].  The EER of the test set is 5.80%. 
4. MULTI-BIOMETRIC WEIGHTED AVERAGE FUSION  

As the scores for the different biometrics lie in different ranges, 
namely [0, 9.99], [0, 99] and [-inf., +inf.] for face, fingerprint and 
speech, respectively.  We use min-max normalization to scale the 
scores to the same range and compute the fused score, as shown 
in Equation (1).  
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Si is the normalized score, si is the matching score from the 
recognizer, mini and maxi are the minimum and maximum scores 
from the development set and wi is the weight for biometrics i.   

Weighted average fusion is used as a baseline for comparison 
with our system.  To obtain the best results in the development 
set, we vary the weights (wi) of different biometrics (summed to 
one) within the [0, 1] range in steps of 0.01.  The performance of 
weighted average fusion is shown in Table 3. 
Table 3. Verification performance of weighted average fusion 
method on the  test set in EER (%) 

Template Type (Overall EER = 1.71%) Testing 
Type WI WO PI PO 
WI 1.56 1.12 1.29 2.00 
WO 1.82 0.78 1.35 1.04 
PI 1.56 1.97 1.82 2.82 
PO 1.82 2.08 2.08 1.56 

 

Weighted average fusion gives promising results in improving 
the verification performance by using a static weight assigned to 

each biometrics.  However, we found that variations in the 
quality of the biometric sample may degrade overall verification 
performance, because the average weighted fusion methodology 
is not adaptive to such variations.  To improve this situation, we 
propose a fuzzy logic weight estimation that captures the 
variation in the sample quality in each biometrics. 
5. SNR AND SPEAKER VERIFICATION PERFORMANCE 
We investigated the effects of signal-to-noise-ratio (SNR) on SV 
in order to develop an SNR-adaptive weight estimation 
methodology.  A high level of background noise can harm the 
performance of speaker verification since the noise masks the 
vocal tract characteristics of speakers.  The SNR measures the 
ratio between the power of signal and the power of noise in each 
speech utterance to reflect its quality (see Equation 2):  

)/(log10 10 noisesignal PPSNR =  (2) 
where SNR is measured in decibel (dB), Psignal is the peak speech 
power and Pnoise is the mean noise power. 

The SNR values were obtained by using the NIST tool [10].  
The speech data are grouped into five different intervals of SNR, 
their false rejection rates (FRR) and false acceptance rates (FAR) 
are shown in Fig. 2a.  The amount of data in each SNR interval is 
shown in Fig. 2b.  The EERs are obtained based on the 
development test set, with an overall EER of 6.88%. 
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32.5 to 
41.4 

41.5 to 
50.4 

50.5 to 
59.5 

Client Trials 1 15 71 68 5 
Imposter Trials 15 225 1065 1020 75 

(b) 
Fig. 2.  Performance of speaker verification and the number of 
utterances (trials) distributed over five different SNR intervals 

SNR intervals with reasonable amount of data are encircled in 
Fig. 2a.  We ignore the points that do not have a sufficient 
number of trials1.  We observe that data with lower SNR tend to 
have higher FAR.  Based on this observation, we define the 
“high”, “medium” and “low” SNR intervals at 50.5 to 59.5, 32.5 
to 50.4 and 23.5 to 32.4 dB respectively in our fuzzy logic fusion 
methodology, as will be explained later. 

6. FUZZY LOGIC (FL) WEIGHT ESTIMATION 
The weight assigned to each biometrics should reflect the 
reliability of its use in authentication as well as the quality of the 
acquired data.  We incorporate such factors in the fuzzy logic 
fusion methodology.  When the sample quality is poor, the 
reliability of the recognition result is low.  Measuring the sample 
quality helps us to estimate biometric weights according to their 
reliability.   

Fig. 3 shows the flow of fuzzy logic weight estimation for 
each biometrics.  Numerical measurements of external factors 
that reflect the quality of biometric data samples serve as input 
into the fuzzy system.  Each value is converted (fuzzified) into a 
degree of membership for each fuzzy linguistic variables (e.g. 
                                                 
1 More than 30 trials are treated as sufficient. 

(a) 



high, medium or low).  The set of linguistic variables with the 
degree of membership is called a fuzzy set and the conversion 
process is called fuzzification.  After fuzzification, the system 
will infer results from the logical rules (fuzzy rules) using the 
linguistic variables.  Each rule maps to an output fuzzy set.  To 
combine the output fuzzy sets, aggregation will be performed to 
come up with a single output fuzzy set.  Finally, we need to 
perform defuzzification such that we can get the weight (degree 
of support) of the biometrics for decision fusion.  Details about 
fuzzy logic system can be found in [12]. 

 
Fig. 3. Procedure of fuzzy logic weight estimation 

6.1. Illustrative Example of FL Weight Estimation 
We illustrate the fuzzy logic (FL) weight estimation produce 
through computing the weight of an example speech utterance.  
Details of the face and fingerprint weight estimation components 
are provided in [11].  The client’s speech in this example has a 
score of -0.17 with a medium SNR of 33dB.  Given that the 
decision threshold is -0.05, we run the risk of having a false 
rejection if we consider the voice biometrics only.  In this case, 
the fusion methodology should aim to down-weigh the 
contribution of speech in verification and up-weigh the other two 
biometrics. 

The input external factor related to sample quality, namely 
SNR, needs to be fuzzified according to a fuzzy set.  A fuzzy set 
is represented by its fuzzy membership functions.  We used SNR 
as the input to determine the SV weight.  The SNR fuzzy set is 
modeled by three functions: SNRLow, SNRMedium and SNRHigh.  
These functions are mathematically defined using a combination 
of Gaussian distributions (Equation 3) shown in Fig. 5.  
Parameters selection for Eq. 3 is described in the previous section.  
The boundaries parameters c1 and c2 are shown in Table 4.  
Analysis of the influence of SNR on SV performance shows that, 
we roughly separated the SNR values into three ranges.  We 
varied the parameters within the three ranges with reference to 
the mean (m) and the standard deviation (σ) of SNR obtained 
from the development set.  The parameter values giving the best 
performance in the development set are used.   
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Fig. 5. Membership functions for speech factors for fuzzy logic 
decision fusion for SNRLow, SNRMedium and SNRHigh. 
Table 4. The parameters used by SNR membership functions  

 SNRLow SNRMedium SNRHigh 
c1 -∞ m-σ (35dB) m+σ (47dB) 
c2 m-2.5σ (26dB) m+0.5σ (44dB) +∞ 

The High, Medium and Low SNR fuzzy membership 
functions represent a YES (Y) or NO (N) concept at a linguistic 
level.  The degree of membership for SNRLow, SNRMedium and 
SNRHigh in our example are 0.55, 0.92 and 0.06, respectively.  

There are five fuzzy rules for speech as shown in Table 5.  We 
have excluded some illogical combinations, e.g., we cannot have 
both SNRHigh and SNRLow being YES.  From the development set 
used in parameter tuning, speech performs better than face and 
fingerprint.  Therefore we rely more on speech when we have 
uncertainty on whether speech should be up-weigh or not.  For 
example when both SNRHigh and SNRMedium are YES, the weight 
output is mapped to the higher weight (i.e. High).   
Table 5. Fuzzy rules used for the speech  

ID Fuzzy Rules 
IF Cond. 1 (C1) and Cond. 2 (C2) and Cond. 3 (C3) THEN (Consequence) 

R1 IF (SNRHigh is Y) and (SNRMedium is N) and (SNRLow is N) THEN (wspeech is Hi) 
R2 IF (SNRHigh is Y) and (SNRMedium is Y) and (SNRLow is N) THEN (wspeech is Hi) 
R3 IF (SNRHigh is N) and (SNRMedium is Y) and (SNRLow is N) THEN (wspeech is Med)
R4 IF (SNRHigh is N) and (SNRMedium is Y) and (SNRLow is Y) THEN (wspeech is Med)
R5 IF (SNRHigh is N) and (SNRMedium is N) and (SNRLow is Y) THEN (wspeech is Lo)

As shown in Table 5, there are three conditions specified in 
the IF clause.  These conditions determine the degree of 
membership of the consequence (i.e. statement in the THEN 
clause).  The conditions are combined using the fuzzy operation 
AND which is a minimum function since it can give the 
maximum agreement from different conditions.  If the condition 
specifies a YES concept, the input will be set to the degree of 
membership.  For a NO concept, the input will be set at one 
minus the degree of membership.  Table 6 shows the combined 
conditions of the five rules.  The combined degree of 
membership is mapped (imprecated) to the designated output 
fuzzy set.  We used the Gödel imprecation (minimum function), 
which is an R-imprecation method [13]. 
Table 6. Combined conditions for each rule (input values from the 
example for each condition shown in the parenthesis) 

ID C1:  
SNRHigh is

C2:  
SNRMedium is

C3:  
SNRLow is 

Combine C1-C3: 
AND(C1,C2,C3) Map To

R1 Y (0.06) N (0.08) N (0.45) 0.06 wHi 
R2 Y (0.06) Y (0.92) N (0.45) 0.06 wHi 
R3 N (0.94) Y (0.92) N (0.45) 0.45 wMed 
R4 N (0.94) Y (0.92) Y (0.55) 0.55 wMed 
R5 N (0.94) N (0.08) Y (0.55) 0.08 wLo 

The results from the fuzzy rules are aggregated using the 
maximum function to combine them into a single output fuzzy set.  
The output fuzzy set is defined by three fuzzy membership 
functions (Fig. 6).  They are triangle membership functions 
which define Low(z), Medium(z) and High(z) weight, 
corresponding to wLo, wMed and wHi respectively in Table 6.  The 
output of these functions ranges from 0 to 1.  The peak value of 
each function corresponds to the semantic meaning they 
represented, i.e. Low(z) peak at 0, Medium(z) peak at 0.5 and 
High(z) peak at 1.   

 
Fig. 6. Fuzzy output sets of fuzzy logic weight estimation. 

The last step in applying FL is to defuzzify the fuzzy set to 
produce a quantifiable result, which is the SV weight in our case.  
The three values in our aggregated output fuzzy set, wLo, wMed 
and wHi, are 0.08, 0.55 (maximum of 0.45 and 0.55 in Table 6) 
and 0.06 respectively.  The defuzzification method we use is 
centroid-of-area (Equation 4), which is the gravity of the area 
under the bolded line, µ(z),  in Fig. 6 [12].  The method provides 
consistency, section invariance, monotonicity and most 
importantly simplicity [14].  The computation of the weight for 
face and fingerprint are similar but with different inputs and 
fuzzy rules for each biometrics [3].  

We use the centroid-of-area method to compute the weight for 
SV.  For our example using input speech data, the weight 

33dB 



computed is 0.51/1.00.  This means that the system supports SV 
with 51% confidence.  This is consistent with our objective of 
reducing the weight of using SV when the speech data do not 
have good quality.   
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zzSV zzzWeight µµ  
µ(z) = Max(Min(wHi, High(z)), Min(wMed, Medium(z)), 

Min(wLo, Low(z))) 

(4)

where µ is the output fuzzy set and z is the value in the output 
domain [0, 1]. 

7. EXPERIMENTAL RESULTS 
We use the fuzzy logic weight estimation instead of the static 
weight in Equation (1) to compute the fusion results.  
Verification results that incorporate the SNR adaptive weight 
estimation component are shown in Table 7.  We used the 16 
EER obtained from fuzzy logic decision fusion and those 
obtained from weighted average fusion (Table 3) to conduct a 
paired t-test.  The results are shown to be statistically significant 
with a 95% confidence level. 
Table 7. Verification Performance of fusion results of fuzzy logic 
decision fusion on test set in EER (%) 

Template Type (Overall EER = 0.99%) Testing 
Type WI WO PI PO 
WI 1.04 0.78 1.04 0.85 
WO 1.04 0.34 1.18 1.16 
PI 1.16 1.45 0.59 1.56 
PO 1.04 0.78 1.07 0.57 
We achieve an overall EER improvement of 42.1% relative to 

the weighted average fusion.  The relative improvement is 59.6% 
on matched device and environment between testing and 
enrollment, and 38.7% on mismatched.  The major advantage of 
fuzzy logic (FL) weight estimation over weighted average (WA) 
is that it can adapt to varying biometric sample quality.  Two 
scenarios are given to illustrate the adaptability of FL.   
Table 8.  A client trial where both WA and FL make correct decision 
(Scenario 1) 

Biometrics  
Speech  

Facial image  
 

Fingerprint 

Input 
Factors SNR: 42 dB 

Face-finding   
Confidence: 10 
Illuminance: 144 

Core position: (135, 109)
Darkness: 0.0283 
Low-clarity: 0.4587 

Score 0.60 9.21 43 
Threshold -0.06 8.32 28 

0.38 0.38 0.24 WA weight 
Fused Score: 7.19 (Threshold: 6.05)         Accepted 

0.30 0.35 0.35 FL weight Fused Score: 6.64 (Threshold: 5.63)         Accepted 
Table 9.  A client trial that WA give false rejection while FL gives a 
true acceptance (Scenario 2) 

Biometrics 
Speech  

Facial image  
 

Fingerprint 

Input 
Factors SNR: 40 dB 

Face-finding   
Confidence: 2.5 
Illuminance: 124 

Core position: (138, 134)
Darkness: 0.0211 
Low-clarity: 0.4756 

Score 0.77 6.22 36 
Threshold -0.06 8.32 28 

0.38 0.38 0.24 WA weight 
Fused Score: 5.4 (Threshold: 6.05)         Not accepted 

0.388 0.176 0.436 FL weight Fused Score: 6.03 (Threshold: 5.63)         Accepted 
All the biometric samples illustrated in scenario 1 (Table 8) 

have decent qualities.  However, when the quality of the 
biometric samples degrades, weighted average fusion fails to 

make the correct decision (as illustrated in Table 9).  In this 
example, the client does not look at the camera and it creates 
difficulties for the face-finding algorithm (which operates by 
locating the eyes).  The baseline weighted average fusion makes 
the wrong decision and rejects the client.  In contrast, fuzzy logic 
fusion dynamically reduces the weight of facial verification such 
that it can mitigate the error for this modality to an overall correct 
decision.  We are making further comparisons between FL fusion 
and other approaches (such as Support Vector Machine). 

8. CONCLUSIONS 
We have implemented a multi-biometric authentication system 
(with face, fingerprint and speech) that is fully adaptive to 
variability in data acquisition using fuzzy logic.  Adaptive weight 
estimation is used for the three different biometrics in order to 
account for external factors that affect verification performance.  
FL decision fusion shows a relative improvement of 42.1% on 
overall performance when compared with weighted average 
fusion.  The improvement is due to the adaptability of FL fusion 
to variations in sample qualities.  Relative improvements of 
59.6% and 38.7% are respectively observed on matched device 
(i.e. using same device and environment for enrollment and test) 
and mismatched device verification.  Mismatched conditions give 
rise to greater variability and hence smaller improvements when 
compared with matched conditions.  Estimation on the influence 
of mismatched conditions should be conducted to further improve 
the system. 
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