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ABSTRACT
Disentangled speech representation learning aims to separate dif-
ferent factors of variation from speech into disjoint representations.
This paper focuses on disentangling speech into representations for
three factors: spoken content, speaker timbre, and speech prosody.
Many previous methods for speech disentanglement have focused
on separating spoken content and speaker timbre. However, the
lack of explicit modeling of prosodic information leads to degraded
speech generation performance and uncontrollable prosody leakage
into content and/or speaker representations. While some recent
methods have utilized explicit speaker labels or pre-trained models
to facilitate triple-factor disentanglement, there are no end-to-end
methods to simultaneously disentangle three factors using only
unsupervised or self-supervised learning objectives. This paper
introduces SpeechTripleNet, an end-to-end method to disentan-
gle speech into representations for content, timbre, and prosody.
Based on VAE, SpeechTripleNet restricts the structures of the la-
tent variables and the amount of information captured in them to
induce disentanglement. It is a pure unsupervised/self-supervised
learning method that only requires speech data and no additional
labels. Our qualitative and quantitative results demonstrate that
SpeechTripleNet is effective in achieving triple-factor speech dis-
entanglement, as well as controllable speech editing concerning
different factors.
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1 INTRODUCTION
Speech is the most natural medium of communication for humans.
Linguists view speech communication as involving three types of
behavior: linguistic, extralinguistic, and paralinguistic [12]. Linguis-
tic behavior involves transmitting spoken content that is encoded
by the units of the corresponding language. The extralinguistic
aspect of speech communication identifies individual speakers and
includes information such as voice quality, overall pitch range,
and loudness. Paralinguistic behavior incorporates the speaker’s
affective, attitudinal, or emotional state. The information being
conveyed through linguistic, extralinguistic, and paralinguistic be-
haviors corresponds, respectively, to spoken content, speaker tim-
bre, and speech prosody. These are three independent factors of
variation in speech. Therefore, our goal of separating speech into
content, timbre, and prosody representations is well-founded.

In general, disentangled speech representations learning can
benefit many downstream tasks. Disentangled representations pro-
vide a feature that is invariant to irrelevant factors for the task,
making them useful for discriminative tasks like automatic speech
recognition (ASR) and speaker recognition. Moreover, disentan-
gled representations enable us to modify the factors of a given
speech independently, which is useful for generative tasks such as
speech editing, including speaker identity conversion and prosody
modification.

Previous unsupervised speech disentanglement methods have
primarily focused on separating speech into content and timbre
representations. To achieve this, various restrictions have been
imposed on the representation learning of content and speaker to
ensure they are decomposed. FHVAE [6], a variational auto-encoder
(VAE) [9] designed for sequential data, incorporates different tem-
poral structures for the prior distributions of content and timbre
to induce their disentanglement. Additionally, FHVAE introduces
a contrastive learning objective to aid in learning the discrimina-
tive speaker representation. Numerous advances have been made
in one-shot voice conversion, which aims to convert the speaker
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identity of source speech into that of target speech, thus requiring
a good disentanglement of content and speaker representations
from speech. AdINVC [3] uses instance normalization [17] to nor-
malize speech into speaker-independent content representation,
taking the normalization statistics as the speaker representation.
AutoVC [15] downsamples the content representation to remove
speaker information, while the speaker representation is obtained
through a pre-trained speaker verification model. VQVC [22] and
VQVC+ [21] use vector quantization to eliminate speaker informa-
tion and obtain the content representation, with the quantization
residual as the speaker representation. In addition to using vector
quantization, VQMIVC [18] further incorporates mutual informa-
tion minimization to encourage disentanglement. 𝛽-VAEVC [13]
imposes separate weight parameters on the KL divergence terms
with respect to content and speaker representations to restrict the
amount of information captured by them. This is similar to the
idea proposed in 𝛽-VAE [5]. Through careful tuning of the two
weight parameters, 𝛽-VAEVC can restrict the two representations
to capture content and speaker information, respectively.

However, the lack of explicit modeling of prosody in the afore-
mentioned content-speaker disentanglement methods could result
in unintentional leakage of prosody information into content and/or
speaker representation. This can cause unexpected behavior for
downstream tasks, especially for speech editing, where undesired
prosody changes may occur when we aim to modify only timbre
or content.

Several recent works propose to further disentangle prosody
from speech and separate it from content and timbre representa-
tions. The key is to prevent prosody information from being cap-
tured by other representations. SpeechSplit [14] and SpeechSplit
2.0 [2] adopt random resampling and signal processing methods to
explicitly corrupt the prosody information before extracting con-
tent representation. However, they adopt speaker identity labels
as the speaker representation instead of learning it jointly with
representations of other factors, making them not purely unsuper-
vised learning methods. Another method utilizes a separate model
for learning prosody representations in a self-supervised learning
manner [19]. By using signal processing-based data augmentation
such as pitch stretch and volume adjustment, the model is trained
to predict the permutation strength to learn representations for
pitch and energy. The well-trained prosody model is then fixed as
a prosody representations extractor equipped to another model to
facilitate the disentanglement of content and speaker representa-
tions. In this way, the disentanglement of prosody, content, and
speaker representations is separated into two phases.

For prosody modeling, SpeechSplit (2.0) [2, 14] model pitch and
rhythm as sequential features in the prosody representation. How-
ever, manipulating these two features in SpeechSplit (2.0) typically
requires a reference speech with a similar phoneme sequence; oth-
erwise, editing pitch and/or rhythm can be problematic. On the
other hand, [19] models prosody as global features of an utterance,
capturing the overall trends of pitch and energy in two separate
vectors. This approach allows for the use of a random reference
utterance to provide overall pitch and energy information for mod-
ifying these two factors. The disadvantage of the global prosody
representation is that it makes it impossible to manipulate prosody
locally.

We propose SpeechTripleNet, an end-to-end speech disentangle-
ment method that learns disjoint representations for three gener-
ative factors underlying speech: spoken content, speaker timbre,
and prosody. Unlike previous methods, SpeechTripleNet does not
require speaker identity labels or a pre-trained representation ex-
tractor. Instead, it disentangles all three factors end-to-end after one
pass of training. SpeechTripleNet achieves triple-factor disentan-
glement through the design of latent structures, incorporation of
easy-to-extract self-supervision features, utilization of information-
restricting learning objectives, and VAE’s modeling power for latent
variables. We utilize a VAE to separate speech into three latent vari-
ables and design the latent structures to be suitable for capturing
different factors. We incorporate the pitch and energy features and
process them into the appropriate self-supervision signals for in-
ducing better prosody representation learning. We further adopt
channel capacity restrictions to all three latent variables to limit
the amount of information captured and ensure their independence
and disentanglement.

SpeechTripleNet provides a novel method for prosody modeling.
We represent prosody as sequential features that are quantitatively
aligned with pitch and energy. This allows us to directly modify
speech pitch and energy by manipulating the prosody representa-
tion. This eliminates the need for a reference speech during prosody
editing and avoids any mismatching issues between the reference
and original speech.

SpeechTripleNet can achieve one-shot voice conversion as many
previous methods do. Besides, thanks to the interpretable structure
of the prosody representation, SpeechTripleNet can also achieve
finegrained prosody editing. For example, we can modify an ut-
terance to emphasize or de-emphasize a certain word, or turn an
utterance from a statement into a question. And We believe that
with more expert knowledge about prosody, we can realize more
applications regarding prosody modification, given the flexibility
of the prosody representation. We can achieve editing of timbre
and prosody at the same time since we have the disentangled rep-
resentations of them. Our code and demo are available here1.

2 RELATEDWORKS
2.1 VAE-based disentanglement
Since the proposed SpeechTripleNet is based on VAE, it is closely
related to VAE-based disentangled representation learning methods
[1, 4, 13]. SpeechTripleNet is similar to 𝛽-VAEVC [13] which pro-
poses restricting the information captured by content and speaker
representations. 𝛽-VAEVC achieves this by imposing two weight
parameters on the two KL divergence terms concerning the content
and speaker representations. Although we also restrict the KL di-
vergence terms to constrain the amount of information captured by
each latent variable, we set the channel capacity for each latent vari-
able instead of imposing weight parameters, which has been proven
to yield better sampling quality in general [1]. SpeechTripleNet
further disentangles the prosody factor from speech, which is not
achieved in 𝛽-VAEVC. SpeechTripleNet is related to AnnealVAE [1]
and JointVAE [4]. These two methods also set the channel capacity
for different latent variables to induce disentanglement. However,

1Code and demo: https://github.com/light1726/SpeechTripleNet/
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AnnealVAE only disentangles simple image data into a dimension-
wise disentangled vector, while JointVAE disentangles simple image
data into continuous and discrete vectors. Our method scales the
channel capacity restriction method to more complex speech dis-
entanglement while adopting self-supervision to facilitate prosody
representation learning.

2.2 Prosody modeling
SpeechTripleNet proposes disentangling prosody representation
from speech, which is related to many speech generation methods
with prosody modeling. Some popular text-to-speech synthesis
(TTS) methods [20, 24] model the prosody as a single vector, which
is not suitable for fine-grained locally prosody manipulation. Our
method is related to Fastspeech2 [16], which predicts pitch and
energy as prosodic features to enable prosody control for TTS. The
main difference is that SpeechTripleNet adopts a channel capacity
restriction method to avoid the other information being leaked into
the prosody representation, which is not a common concern in TTS
methods.

3 APPROACH
3.1 Overview
Supposewe have a speech datasetX = {𝑋 𝑖 ∈ R𝑇𝑖×𝐷𝑥 |𝑖 = 1, 2, ..., 𝑁 }
consisting of 𝑁 speech utterances from various speakers and of
varying spoken content. To avoid processing much longer speech
waveforms, we deal directlywith the time-frequency form of speech,
such as the Mel-spectrogram. We denote the 𝑖-th utterance as 𝑋 𝑖 ,
with time length (i.e., number of frames) 𝑇𝑖 and dimension 𝐷𝑥 . We
aim to build a model that disentangles a speech utterance 𝑋 into
three latent representations for three generative factors: spoken
content, speaker timbre, and speech prosody, denoted as 𝑍𝑐 , 𝑍𝑠 , and
𝑍𝑝 , respectively. We may also refer to these three latent variables
as content latent, speaker latent, and prosody latent. We model
the relationship between the speech utterance 𝑋 and its underly-
ing latent variables with a variant of VAE, which we refer to as
SpeechTripleNet.

The overall architecture of SpeechTripleNet is shown in Figure 1,
which consists of four neural networkmodules: the content encoder,
speaker encoder, prosody encoder, and decoder. We use the three
encoders to model the posterior distributions of content, speaker,
and prosody representations, which are respectively denoted as
𝑞𝜙 (𝑍𝑐 |𝑋 ), 𝑞𝜙 (𝑍𝑠 |𝑋 ), and 𝑞𝜙 (𝑍𝑝 |𝑋 ), where 𝜙 represents the train-
able parameters involved in the encoders. In practice, an encoder
predicts a set of distribution parameters that define the posterior
distribution of the corresponding latent variable. The decoder mod-
els the conditional distribution 𝑝\ (𝑋 |𝑍𝑐 , 𝑍𝑠 , 𝑍𝑝 ), where \ denotes
the trainable parameters in the decoder. It defines the generation
process of speech from the three latent variables. We denote the
prior distributions for the three latent representations respectively
as 𝑝 (𝑍𝑐 ), 𝑝 (𝑍𝑠 ), and 𝑝 (𝑍𝑝 ), which are referred to as content prior,
speaker prior, and prosody prior, respectively.

3.2 Latent structures
Intuitively, each latent variable operates on a specific manifold
that is not observable. To define the structure of a latent variable,
we specify three aspects: the form of the representation, posterior

Speaker Encoder:
𝑞 𝑍 |𝑋

Prosody Encoder:
𝑞 𝑍 |𝑋

Speech: 𝑋

Content Encoder:
𝑞 𝑍 |𝑋

Decoder: 
𝑝 𝑋 𝑍 , 𝑍 , 𝑍

𝑍 𝑍𝑍

Speech: 𝑋

Content Prior:
𝑝 𝑍

Speaker Prior: 
𝑝 𝑍

Prosody Prior:
𝑝 𝑍

Figure 1: Model architecture

distribution, and prior distribution. The structure of a latent vari-
able defines a distributional space or manifold in which the latent
variable should lie, serving as an initial bottleneck for information
flowing from it. In this sense, the structures of latent variables are
essential for inducing speech disentanglement.

Content Latent: The spoken content in speech includes infor-
mation on pronunciation variations across an utterance. To capture
the time-variant pronunciation variation, we define the content rep-
resentation as a sequence of vectors with the same time resolution
as the original speech. For a speech utterance 𝑋 ∈ R𝑇×𝐷𝑥 , we have
𝑍𝐶 ∈ R𝑇×𝐷𝑐 . We define the prior distribution of 𝑍𝐶 to be a frame-
wise multidimensional normal distribution such that 𝑝 (𝑍 (𝑖 )

𝑐 ) =

N(𝑍 (𝑖 )
𝑐 |0, I), 𝑖 = 1, ...,𝑇𝑖 . Likewise, we define the content posterior

distribution to be a frame-wise multi-dimensional isotropic Gauss-
ian distribution, such that𝑞𝜙 (𝑍

(𝑖 )
𝑐 |𝑋 ) = N(𝑍 (𝑖 )

𝑐 |`𝑐 (𝑋 ;𝜙), 𝜎2𝑐 (𝑋 ;𝜙)).
Here, 𝑖 is the frame index, and 𝑖 = 1, 2, ...,𝑇 . `𝑐 (·;𝜙) and 𝜎2𝑐 (·;𝜙)
respectively denote the mean and variance of the content represen-
tation produced by the content encoder.

Speaker latent: In contrast to spoken content, speaker identity
remains constant throughout an utterance. We define the speaker
representation as a single vector that summarizes the overall speaker
information in the utterance and is shared across different time
steps. Specifically, we have the speaker representation 𝑍𝑆 ∈ R𝐷𝑠

which is a continuous vector, where 𝐷𝑠 is the dimension of the
speaker representation. We define the prior distribution of the
speaker representation as a multi-dimensional normal distribution,
𝑝𝑆 (𝑍𝑠 ) = N(𝑍𝑠 |0, I). Thus, we define the speaker posterior dis-
tribution as a multi-dimensional isotropic Gaussian distribution,
denoted as 𝑞𝜙 (𝑍𝑠 |𝑋 ) = N(𝑍 (𝑖 )

𝑠 |`𝑠 (𝑋 ;𝜙), 𝜎2𝑠 (𝑋 ;𝜙)). Here, `𝑠 (·;𝜙)
and 𝜎2𝑠 (·;𝜙) represent the mean and variance, respectively, of the
speaker representation predicted by the speaker encoder.
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Prosody latent: While some methods [19] model prosody as a
global feature of a speech utterance, we propose to model it as a
time-variant sequence of vectors. This approach is preferable for
several reasons. Firstly, speech prosody is comprised of supraseg-
mental features such as intonation, intensity, and rhythm, which
manifest locally within a speech utterance. While humans define ab-
stract, utterance-level prosodic characteristics such as emotion and
style, they can be modified by varying the three prosodic features
at the lower level. Secondly, the generally available speech corpora
are not explicitly designed for expressiveness modeling, in which
global prosody variation is less prominent than local variation. For
this reason, there is insufficient support data for modeling prosody
as a global feature of an utterance. Furthermore, modeling prosody
as a global feature of a speech utterance blocks the possibility of
manipulating local prosody.

To this end, we define the prosody representation as a time-
variant representation with the same time granularity as the speech.
To make it easier for explicit prosody manipulation and to bottle-
neck other information, we define the prosody representation as
a sequence of discrete random variables. We then set the prosody
prior distribution of each speech frame as a uniform categorical
distribution, denoted as 𝑝𝑝 (𝑍 (𝑖 )

𝑝 |𝑋 ) = Cat(𝑀𝑝 ; 1/𝑀𝑝 , ..., 1/𝑀𝑝 ); we
accordingly define the prosody posterior distribution as 𝑞𝜙 (𝑍 𝑖

𝑝 |𝑋 )
= Cat(𝑀𝑝 ; softmax(𝜋 (𝑋 ;𝜙))), where 𝜋 (·;𝜙) is the pre-normalized
probability distribution of the 𝑖-th frame of prosody representation,
𝑀𝑝 refers to the number of possible values of the prosody random
variable.

3.3 Learning objective
The proposed model inherits the learning objective of VAEs while
imposing additional regularizations to facilitate disentanglement.
Assuming that the three latent variables are conditionally inde-
pendent given the speech data, we can derive the vanilla evidence
lower bound (ELBO) of the proposed speech VAE as shown in equa-
tion (1). The first term represents the reconstruction loss, while the
remaining are the KL divergence terms with respect to the three
latent variables.

Lvanilla = − E𝑋,𝑞𝜙 (𝑍𝑐 ,𝑍𝑠 ,𝑍𝑝 |𝑋 )
[
log𝑝\ (𝑋 |𝑍𝑐 , 𝑍𝑠 , 𝑍𝑝 )

]
+ E𝑋

[
𝐷KL

[
𝑞𝜙 (𝑍𝑐 |𝑋 ) ∥ 𝑝 (𝑍𝑐 )

] ]
+ E𝑋

[
𝐷KL

[
𝑞𝜙 (𝑍𝑠 |𝑋 ) ∥ 𝑝 (𝑍𝑠 )

] ]
+ E𝑋

[
𝐷KL

[
𝑞𝜙 (𝑍𝑝 |𝑋 ) ∥ 𝑝 (𝑍𝑝 )

] ]
(1)

Self-supervision: As previously mentioned, prosody represen-
tation can be broken down into intonation, intensity, and rhythm.
The first two are closely related to two acoustic features: pitch and
energy, which can be easily extracted from speech using off-the-
shelf tools. Since pitch and energy are easily perceptible to humans,
we aim to model the prosody representation to be explicitly related
to these two acoustic features. This leads to better interpretability
and fundamental controllability. We do not disentangle rhythm
features in prosody representation as they are generally more chal-
lenging to extract explicitly and cannot be easily captured under
unsupervised and self-supervised learning settings. While we set

the content and prosody representations to have the same time res-
olution as the speech, we implicitly leave the rhythm information
(i.e., the duration of each pronunciation unit) as is.

In this work, we propose inducing prosody representation learn-
ing using extracted pitch and energy features. The naive approach
is to supervise the prosody encoder to predict pitch and energy
as the prosody representation. However, these features contain
information about both spoken content and speaker timbre, which
can cause the content and speaker information to leak into the
prosody representation if we use them directly. To mitigate this
issue, we adopt min-max normalization to scale the voiced parts
of the logarithm pitch contour into the range of [0, 1]. This oper-
ation significantly reduces the speaker information. Additionally,
we quantize the scaled pitch contour into 𝑀𝑓 bins to reduce its
discriminativeness about the spoken content. We apply the same
process to the energy feature and set the number of quantization
bins to be𝑀𝑒 . We refer to the quantized pitch contour and energy
as 𝑦𝑓 and 𝑦𝑒 , respectively.

The preprocessing of pitch and energy aligns with the structure
of the prosody latent, whose posterior and prior distributions are
frame-wise categorical distributions. Since we expect the prosody
representation to explicitly capture pitch and energy for easier
controllability, we set a learning objective that encourages the
posterior distribution of the prosody latent to be close to the joint
distribution of 𝑦𝑝 and 𝑦𝑒 . The loss function is shown in equation
(2), where𝑀𝑝 = 𝑀𝑓 ×𝑀𝑒 is the number of classes of the prosody
representation. 𝑝 (𝑦𝑓 , 𝑦𝑒 ) denotes the joint distribution of 𝑦𝑓 and
𝑦𝑒 , practically represented by one-hot vectors of 𝑀𝑝 dimensions
with each entry represents one possible combination of pitch and
energy values. We model𝑦𝑓 and𝑦𝑒 jointly because they are initially
dependent, which can be easily verified on quantized pitch and
energy. Intuitively, 𝑝 (𝑦𝑓 = 𝑀𝑓 − 1, 𝑦𝑒 = 0) should be close to zero,
since high pitch typically incurs a large volume of speech, while
marginally both𝑦𝑓 = 𝑀𝑓 −1 and𝑦𝑒 = 0 are quite common. Another
benefit of modeling the joint distribution is that it involves tuning
only one weight parameter instead of two for two separate loss
terms.

L𝑝 = 𝐷KL [𝑞𝜙 (𝑍𝑝 |𝑋 ) ∥ 𝑝 (𝑦𝑝 , 𝑦𝑒 )] (2)

Channel capacity restrictions:When SpeechTripleNet defines
three latent variables, it sets up three channels for speech informa-
tion to flow through. It is important to ensure that content, timbre,
and prosody flow through their respective channels exclusively to
achieve speech disentanglement. So far, we have defined the latent
structures for three latent variables and implemented pitch-and-
energy-aware self-supervision for the prosody latent. The defined
latent structures make it easier for each channel to capture the
desired factor, while the self-supervision informs the prosody rep-
resentation to be explicitly aware of pitch and energy. Although
these two inductive biases help each channel recognize the desir-
able factor, there is no guarantee that each channel will capture
precisely the right factor, so long as it has redundant information
capacity. Intuitively, each channel always tends to capture more
information, regardless of from which factor, to further reduce the
reconstruction loss term.

To address this issue, we must limit the amount of information
captured by each channel, which can be achieved by restricting the
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channel capacity of each channel. It is proved [4] that we can fac-
torize the KL divergence terms in equation (1) as shown in equation
(3) :

E𝑋
[
𝐷KL [𝑞𝜙 (𝑍 |𝑋 ) ∥ 𝑝 (𝑍 )]

]
= I(𝑋,𝑍 ) + 𝐷KL [𝑞𝜙 (𝑍 ) ∥ 𝑝 (𝑍 )], (3)

where 𝑍 can be any of 𝑍𝑐 , 𝑍𝑠 , or 𝑍𝑝 . I(𝑋,𝑍 ) denotes the mutual
information between speech 𝑋 and the latent variable 𝑍 . 𝑞𝜙 (𝑍 )
is the marginal distribution of 𝑍 , defined as

∫
𝑋
𝑝X (𝑋 )𝑞𝜙 (𝑍 |𝑋 )𝑑𝑋 .

We can observe that E𝑋 [𝐷KL [𝑞𝜙 (𝑍 |𝑋 ) ∥ 𝑝 (𝑍 )]] is an upper bound
of I(𝑋,𝑍 ), indicating that we can restrict the KL divergence terms
in equation (1) in order to limit the amount of information captured
by the respective latent variables.

Based on the results and derivation presented in previous works
[1, 4], we set the channel capacities for the three latent variables (𝑍𝑐 ,
𝑍𝑠 , and 𝑍𝑝 ) as hyperparameters 𝐶𝑐 , 𝐶𝑠 , and 𝐶𝑝 , respectively. We
adopt the learning objective shown in Equation (4), where𝛾𝑐 ,𝛾𝑠 , and
𝛾𝑝 are also hyperparameters that weight different loss terms.𝐶𝑐 ,𝐶𝑠 ,
and 𝐶𝑝 represent the maximum amount of information of speech
being captured by 𝑍𝑐 , 𝑍𝑠 , and 𝑍𝑝 , respectively. Ideally, 𝐶𝑐 , 𝐶𝑠 , and
𝐶𝑝 should be approximately equal to the amounts of information in
content, timbre, and prosody, respectively. To stabilize convergence,
we gradually increase the channel capacities during training, as in
previous works [1, 4].

LCap = − E𝑋,𝑞𝜙 (𝑍𝑐 ,𝑍𝑠 ,𝑍𝑝 |𝑋 )
[
log𝑝\ (𝑋 |𝑍𝑐 , 𝑍𝑠 , 𝑍𝑝 )

]
+ E𝑋

[
𝛾𝑐

��𝐷KL [𝑞𝜙 (𝑍𝑐 |𝑋 ) ∥ 𝑝 (𝑍𝑐 )] −𝐶𝑐
��]

+ E𝑋
[
𝛾𝑠

��𝐷KL [𝑞𝜙 (𝑍𝑠 |𝑋 ) ∥ 𝑝 (𝑍𝑠 )] −𝐶𝑠
��]

+ E𝑋
[
𝛾𝑝

��𝐷KL [𝑞𝜙 (𝑍𝑝 |𝑋 ) ∥ 𝑝 (𝑍𝑝 )] −𝐶𝑝

��] (4)

One may notice that we still impose the channel capacity re-
striction on the prosody representation learning even though we
have already introduced a self-supervised learning objective to
it. The reasons are two-fold. Firstly, most linearly normalization
procedures (including ours introduced in Section 3.3) cannot en-
tirely eliminate the speaker variation from the prosody (especially
pitch); one can still notice the difference between the processed
pitch for male and female speakers. Secondly, as long as there is
extra information capacity in the prosody representation, it can
still encode information other than the prosody to decrease the
reconstruction loss, since the prediction of pitch and energy cannot
be 100% accurate. To this end, the capacity restriction imposed on
the prosody representation penalizes possible information leakage.
The overall learning objective is shown in equation 5, where 𝛾𝑓 𝑒 is
a hyper-parameter balancing L𝑝 against other loss terms.

L𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = LCap + 𝛾𝑓 𝑒L𝑝 (5)

4 IMPLEMENTATION
4.1 Features
To facilitate modeling, we convert speech into its time-frequency
representation. Specifically, we transform each speech waveform
into its corresponding Mel-spectrogram. The Fast Fourier Transfor-
mation (FFT) window size is set to 1024, and the window shift to 256.
The number of Mel bins is set to 80. In this way, for a one-second
speech waveformwith 22,050 samples, we obtain the corresponding
Mel-spectrogram matrix with 86 frames and 80 dimensions.

We use pitch and energy contours as self-supervision signals to
learn prosody representation. The window length and shift used
to extract these features are the same as those for extracting the
Mel-spectrogram. We process the pitch and energy contours as
described in Section 3, and set the number of quantization bins for
both features to 8. This results in a joint one-hot distribution with
a dimension of 64.

4.2 Model structure
Content Encoder: The content encoder aims to model the poste-
rior distribution of the content representation given the speech. It
consists of a fully-connected layer that projects theMel-spectrogram
into 256 dimensions. Then, we use two layers of 1D convolution,
each with a kernel size of 3 and stride of 1. A batch normalization
layer follows each convolution layer. Two self-attention layers, each
with feed-forward neural networks, are stacked upon the convolu-
tional layers to obtain a more contextualized representation. The
output of the self-attention layers is then projected into frame-wise
mean and logarithm standard deviation vectors, each with a di-
mension of 128. We use the re-parameterization trick to sample
from the content posterior distribution, resulting in a sequence of
128-dimensional vectors.

Speaker encoder: The speaker encoder is composed of four
layers of 1D convolution with kernel sizes of 3, 3, 5, and 5. Each
convolutional layer is followed by a temporal pooling layer that
downsamples the sequence by a factor of 2. In total, the sequence is
downsampled by a factor of 16. A temporally global pooling layer
is used to pool the output of the last convolution layer into a single
vector. This vector is then projected into the mean and logarithm
vectors of the distribution parameters of the speaker posterior
distribution. The dimension of the speaker posterior distribution
is set to 128. The reparameterization trick is used to sample from
the speaker posterior distribution, which yields a 128-dimension
speaker latent vector.

Prosody encoder: The prosody encoder has the same structure
as the content encoder, except that the last layer’s dimension is
set to 64, which corresponds to the joint distribution of pitch and
energy. This results in a frame-wise 64-dimensional logit, which
is normalized to frame-wise probability using softmax. During
training, we use Gumbel-Softmax [7] to sample a sequence of dis-
crete codes as the prosody representation. We can easily obtain
the marginal discrete codes for pitch and energy, which are then
separately embedded into 8-dimension vectors. The concatenation
of the pitch and energy embeddings is adopted as the embedding
for the prosody.

Decoder: To form the input feature to the decoder, we concate-
nate three latent representations on the feature axis. The speaker
latent vector is repeated to the same length as the content and
prosody representations. The decoder has the same structure as the
content encoder, except for the input and output dimensions. The
input dimension is set to the sum of the three latent representations,
which is 272. The output is the predicted Mel-spectrogram with a
dimension of 80.
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4.3 Training specifics
We compute the reconstruction loss in equation (4) as the log-
likelihood of the predicted Mel-spectrogram. We assume that the
distribution of the Mel-spectrogram is a multi-dimensional normal
distribution with the ground-truth Mel-spectrogram as the mean
and unit variance. The log-likelihood is calculated frame by frame,
which is normalized over the number of frames. Similarly, for se-
quential content and prosody representations, we compute their KL
divergence terms in equation 4 frame-wise before being normalized
by the number of frames.

We train the model on a single NVIDIA Tesla V100 GPU card.
We use Adam optimizer [8] with a fixed learning rate of 10−4, for
which 𝛽1 and 𝛽2 are set respectively as 0.9 and 0.98. For weight
parameters in the learning objective, we set 𝛾𝑐 = 100, 𝛾𝑠 = 𝛾𝑝 = 10.
We set the maximum channel capacities for content, speaker and
prosody as 1.3, 60 and 3, respectively. We increase the channel
capacity for each latent variable from zero to its maximum values
in the first 20,000 training steps. We set the batch size to 64 and
train the model for 200k steps.

4.4 Speech editing
SpeechTripleNet can disentangle speech into content, timbre, and
prosody representations that are aware of pitch and energy. This
allows for three types of speech editing: speaker identity transfor-
mation, pitch modification, and energy modification. To transform
the speaker identity of a given source utterance 𝑋 , we select a ref-
erence utterance 𝑋 ′ with a different speaker identity. We then feed
𝑋 into the SpeechTripleNet encoders to disentangle it into its three
representations: content (𝑍𝑐 ), timbre (𝑍𝑠 ), and prosody (𝑍𝑝 ). We
extract the speaker representation 𝑍 ′

𝑠 from the reference speech 𝑋 ′

using the speaker encoder of SpeechTripleNet. To achieve speaker
identity transformation, we use the SpeechTripleNet decoder to
generate speech from 𝑍𝑐 , 𝑍 ′

𝑠 , and 𝑍𝑝 . This results in the converted
speech 𝑋𝑠 , where 𝑋𝑠 ∼ 𝑝\ (·|𝑍𝑐 , 𝑍 ′

𝑠 , 𝑍𝑝 ).
To modify the prosody of a speech utterance locally, we first need

to locate the position of the word or syllable that we want to modify.
This can be done by using force-alignment tools to align the text
with speech, or by observation. Once we have identified the posi-
tion in speech X, we marginalize the prosody posterior distribution
𝑞𝜙 (𝑧𝑝 |𝑋 ) over the pitch and energy axis to respectively obtain the
pitch and energy distributions 𝑞𝜙 (𝑧 𝑓 |𝑥) and 𝑞𝜙 (𝑧𝑒 |𝑥). We can then
independently modify these pitch and energy distributions (e.g., by
increasing or decreasing one or more bins) before combining them
into a single prosody representation. We denote the prosody repre-
sentationwithmodified pitch and energy as𝑍 𝑓

𝑝 and𝑍𝑒
𝑝 , respectively.

To generate the modified speech with modified pitch or energy,
we decode the speech from the latent variables 𝑍𝑐 , 𝑍𝑠 , and either
𝑍
𝑓
𝑝 or 𝑍𝑒

𝑝 . We denote the speech with modified pitch and energy

respectively as 𝑋𝑓 and 𝑋𝑒 . That is, we have 𝑋𝑓 ∼ 𝑝\ (·|𝑍𝑐 , 𝑍𝑠 , 𝑍
𝑓
𝑝 )

and 𝑋𝑒 ∼ 𝑝\ (·|𝑍𝑐 , 𝑍𝑠 , 𝑍𝑒
𝑝 ). It is important to note that while pitch

and energy can be modified independently, we still need to ensure
that the modification of one does not contradict the other’s value.
For example, increasing pitch values where energy values are low
can result in unnatural-sounding speech.

Prosody modification has many applications. It is especially use-
ful for emphasizing a word that wasn’t emphasized in the original
speech. This can be achieved by increasing both the pitch and en-
ergy of the word. Conversely, a word can be de-emphasized by
decreasing its pitch and energy. Additionally, we find that increas-
ing the pitch and energy at the end of an utterance can turn it from
a statement into a question.

5 EXPERIMENTS
5.1 Dataset
We used the multi-speaker speech corpus VCTK [23] to evaluate
SpeechTripleNet’s ability to disentangle triple factors and achieve
speech editing. VCTK contains speech data from 110 speakers, each
with around 400 utterances. For training, we used data from 88
speakers, and for validation, 8 speakers were used. The remaining
11 speakers were used for testing. The VCTK dataset has variations
in speaker identity, content, and local prosody, which support the
modeling of content, timbre, and local prosody distributions.

5.2 Speech disentanglement evaluation
An ideal speech disentanglement produces separate representations
that capture different factors of variation underlying the speech.
The evaluation of disentanglement examines whether each separate
representation captures the correct factor and whether different
representations are independent. To achieve this, we manipulate
different factors in the latent representations and verify whether
the desired factor varies while other factors remain constant in the
generated speech.

In this evaluation, we utilize the entire test set, which includes
speech data from 11 speakers. For each utterance in the test set,
we perform three types of speech editing as described in section
4.4: speaker identity conversion, pitch modification, and energy
modification. To convert the speaker identity, we randomly select a
target speech to provide the target speaker representation. For pitch
modification, we adjust the pitch latent variables of each voiced
segment in the utterance by randomly increasing or decreasing
them. We apply a similar process for energy modification.

We first illustrate the possible speech editing results for an ut-
terance in the test set in Figure 2. Through visualization of the
Mel-spectrograms, pitch and energy contours, we demonstrate the
speech editing and disentanglement of different factors qualita-
tively. The first column shows the pitch latent variables, the second
column visualizes the energy latent variables, and the third column
displays the generated speech from the latent variables shown in
the same row. We omit the visualization of the speaker representa-
tion and content representation as they are not easy to read. We
visualize the modified speech samples with their Mel-spectrograms,
pitch (in red), and energy (in yellow) contours. The first row shows
the latent pitch and energy latent variables as well as the Mel-
spectrogram of the original speech. For each row from the second
to fifth, we modify one or two latent variables and compare the gen-
erated speech Mel-spectrogram and the pitch and energy contours
with the original speech.

In the second row, we replace the original female speaker rep-
resentation with one from a male speaker, and one can notice a
change in the formants of the Mel-spectrogram. However, the pitch
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Figure 2: Speech editing visualization

and energy contours remain the same trend as the original speech.
In the third row, we modify the pitch latent with respect to the
third syllable into the lowest value for voiced speech segments (i.e.,
1). One can notice a decrease of the pitch in the modified speech for
the third syllable. The fourth row decreases only the energy latent
variable concerning the third syllable into 1, resulting in a modified
speech with the energy for the third syllable being significantly
lower than that of the original speech. The fifth row combines the
modifications from the third and fourth rows, which reduces both
the pitch and energy latent variables into 1. By comparing the pitch
and energy contours in the first and fifth rows, one can observe
that both contours decrease on the third syllable as intended. In
addition, one may notice the decrease of energy in the third row
when we only decrease the pitch latent variable. This is caused by
the dependence between the pitch and energy factors.

We then demonstrate the effectiveness of speech disentangle-
ment quantitatively. We denote the original speech as 𝑋 , and the
three edited samples with respect to speaker identity, pitch, and
energy as 𝑋𝑠 , 𝑋𝑓 , and 𝑋𝑒 , respectively. We represent the reference
speech providing the target speaker identity as 𝑋 ′. Ideally, all three
sorts of edited samples should have the same content as 𝑋 . Fur-
thermore, 𝑋𝑠 should contain the same prosody as 𝑋 and a different
speaker identity. Similarly, 𝑋𝑓 should contain the same speaker
identity as 𝑋 , while showing a different pitch contour. We expect
𝑋𝑒 to have a different energy pattern than 𝑋 , while other factors
remain the same.

We compare different factors of the original speech with those of
the edited version using quantitative metrics. For the content factor,
we adopt a pre-trained ASR model [11] to transcribe all the edited
speech and report the transcription character error rate (ASR-CER).
For speaker identification, we utilize a pre-trained speaker veri-
fication model2 to embed speech into a speaker embedding and
compute the cosine similarity between the edited speech and the

2Resemblyzer: https://github.com/resemble-ai/Resemblyzer

original one, denoted as "CS with 𝑋 ". We also report the cosine
similarity between the edited speech and the target speech pro-
viding the speaker identity, denoted as "CS with 𝑋 ′". To evaluate
pitch and energy, we extract them using signal processing tools
and compute the Pearson correlation coefficient (PCC) between the
features extracted from the original speech and the edited one.

The results are presented in Table 1, which also shows the eval-
uation conducted on the reconstructed speech 𝑋 . We observe that
the ASR-WER does not vary much among the different variants
of edited speech, indicating good preservation of the content fac-
tor when modifying other factors. Regarding the speaker factor,
𝑋𝑠 exhibits the worst speaker similarity with 𝑋 , while showing
very good speaker similarity with the target speech 𝑋 ′, indicating
successful modification of the speaker factor. Modifying either the
pitch (𝑋𝑓 ) or energy (𝑋𝑒 ) factors results in far less change in speaker
identity. In terms of pitch and energy factors, we notice that 𝑋𝑓

differs the most from 𝑋 in terms of pitch PCC, while 𝑋𝑒 displays
the most significant discrepancy with the source speech in terms
of energy PCC. Due to the dependence between pitch and energy,
we observe that the energy PCC also degrades when we modify
only the pitch factor in 𝑋𝑓 . Similarly, we can see the pitch change
comprared to the original speech when we only modify the energy
factor in 𝑋𝑒 . 𝑋𝑠 shows far less changes in prosody compared to
other variants. These results suggest that the manipulation of latent
space is consistent with factor variation in the generated speech,
indicating that SpeechTripleNet learns well-disentangled speaker
and prosody representations.

Table 1: Factor similarity with source speech 𝑋

𝑋 𝑋𝑠 𝑋𝑓 𝑋𝑒

ASR-CER 12.32% 13.62% 14.33% 14.97%
CS with 𝑋 0.7518 0.6096 0.7317 0.7155
CS with 𝑋 ′ 0.5026 0.7453 0.4822 0.4907
Pitch PCC 0.9126 0.8994 0.8059 0.8418
Energy PCC 0.9560 0.9335 0.9221 0.6847

5.3 Speech editing evaluation
SpeechTripleNet is capable of modifying speech to alter speaker
identity, pitch, and energy. In this section, we evaluate the perfor-
mance of speech editing using subjective evaluation. For speaker
identity transformation, we randomly select 15 pairs of source and
reference utterances from the test set and conduct the speaker
identity transformation introduced in Section 4.4. We ask 16 users
to listen to these samples and rate the naturalness and speaker
similarity of each utterance on a five-point scale. We then com-
pare SpeechTripleNet with two state-of-the-art one-shot voice con-
version methods: VQMIVC [18] and 𝛽-VAEVC [13] with similar
modeling constraints, i.e., without using pre-trained feature ex-
tractors or speaker identity labels. We use a pre-trained Hifi-GAN
[10] vocoder to synthesize the speech waveform from the Mel-
spectrogram. As a reference, we include the evaluation results of
samples that are re-synthesized using the Hifi-GAN vocoder, de-
noted as "Copy-synthesis." The results, shown in Table 2 with a 95%
confidence interval, indicate that while all three methods achieve
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comparable performance on speech naturalness, SpeechTripleNet
achieves the best speaker similarity. This demonstrates the effec-
tiveness of SpeechTripleNet in achieving good voice conversion
performance.

Table 2: Speaker identity conversion user study

Model Naturalness Similarity

Copy-synthesis 4.29±0.13 4.58±0.11

VQMIVC 3.64±0.14 3.38±0.11
𝛽-VAEVC 3.62±0.11 3.55±0.13

SpeechTripleNet (ours) 3.63±0.13 3.67±0.15

To evaluate the effectiveness of SpeechTripleNet in prosody
conversion, we randomly selected 30 utterances from the test set
that initially did not have any emphasized words. For each utter-
ance, we edited the prosody to emphasize one word by raising the
pitch and energy to their highest levels. We then asked 10 users to
listen to the edited utterances and identify the emphasized word
without presenting the original utterances. We collected their an-
swers and computed the accuracy of correctly recognizing our
prosody modification. On average, 88% of the emphasized words
were correctly identified by the users, indicating the effectiveness
of SpeechTripleNet in achieving fine-grained local prosody modifi-
cation.

5.4 Ablation study
In this ablation study, we aim to demonstrate the effect of setting
the channel capacity restriction on learning disentangled speech
representations. We demonstrate this by varying the channel capac-
ity restriction 𝐶𝑝 imposed on the prosody representation learning.
As we find that the timbre information can be easily leaked into
the pitch representation, we show through experiments that impos-
ing proper 𝐶𝑝 can avoid the timbre information being leaked into
the pitch representation. We extract pitch representations from all
speech utterances from the test set. We then conduct the speaker
verification using the pitch representation averaged over the tempo-
ral axis and report the equal error rate (EER). Intuitively, the lower
the EER score the more timbre information the pitch representation
captures.

The results are shown in Table 3, where we vary 𝐶𝑝 from 1.5
to 3.0. Note that as the channel capacity for the prosody represen-
tation increases, more and more speaker information is captured
by the pitch representation, denoted by the decreasing EER along
with the increasing 𝐶𝑝 . As references, we also show the speaker
verification performance using energy and speaker representations.
In contrast to the pitch representation, we notice that the energy
representation captures little speaker information even when the
prosody channel capacity increases; this is because the preprocess-
ing operation stated in section 3.2 can already largely remove the
speaker information from the energy. While the channel capacity
restriction for the speaker representation remains unchanged dur-
ing this process, the amount of speaker information captured by
the speaker representation does not change much when varying𝐶𝑝 .
This indicates the effectiveness of the channel capacity restriction

in limiting information captured by a latent representation and
avoiding information leakage from other factors.

Table 3: Speaker verification using pitch representation

𝐶𝑝 1.5 2.0 2.5 3.0

EER (𝑍 𝑓 ) 0.3747 0.3477 0.3016 0.2666
EER (𝑍𝑝 ) 0.4551 0.4812 0.4630 0.5006
EER (𝑍𝑠 ) 0.0701 0.0696 0.0685 0.0677

6 CONCLUSION
This paper presents SpeechTripleNet, an end-to-end method for
disentangling speech into representations for content, timbre, and
prosody with only unsupervised and self-supervised learning ob-
jectives. SpeechTripleNet is a VAE that models the three factors in
speech as three latent variables. SpeechTripleNet does not require
any human labeling or pre-trained representation extractors. It is
purely learned from speech and features that can be easily extracted
from speech. SpeechTripleNet achieves speech disentanglement
by designing the structures of the latent representations to be suit-
able for capturing the respective factors and imposing channel
capacity restrictions to limit the amount of information each factor
obtains. Qualitative and quantitative experiments demonstrate that
SpeechTripleNet effectively disentangles speech with respect to
content, timbre, and prosody. With the disentanglement, speech
editing such as voice conversion and prosody modification is pos-
sible. Thanks to the self-supervision from the pitch and energy
features, the prosody representation is fundamentally interpretable
and controllable, which enables prosody modification such as em-
phasizing or de-emphasizing a word in an utterance or changing
the tone of an utterance from statement to question.

7 LIMITATIONS
Although SpeechTripleNet effectively disentangles speech with re-
spect to content, timbre, and prosody, we acknowledge that there is
still room for improvement and exploration. Firstly, SpeechTripleNet
requires proper channel capacity restrictions to limit the amount
of information captured by each factor, which requires parameter
tuning to find the best setting. Secondly, SpeechTripleNet learns a
prosody representation that can be locally manipulated to achieve
fine-grained control over pitch and energy. However, rhythm factor,
an important part of prosody, is not disentangled since it involves
learning the duration of each language unit, which is difficult with-
out supervision. In future work, we will explore better ways to
obtain channel capacities and further disentangle the rhythm fac-
tor.
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