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Abstract
This paper presents an enhanced pipeline system for automated
screening of neurocognitive disorders, e.g. Alzheimer’s Disease
(AD), using spoken language technologies. To ensure local rel-
evance, the pipeline is applied to two-way interactions between
clinical assessors and older adult participants in spoken Can-
tonese, the predominant language used in Hong Kong. The
pipeline includes: (i) Speaker diarization using speaker-turn-
aware scoring to capture the temporal structure of conversations.
(ii) ASR using XLS-R wav2vec 2.0 models further pre-trained
on Cantonese speech data and fine-tuned. (iii) Language mod-
elling using RoBERTa with further fine-tuning. (iv) AD screen-
ing with neural network classification. A reference benchmark
is obtained using the ADReSS corpus where no diarization is
needed, and the partial pipeline attained a competitive detection
accuracy of 87.5%.
Index Terms: diarization, speech recognition, NCD detection,
neurocognitive disorder, dementia

1. Introduction
In recent years, we have seen a proliferation of research inter-
ests in using spoken language technologies to screen Neurocog-
nitive Disorders (NCDs), e.g., Alzheimer’s Disease. This paper
presents an overview of our integrated and enhanced pipeline
system for the automated NCD screening. The pipeline includes
speaker diarization, automatic speech recognition (ASR), lan-
guage modelling, and finally a neural network classifier. To en-
sure local relevance, our pipeline is applied to two-way spoken
interactions in Cantonese Chinese between an assessor and an
older adult participant. The spoken interactions cover standard-
ized neurocognitive tests and a specially designed dialog task
that captures everyday cognitive competence. Speaker diariza-
tion of the two-way spoken interactions applies a speaker-turn-
aware scoring approach to capture the temporal structure of con-
versations. ASR uses XLS-R wav2vec 2.0 models further pre-
trained on Cantonese speech data and fine-tuned. We also apply
the RoBERTa language model, further fine-tuned for the task,
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together with model combination for robustness. NCD screen-
ing is done by neural network classification. We obtained a ref-
erence benchmark using the publicly available ADReSS corpus
for which no diarization is needed – the (partial) pipeline at-
tains state-of-the-art AD detection accuracy of 87.5%. This pa-
per will further report on the pipeline system’s performance for
the Cantonese speech corpus.

2. Related Work
As a key domain of cognitive functioning, language ability could
be impacted at an early stage of NCD, which causes symp-
toms such as temporal disfluency, reduced vocabulary cover-
age, and difficulties in word finding and retrieval [1, 2]. These
findings provide a theoretical basis for utilizing spoken lan-
guage as a means of detecting NCD, which could potentially
offer a non-intrusive, objective, scalable and cost-effective so-
lution for widespread NCD screening. A standard pipeline for
conversation-based screening consists of a speaker diarization
module for segmenting speech from older adult participants, an
ASR module for generating transcripts, and classifiers based on
features extracted from speech signal or recognized transcripts.
The TDNNs/PLDA/AHC framework has been widely used in
speaker diarization systems [3]. In this framework, time-delay
neural networks (TDNNs) are utilized for extracting speaker em-
beddings, probabilistic linear discriminant analysis (PLDA) is
applied to calculate similarity measures between all pairs of
segments, and agglomerative hierarchical clustering (AHC) is
employed for clustering and merging. Recent studies have fo-
cused on improving the diarization performance by enhancing
the front-end representations [4] and back-end scoring [5, 6].
Previous research in feature engineering [7–11] have explored
hand-crafted acoustic and linguistic features that are related to
NCD, such as ComParE [12], eGeMAPS [13], part-of-speech
(POS) [14] and syntactic complexity [15]. Their results show
that most of the top-ranking features for NCD detection in-
clude dysfluency, verbal complexity and semantic richness. Re-
cently, with advancements in self-supervised learning (SSL) ap-
proaches, the developments of NCD detection have been shift-
ing from these low-level raw features to high-level pretrained
embeddings, particularly in the domains of speech (e.g., VG-
Gish [16], Wav2Vec 2.0 [17], OpenL3 [18], Whisper [19]) and
text (e.g., BERT [11,20–22], ERNIE [21], Glove [23]). To effec-
tively utilize these features, researchers proposed classifiers such
as SVM and MLP [11], ensemble models such as voting [24],
and long-form dependency cognitive modeling such as Atten-
tive pooling [19].

Most previous work on NCD detection showed that the lin-
guistic features obtained from transcriptions are generally more
important than acoustic ones. To achieve automation, the devel-
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opment of automatic speech recognition (ASR) systems plays
an essential role. Due to a large mismatch between young and
elderly speech, as well as rich and low-resource languages, re-
search efforts have been devoted to the adaptation of the ASR
systems [25–27]. Interestingly, not only are the features from
transcriptions, but the performance disparity in ASR between
distinct diagnostic groups (i.e., healthy individuals versus those
with NCD) could also help NCD detection [25].

3. Corpora
This work uses the publicly available English ADReSS dataset
[9] for bench-marking the performance of the pipeline system.
ADReSS is a subset of the Pitt Corpus in the DementiaBank
dataset [28], and consists of 156 speech samples and associated
transcripts from non-AD (35 male, 43 female) and AD (35 male,
43 female) English-speaking participants for the Cookie Theft
picture description task, and is divided into standard training
(108 participants, about 2 hours) and test (48 participants, about
1 hour) sets that with balanced distributions of age, gender and
disease condition.

In addition, we also applied the pipeline to a Cantonese cor-
pus that we have designed and collected, with the consideration
that Cantonese Chinese is the major dialect used in Hong Kong,
especially for our older adult population. The corpus is named
MARVEL (Cognitive Assessment Using Machine LeArning
empoweRed VoicE anaLysis). Participant inclusion criteria are:
(i) aged 60 or above; (ii) sufficient Cantonese language skills
(listening and speaking) and (iii) sufficient vision and hearing
ability (where glasses and hearing aids are acceptable) to com-
plete all cognitive tests.

MARVEL contains speech recordings of spoken interac-
tions, where an assessor guides the participant through a com-
prehensive series of cognitive tests in a session. Each session
requires an average of 1.5 hours, consisting of several cognitive
tests, including Alzheimer Disease Brief Information Interview
(AD8) [29,30], Montreal Cognitive Assessment Hong Kong Ver-
sion (MoCA) [31] (a comprehensive NCD screening tool with
the scores adjusted based on the age and education backgrounds
of the participants), Hong Kong List Learning Test (HKLLT)
[32] (a word list recall assessment), Digit Span (DS) [33] ( a task
that requires participants to repeat a series of numbers), Modified
Boston Naming Test (mBNT) [34] (a picture naming task), Log-
ical Memory Story Telling (LMST) [33], and Rabbit Story [35]
(a narrative assessment), etc. We have also included a specially
designed task, named the Hong Kong Grocery Shopping Dia-
log Task (HK-GSDT) [36], which combines spoken dialog with
way-finding and memory recall of the shopping list.

Based on the speech recording of the cognitive tests, each
participant will be classified by the clinicians into one of three
groups: healthy controls, m(ild)-NCD and M(ajor)-NCD. Table
1 shows the number of participants in each group (totaling 585),
while the project is ongoing and the numbers are expected to
increase. The table also shows the number of participants whose
speech data have been manually transcribed, which is a costly
and laborious process, hence ASR techniques are leveraged to
obtain automatic transcripts.

Orthographic transcription of the spontaneous Cantonese
speech in MARVEL adopts the traditional Chinese character set
(since this is the character set commonly used in Hong Kong).
Colloquial words (e.g. “嘅”/ge3/ [possessive particle in collo-
quial Cantonese]) are also included. The average number of
Chinese characters in the transcribed section of the participant’s
speech in a session is around 3600.

Table 1: Number of participants classified into the three groups:
healthy controls (HC), mild-NCD (m-NCD) and Major-NCD
(M-NCD). ”Trans.” denotes manually transcribed speech data.

Train Test

Trans. Not
Trans. Total Trans. Not

Trans. Total

# of Participant 164 301 465 46 74 120
HC 76 222 298 22 54 76

m-NCD 69 71 140 19 15 34
M-NCD 19 8 27 5 5 10

The recordings from 585 participants have been validated.
Division of data into train and test sets considers the balance
across age (60-69, 70-75, and 76+), gender, health status, and
available manual transcriptions. The duration of a recording
ranges from 1.3 to 1.9 hours, with a mean of 1.5 hours. The
summary is presented in Table 2.

Table 2: The duration (hours) of train and test datasets, and
transcribed (trans.) data. (∗) Each session includes speech, si-
lence and noisy parts.

Train Test

Trans. Not
Trans. Total Trans. Not

Trans. Total

Whole session* 126 582 707 35 152 187
Assessor speech 50 NIL 50 15 NIL 15

Participant speech 47 NIL 47 13 NIL 13

4. Speaker Diarization
Speaker diarization is performed by the first module in the
pipeline. Since the raw speech recordings generally capture two-
way dialogs between assessors and participants, the objective of
speaker diarization is to enable extraction of participants’ speech
for further processing.

We adopted a clustering-based diarization approach, which
mainly consists of an embedding extraction process, similarity
measurement, clustering process and overlapped speech detec-
tion. Specifically, we applied a 40-dimensional Mel filter bank
(Mel-FBank) with cepstral mean and variance normalization to
obtain the fbank features. Next, a TDNN-LSTM voice activ-
ity detection (VAD) model trained on the MARVEL dataset
was used to filter out non-speech segments, such as background
noise. Based on the detected speech boundaries from the VAD
model, the speech segments were sliced into sub-segments with
a fixed-length window of 1.5 seconds and a sliding overlap of
1.25 seconds. Given the sub-segments, a 101-layer Res2Net
model [37] pretrained on the VoxCeleb [38, 39] and CN-Celeb
[40, 41] datasets was conducted to extract the speaker embed-
ding. The speaker embedding was fed into a speaker-turn aware
scoring model [6] to generate corresponding similarity scores,
which were then organized into a similarity matrix. The similar-
ity matrix contains both static and dynamic information across
the conversation sub-segments by combining a pairwise simi-
larity measure (e.g., Cosine) and LSTM-based similarities [5].
Initialized with the speaker-turn aware scoring matrix, the VBx
algorithm [42] was applied to cluster all sub-segments within a
conversation recording into different speaker groups.

Conventional diarization systems generally do not have
special provision for overlapped speech that commonly occur
in conversations. In this work, we applied a pyannote over-
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lap detection model [43] trained on the Alimeeting [44] and
AISHELL4 [45] dataset, it consists of SincNet convolution lay-
ers and LSTM layers that jointly train for VAD and OSD tasks.
Overlapped speech is detected and since these segments contain
the participant’s speech, they are passed down the pipeline (al-
beit without speaker separation presently) for further processing.

To evaluate the speaker diarization module based on the
MARVEL test set, we used the d-score toolkit,¹ and the results
are shown in table 3. We observe that the overall diarization er-
ror rate (DER) is 5.22%. We further evaluate the miss rate and
false alarm rate for assessors and participants separately. For
example, to evaluate the performance on the participants, we re-
placed the diarization results for the assessors with ground-truth
labels. Through comparison between the second and third rows
in the table, we observed that the participant’s speech is more
challenging than the assessor’s speech, as reflected especially
by the miss rate. We attribute this to the higher variability in the
participants’ speech.

Table 3: Diarization results (%) on the MARVEL test set. DER
stands for diarization error rate.

Miss False Alarm Confusion DER
Overall 2.47 1.70 1.05 5.22

- Assessor 1.25 1.30 - -
- Participant 2.29 1.44 - -

5. Automatic Speech Recognition
As manually transcribing the conversation speech recording is
costly, we attempt to leverage the unlabeled speech data by pre-
trained self-supervised speech representations, which has been
shown to improve downstream ASR tasks in scenarios with lim-
ited labeled data [46]. We applied speaker diarization (discussed
in the previous section) to the unlabeled parts of the training data
from MARVEL, as well as another Cantonese elderly speech
database named JCCOCC-MoCA [6]. Combining the manually
labeled speech data with the unlabeled speech segments from
both corpora yields totally 503 hours of pre-training data. This
data is used to further pre-train and adapt the XLS-R model with
300M parameters [47], as a fast prototyping procedure. The
adapted model is then used to create lexicon-based ASR sys-
tems, which are implemented in fairseq [48] with an integra-
tion of k2² for CTC training with alternative pronunciations and
WFST-based decoding.

The decoding is conducted using an HLG graph based on
a word 3-gram LM, and re-scored by a word 4-gram LM with
whole-lattice re-scoring. We came up with in-domain n-gram
LMs by training on the MARVEL training transcripts with mod-
ified Kneser-Ney smoothing in SRILM [49].

We developed two ASR systems by fine-tuning the pre-
trained model on either MARVEL or JCCOCC-MoCA and pair-
ing the resulting fine-tuned models with the n-gram word-level
language model. We evaluated the performance of the systems
on the participants’ speech of the MARVEL test set and results
are given in Table 4. Not surprisingly, the system which adopts
in-domain MARVEL training data for ASR fine-tuning and LM
training performed better.

¹https://github.com/nryant/dscore
²https://k2-fsa.github.io/k2

Table 4: ASR character error rates (CER%) on the participants’
speech in the MARVEL test set

Sys. ASR fine-tuning data LM training data CER (%)
A MARVEL MARVEL 16.27
B JCCOCC-MoCA MARVEL 20.90

6. NCD Detection
Based on the speech transcriptions, the proposed pipeline sys-
tem proceeds to distinguish NCD participants (i.e. the mild- and
Major-NCD groups) from the cognitively healthy participants.
We adopt a similar methodology as [24], which was previ-
ously applied to the English NCD detection dataset ADReSS20.
The detection system consists of a pre-trained language model
(PLM) text encoder and a back-end classifier. The PLM text en-
coders were fine-tuned offline on the MARVEL training data to
adapt to the cognitive assessment texts. The resultant text em-
beddings were input into the NCD detection classifiers. Model
snapshots during the fine-tuning at the final three update epochs
were used to produce separate text embeddings, and their resul-
tant NCD detection predictions were combined by majority vot-
ing to reduce the risk of over-fitting and to enhance robustness.
This system achieved state-of-the-art AD detection accuracy of
87.50% with RoBERTa as the PLM and SVM as the classifier
(Table 5, system 4).

We evaluated our experiments with either ground truth man-
ual transcripts on the transcribed subset, which could provide
a reliable baseline, or ASR transcripts generated by system A
(Table 4) on the full set, which could enable fully automated
NCD screening. The manual systems were trained and tested
both with manual transcripts, while manual transcripts were still
adopted as training data when evaluating the ASR transcripts
system based on the MARVEL data fine-tuned ASR system A
(Table 4), resulted in a hybrid transcripts system. The aim was
to avoid the impact of data leakage from the ASR stage. PLM
fine-tuning for each system was conducted with its correspond-
ing classifier training data.

As an initial work on MARVEL, we adopted straightfor-
ward text pre-processing techniques. For each participant, the
transcripts of only the participant side from six cognitive tests
were concatenated as PLM inputs. Participant transcripts with
length exceeding the PLM max input length (512 tokens) were
cut into text segments by a sliding window and without overlaps.
The participant-level decision was aggregated from segment-
level decisions by majority voting. All non-Chinese-character
annotations in manual transcripts were filtered out to maintain
consistency with ASR transcripts.

In this pipeline system, RoBERTa³ and multilayer percep-
tron (MLP) were selected as the PLM and classifier. The clas-
sifier type, as well as the hyper-parameters for PLM fine-tuning
and MLP training, were selected by methods in [24] to optimize
the detection performance. Out-of-vocabulary characters in the
training data were added to the RoBERTa tokenizer before fine-
tuning. The evaluation of each system is conducted based on
5 runs using different seeds for Pytorch random initialization⁴.
The best and the average results are reported.

Table 5 shows the performances of the NCD detection sys-
tems. We observe the following main trends primarily based

³from https://huggingface.co/roberta-base, pre-trained with simpli-
fied Chinese

⁴https://pytorch.org/docs/stable/notes/randomness.html
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Table 5: NCD detection performance of the RoBERTa + MLP detection module with or without PLM fine-tuning, using manual tran-
scripts (trans.) for classifier training, evaluated on manual trans. on the labeled (i.e. partial) test partition or ASR trans. on the full test
set of the MARVEL dataset. The best and average results from 5 runs are reported for fine-tuned PLM systems. ”Acc.”, ”Prec.”, ”Rec.”
and ”F1” represent accuracy, precision, recall and F1 scores, NCD as the relevant class. Reference results of the pipeline system with
the RoBERTa + SVM detection module on the ADReSS20 English dataset are also listed.

Sys. Dataset Train
Trans.

Test
Trans.

Test
Partition

Fine
-tuning

Exp.
Run

Test Result
Best Average

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1
1

ADReSS Manual
Manual Full (48) × 1 0.7083 0.7273 0.6667 0.6957 -

2
√

5 0.8542 0.8339 0.7833 0.8058 0.8125 0.8696 0.8333 0.8511
3 ASR Full (48) × 1 0.7292 0.6667 0.9167 0.7719 -
4

√
5 0.8750 0.8000 1.0000 0.8889 0.8208 0.8087 0.8417 0.8219

5

MARVEL Manual

Manual Labeled
Participants (46)

× 1 0.7826 0.7692 0.8333 0.8000 -
6

√
5 0.8043 0.7586 0.9167 0.8302 0.7522 0.7312 0.8333 0.7782

7
ASR
Sys.A

Full (120) × 1 0.7167 0.7083 0.3864 0.5000 -
8

√
5 0.7167 0.6923 0.4091 0.5143 0.6900 0.6234 0.4091 0.4855

9 Labeled
Participants (46)

× 1 0.6087 0.7500 0.3750 0.5000 -
10

√
5 0.6957 0.7500 0.6250 0.6818 0.6174 0.7543 0.4000 0.5120

on the accuracy (Acc.) and recall (Rec., i.e. NCD sensitiv-
ity) scores. First, manual transcripts outperform the ASR tran-
scripts (system 6 versus system 10), which may be attributed
to a number of reasons, including ASR errors, or the mismatch
between manual-based training data and ASR-based test data,
affecting downstream NCD detection. Second, in contrast to its
efficacy on English data, the strategy of fine-tuning PLM only
generates performance gains in the best run (Table 5, systems
6&10, columns 8-11) and leads to degradation on average per-
formances(Table 5, systems 6&8, column 12-15), indicating the
need for further explorations on adapting PLM to cognitive as-
sessment texts and improving NCD detection robustness.

7. Conclusions
This paper presents the development of an enhanced pipeline
system for automated screening of neurocognitive disorders
based on raw speech recordings from a two-way interaction be-
tween an assessor and participating in spoken Cantonese. The
system was constructed by tandem components of the speaker
diarization module for the participants’ speech extraction, the
ASR for speech transcription, the language model for text en-
coding, and the classifier to perform NCD detection from text
embeddings. Compared with previous approaches, we made en-
hancements including special provision for overlapped speech
detection in the speaker-turn aware speaker diarization, and
in-domain data fine-tuning for both self-supervised pre-trained
ASR and PLM. A competitive detection accuracy of 87.5% was
achieved on the ADReSS20 corpus with a partial pipeline sys-
tem with oracle diarization. Meanwhile, the full system pro-
duced 80.43% accuracy on the transcribed partition and 69.57%
accuracy on the full test set on the Cantonese MARVEL corpus.
Our future work includes spoken language feature selection and
analysis of the effect of dysfluencies.
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