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Abstract We investigate and compare two dual formulations of the American
option pricing problem based on two decompositions of supermartingales: the
additive dual of Haugh and Kogan (Oper. Res. 52:258–270, 2004) and Rogers
(Math. Finance 12:271–286, 2002) and the multiplicative dual of Jamshidian
(Minimax optimality of Bermudan and American claims and their Monte-
Carlo upper bound approximation. NIB Capital, The Hague, 2003). Both pro-
vide upper bounds on American option prices; we show how to improve these
bounds iteratively and use this to show that any multiplicative dual can be
improved by an additive dual and vice versa. This iterative improvement con-
verges to the optimal value function. We also compare bias and variance under
the two dual formulations as the time horizon grows; either method may have
smaller bias, but the variance of the multiplicative method typically grows much
faster than that of the additive method. We show that in the case of a discrete
state space, the additive dual coincides with the dual of the optimal stopping
problem in the sense of linear programming duality and the multiplicative
method arises through a nonlinear duality.
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1 Introduction

In the pricing of American options, Monte Carlo methods become potentially
attractive when the number of underlying assets or state variables is large, as is
often the case in interest rate models, for example. Because pricing an American
option entails solving an optimal stopping problem, it is generally infeasible to
develop an unbiased Monte Carlo estimator, so Broadie and Glasserman [4,5]
introduced methods that pair two estimators, one biased high and one biased
low, to produce conservative confidence intervals for the true price. Low-biased
estimates are generated by methods based on suboptimal stopping rules; these
include, for example, Andersen [1], Kolodko and Schoenmakers [12], and Long-
staff and Schwartz [13]. High-biased estimates result from combining backward
induction with simulation or, more systematically, from the duality results of
Haugh and Kogan [8] and Rogers [15]. In these dual formulations of optimal
stopping problems, a maximization over stopping times is replaced by a min-
imization over martingales; a suboptimal martingale thus produces an upper
bound. Andersen and Broadie [2] show how to estimate the dual value associ-
ated with a suboptimal policy, again to bound the option price from both above
and below.

The dual formulations of Haugh and Kogan [8] and Rogers [15] are rooted
in Doob’s decomposition of a supermartingale as the sum of a martingale and
a decreasing process. Jamshidian [9] shows that a multiplicative decomposition
of positive supermartingales—as products of martingales and decreasing pro-
cesses—leads to an alternative dual formulation of the American option pricing
problem. This multiplicative dual is appealing in a financial context because of
its similarity to the mechanics of discounting and measure transformations
commonly used in pricing.

The objective of this paper is to compare and further investigate these addi-
tive and multiplicative duals to the American option pricing problem. We con-
sider only the “Bermudan” case of a finite number of exercise opportunities.
There is a trivial sense in which the two duals are equally effective: neither has
a duality gap, meaning that in both cases the optimal value of the dual problem
coincides with the optimal value of the original optimal stopping problem. We
go further and establish the following:

• We develop transformations of martingales that reduce the dual value asso-
ciated with the martingales and thus improve the quality of the associated
upper bounds. Using these transformations, we show that any additive dual
can be improved by a multiplicative dual and vice versa. Moreover, this
iterative improvement converges to the optimal value.

• We compare the growth in the bias of additive and multiplicative duals
as the time horizon T grows. The multiplicative bias is O(

√
T) under a
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bound on the relative error in approximating the value function, whereas
the additive bias is O(

√
T) under a similar bound on the absolute error.

• We compare the growth in the variance of estimates based on the two duals
as the time horizon grows. We give conditions under which the variance
using the multiplicative dual grows at least exponentially and the variance
using the additive method grows at most quadratically.

• We examine the two methods in the case of a finite state space and show
that the additive dual coincides with ordinary linear programming dual-
ity and the multiplicative dual has an interpretation in terms of nonlinear
programming duality.

Our comparisons involve conditions and qualifications; a universal com-
parison does not seem feasible or even meaningful. However, we consider
the variance comparison the most compelling distinction between the two
methods—one that shows up quickly in numerical tests. Given that there is
no clear ordering of the quality of the upper bounds produced by the two
methods, the variance comparison favors the additive formulation.

Section 2 reviews the two dual problems. Section 3 presents our iterative
improvement method and Sect. 4 relates it to dynamic programming. Section 5
presents our bias comparisons and Sect. 6 our variance comparisons. Section 7
examines the connection with linear programming duality.

2 Doob’s decomposition and duality

We formulate a discrete-time optimal stopping problem, starting from a sto-
chastic process X = {Xt, t = 0, 1, . . . , T}. Let F = {Ft : 0 ≤ t ≤ T} be the
filtration generated by X. Exercising (or stopping) at time t yields a payoff of
h(t, Xt) ≥ 0, where Xt = {X0, . . ., Xt}. Let T be the set of all stopping times with
respect to F . The value of the optimal stopping problem is then

V0 = sup
τ∈T

E[h(τ , Xτ )|F0]. (2.1)

(We have not included explicit discounting in Eq. (2.1), but discounting may be
incorporated by appropriately defining h and X.)

More generally, let F j = {Ft : j ≤ t ≤ T} and let T j be the set of all stopping
times with respect to F j, restricted to take values in {j, j + 1, . . . , T}. Then

Vj = sup
τ∈T j

E[h(τ , Xτ )|Fj], 0 ≤ j ≤ T (2.2)

represents the value of the optimal stopping problem if exercise prior to time j
is precluded. This may also be thought of as the value of a new American option
issued at time j, given the history Fj.

It is standard (and easily verified) that V = {Vj, j = 0, 1, . . . , T} is a supermar-
tingale with respect to F . As such, it admits an (additive) Doob decomposition,

Vt = Mt + Dt, t = 0, 1, . . . , T, (2.3)
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in which M is a martingale with M0 = 0 and D is a nonincreasing predictable
process (predictable here meaning that Dt ∈ Ft−1, t = 1, . . . , T). If V is positive
(which holds if, e.g., h > 0) then it also admits a multiplicative decomposition

Vt = BtAt, t = 0, 1, . . . , T, (2.4)

in which B is a positive martingale with B0 = 1 and A is a nonincreasing
predictable process.

Haugh and Kogan [8] and Rogers [15] give dual formulations of optimal stop-
ping problems in discrete and continuous time, respectively. We record their
results in our setting as follows:

Proposition 2.1 Let M0 denote the set of all martingales M with respect to F
having M0 = 0. Then

V0 = inf
M∈M0

E
[

max
0≤t≤T

(h(t, Xt) − Mt)

∣∣∣∣F0

]
.

Moreover, the infimum is attained by the martingale in (2.3).

This formulation converts the problem of maximizing over stopping times
into one of minimizing over martingales. Finding the optimal martingale is as
difficult as finding the optimal value function, so Haugh and Kogan [8] and
Rogers [15] suggest approximating V0 using suboptimal martingales and the
inequality

V0 ≤ E
[

max
0≤t≤T

(h(t, Xt) − Mt)

∣∣∣∣F0

]
(2.5)

for any M ∈ M0. Andersen and Broadie [2] combine this upper bound with
lower bounds on the optimal value and construct martingales from stopping
rules.

Jamshidian [9] proposes a dual formulation of the optimal stopping problem
based on the multiplicative decomposition (2.4). He proves the following:

Proposition 2.2 Let B0 denote the set of all positive martingales B with respect
to F having B0 = 1. Then

V0 = inf
B∈B0

EB
[

max
0≤t≤T

h(t, Xt)

Bt

∣∣∣∣F0

]
:= inf

B∈B0
E

[
max

0≤t≤T

h(t, Xt)

Bt
BT

∣∣∣∣F0

]
.

If V is positive (e.g., if h > 0), then the infimum is attained by the martingale in
(2.4).

For the rest of this paper, we assume for simplicity that h is strictly positive.
The case of merely nonnegative h can be handled by adding ε > 0 to h and then
letting ε decrease to 0, as in [9].

As is implicit in the statement of this result, EB denotes expectation under
the change of measure defined by BT ; i.e., EB[Y] = E[YBT] for all nonnegative
Y ∈ FT . Jamshidian [9] suggests methods of constructing positive martingales
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to approximate the optimal martingale and thus to compute approximations to
V0. Also, any B ∈ B0 generates an upper bound

V0 ≤ E
[

max
0≤t≤T

h(t, Xt)

Bt
BT

∣∣∣∣F0

]
. (2.6)

3 Iterative improvement of upper bounds

In this section, we present a method for improving the upper bounds (2.5) and
(2.6) on V0 obtained from dual formulations of the optimal stopping prob-
lem. We give an iterative construction that stops only when the optimal value
is reached. A consequence of this construction is a strong equivalence result
between the quality of the additive and multiplicative duals: any multiplicative
upper bound can be improved by an additive upper bound and, if h > 0, any
additive upper bound can be improved by a multiplicative upper bound. As a
step in this analysis, we introduce the following definition:

Definition 3.1 A supersolution is a supermartingale W that satisfies Wt ≥ h(t, Xt)

for all 0 ≤ t ≤ T.

A supersolution W thus satisfies

Wt ≥ max{h(t, Xt), E[Wt+1|Ft]}, (3.1)

whereas the value function itself solves the dynamic programming equation

Vt = max{h(t, Xt), E[Vt+1|Ft]}.
Because VT = h(T, XT), it follows that Wj ≥ Vj, j = 0, 1, . . . , T.

Our iterative construction is based on defining martingales from supersolu-
tions and supersolutions from martingales. The first step is standard—it is an
explicit construction of the Doob and multiplicative decompositions—but we
include it for completeness:

Lemma 3.2 If W is a supersolution, then the martingale in (2.3) is given by

MW
j =

j∑
t=1

(Wt − E[Wt|Ft−1]). (3.2)

If W is a positive supersolution (e.g., if h > 0 ), then the martingale in (2.4) is
given by

BW
j =

j∏
t=1

Wt

E[Wt|Ft−1] . (3.3)

Our next result shows how to go in the opposite direction—from martingales
to supersolutions.
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Lemma 3.3 If M ∈ M0 and

WM
j = E

[
max

j≤t≤T
(h(t, Xt) − Mt)

∣∣∣∣Fj

]
+ Mj, j = 0, 1, . . . , T, (3.4)

then WM is a supersolution. If B ∈ B0 and

WB
j = EB

[
max

j≤t≤T

h(t, Xt)

Bt

∣∣∣∣Fj

]
Bj, j = 0, 1, . . . , T, (3.5)

then WB is a positive supersolution.

Proof In the case of Eq. (3.4), we have, for all j = 0, 1, . . . , T,

WM
j = E

[
max

j≤t≤T
(h(t, Xt) − Mt)

∣∣∣∣Fj

]
+ Mj ≥ h(j, Xj) − Mj + Mj = h(j, Xj).

And WM
j is a supermartingale because

E
[
WM

j

∣∣∣Fj−1

]
= E

[
max

j≤t≤T
(h(t, Xt) − Mt)

∣∣∣∣Fj−1

]
+ Mj−1

≤ E
[

max
j−1≤t≤T

(h(t, Xt) − Mt)

∣∣∣∣Fj−1

]
+ Mj−1 = WM

j−1.

For Eq. (3.5), we have

WB
j = EB

[
max

j≤t≤T

h(t, Xt)

Bt

∣∣∣∣Fj

]
Bj ≥ (h(j, Xj)/Bj)Bj = h(j, Xj)

and

E
[
WB

j

∣∣∣Fj−1

]
= E

[
EB

[
max

j≤t≤T

h(t, Xt)

Bt

∣∣∣∣Fj

]
Bj

∣∣∣∣Fj−1

]
.

Using the Bayes rule for conditional expectations, EB[Y|Fk] = E[YBT |Fk]/Bk,
for all Y ≥ 0 (as in [10], Lemma 5.3),

E
[
WB

j

∣∣∣Fj−1

]
= E

[
E

[
max

j≤t≤T

h(t, Xt)

Bt

BT

Bj

∣∣∣∣Fj

]
Bj

∣∣∣∣Fj−1

]

= E
[

max
j≤t≤T

h(t, Xt)

Bt
BT

∣∣∣∣Fj−1

]

≤ E
[

max
j−1≤t≤T

h(t, Xt)

Bt
BT

∣∣∣∣Fj−1

]
.

Another application of Bayes rule gives

E
[
WB

j

∣∣∣Fj−1

]
≤ EB

[
max

j−1≤t≤T

h(t, Xt)

Bt
Bj−1

∣∣∣∣Fj−1

]
= WB

j−1.

��
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The main result of this section is that combining these two lemmas provides
an iterative improvement of upper bounds: If we start with a supersolution,
extract a martingale (as in Lemma 3.2), and then construct a new supersolu-
tion from the martingale (as in Lemma 3.3), we get an improvement over the
original supersolution.

Theorem 3.4 Suppose that a supersolution W has a decomposition

W = M + D or W = BA.

Let WM and WB be as in (3.4) and (3.5), respectively. Then, for j = 0, 1, . . . , T,

Vj ≤ WM
j ≤ Wj (3.6)

and
Vj ≤ WB

j ≤ Wj. (3.7)

Proof The first inequalities in both Eqs. (3.6) and (3.7) follow from the
supersolution property; see the comments following Eq. (3.1). For the second
inequalities,

WM
j = E

[
max

j≤t≤T
(h(t, Xt) − Mt)

∣∣∣∣Fj

]
+ Mj

≤ E
[

max
j≤t≤T

(Wt − Mt)

∣∣∣∣Fj

]
+ Mj

= E
[

max
j≤t≤T

Dt

∣∣∣∣Fj

]
= Dj + Mj = Wj,

because D is nonincreasing; and

WB
j = EB

[
max

j≤t≤T

h(t, Xt)

Bt

∣∣∣∣Fj

]
Bj

≤ EB
[

max
j≤t≤T

Wt

Bt

∣∣∣∣Fj

]
Bj

= EB
[

max
j≤t≤T

At

∣∣∣∣Fj

]
Bj = AjBj = Wj

because A is nonincreasing. ��
As a consequence of Theorem 3.4, we establish an equivalence between the

quality of the bounds achievable with the additive and multiplicative duals,
using essentially the same information. Given a martingale and a dual value
under one method, we can explicitly construct a new martingale that gives a
dual value using the opposite method that is better (or at least no worse).

Corollary 3.5 Let M be a martingale, M0 = 0, with W ≡ WM the correspond-
ing supersolution in (3.4). If W > 0 (e.g., if h > 0 ), let BW be the martingale
constructed from W as in (3.3). Then
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EBW

[
max

0≤t≤T

h(t, Xt)

BW
t

∣∣∣∣F0

]
≤ W0.

Let B be a positive martingale, B0 = 1, with W ≡ WB the corresponding
supersolution in (3.5). Let MW be the martingale constructed from M as in
(3.2). Then

E
[

max
0≤t≤T

(
h(t, Xt) − MW

t

) ∣∣∣∣F0

]
≤ W0.

Theorem 3.4 and Corollary 3.5 provide the basis for an iterative method of
improving upper bounds. However, because these results use weak inequalities,
they do not preclude the possibility that an iterative scheme could get stuck at a
suboptimal fixed point. The next result rules out this possibility: equality holds
only if the supersolution is the optimal value function.

Theorem 3.6 Let W be a supersolution and MW and BW the martingales in (3.2)
and (3.3). If

E
[

max
j≤t≤T

(
h(t, Xt) − MW

t

) ∣∣∣∣Fj

]
+ MW

j = Wj for all 0 ≤ j ≤ T, (3.8)

or

EBW

[
max

j≤t≤T

h(t, Xt)

BW
t

∣∣∣∣F0

]
BW

j = Wj for all 0 ≤ j ≤ T, (3.9)

then W0 = V0, the value of the optimal stopping problem.

Proof Consider the additive method first. We claim that if Eq. (3.8) holds,
maxj≤t≤T(h(t, Xt) − MW

t ) is Fj-measurable. That is,

max
j≤t≤T

(
h(t, Xt) − MW

t

)
+ MW

j = Wj. (3.10)

Indeed,

E
[

max
j≤t≤T

(h(t, Xt) − MW
t )

∣∣∣∣Fj

]
= Wj − MW

j = DW
j ,

where DW is the nonincreasing part of the Doob decomposition of W. On the
other hand,

max
j≤t≤T

(
h(t, Xt) − MW

t

)
≤ max

j≤t≤T

(
Wt − MW

t

)
= max

j≤t≤T
DW

t = DW
j .

Thus,

max
j≤t≤T

(
h(t, Xt) − MW

t

)
= DW

j = Wj − MW
j .

For j = 0,

W0 = max
0≤t≤T

(
h(t, Xt) − MW

t

)
= max

0≤t≤T

(
h(t, Xt) − Wt + DW

t

)

≤ max
0≤t≤T

(h(t, Xt) − Wt) + max
0≤t≤T

DW
t ≤ max

0≤t≤T
DW

t = DW
0 = W0.
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Thus,

max
0≤t≤T

(h(t, Xt) − Wt) = 0.

From Eq. (3.10), we know that

Wj = max
j≤t≤T

(
h(t, Xt) − MW

t

)
+ MW

j

= max

(
h(j, Xj), max

j+1≤t≤T
h(t, Xt) −

(
MW

t − MW
j

))

= max

(
h(j, Xj), max

j+1≤t≤T
h
(

t, Xt − MW
t

)
+ MW

j+1 −
(

MW
j+1 − MW

j

))

= max
(

h(j, Xj), Wj+1 −
(

MW
j+1 − MW

j

))
. (3.11)

Define a stopping time τ = inf{t ≥ 0 : h(t, Xt) = Wt}. According to the defini-
tion of τ and (3.11), for any j,

{τ = j} = {W0 > h(0, X0)} ∩ {W1 > h(1, X1)}
∩ · · · ∩ {Wj−1 > h(j − 1, Xj−1)} ∩ {Wj = h(j, Xj)}

=
{

W0 = W1 −
(

MW
1 − MW

0

)}

∩ · · · ∩
{

Wj−1 = Wj −
(

MW
j − MW

j−1

)}
∩ {Wj = h(j, Xj)}.

In words, W would be a martingale before the stopping time τ . Indeed,

Wt∧τ = W0 +
t∑

j=1

(
Wj∧τ − W(j−1)∧τ

) = W0 +
t∑

j=1

1{j≤τ }
(

MW
j∧τ − MW

(j−1)∧τ

)
.

Thus, {Wt∧τ : 0 ≤ t ≤ T} is a martingale because of Durrett [6], Theorem

2.7 and the fact that 1{j≤τ } is Fj−1-measurable and
(

MW
j∧τ

)
is a martingale. By

the optional sampling theorem, for any stopping time γ , noting that W· is a
supermartingale and W·∧τ is a martingale,

W0 = E[W0∧τ |F0] = E[Wγ∧τ |F0] ≥ E[Wγ |F0] ≥ E[h(γ , Xγ )|F0].
On the other hand,

W0 = E[W0∧τ |F0] = E[Wγ∧τ |F0] = E[WT∧τ |F0] = E[Wτ |F0].
Thus, W0 is the optimal value. The argument for the multiplicative case is very
similar. ��

Theorems 3.4 and 3.6 may be contrasted with an iterative method of Kolodko
and Schoenmakers [12]. Their method iteratively constructs stopping times. The
value associated with a suboptimal stopping rule provides a lower bound on
the optimal value function, and Kolodko and Schoenmakers [12] show that
the lower bounds they construct increase monotonically. They also construct
dual values for stopping rules, thus pairing each lower bound with an upper
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bound. However, it is not in general the case that their upper bounds improve
monotonically together with their lower bounds.

4 Dynamic programming perspective

In this section, we examine the iterative construction of the previous section
from a dynamic programming perspective, starting with the following lemma:

Lemma 4.1 Let W̃ be either of the supersolutions WM and WB in (3.2) and (3.3).
Then

W̃j ≤ max{h(j, Xj), E[Wj+1|Fj]}.

Proof We prove the case W̃ = WM, the case of WB being very similar. Indeed,

WM
t = E

[
max

t≤i≤T
(h(i, Xi) − Mi)

∣∣∣∣Ft

]
+ Mt = E

[
max

t≤i≤T
(h(i, Xi) − (Mi − Mt)

∣∣∣∣Ft

]

and

Mi − Mt =
i∑

�=t+1

{W� − E[W�|F�−1]}.

Thus,

WM
t = E

⎡
⎣ max

t≤i≤T

⎛
⎝h(i, Xi) −

i∑
�=t+1

{W� − E[W�|F�−1]}
⎞
⎠

∣∣∣∣∣Ft

⎤
⎦

= E

⎡
⎣max

⎛
⎝h(t, Xt), max

t+1≤i≤T

⎛
⎝h(i, Xi) −

i∑
�=t+1

{W� − E[W�|F�−1]}
⎞
⎠

⎞
⎠

∣∣∣∣∣Ft

⎤
⎦

= E

[
max

(
h(t, Xt), max

t+1≤i≤T

(
(h(i, Xi) − Wi)

+
i∑

�=t+2

{E[W�|F�−1] − W�−1} + E[Wt+1|Ft]
))∣∣∣∣∣Ft

]
.

Note that h(i, Xi) ≤ Wi and E[W�|F�−1] ≤ W�−1. Then,

WM
t ≤ E

[
max

(
h(t, Xt), E[Wt+1|Ft]

)∣∣∣Ft

]
= max

(
h(t, Xt), E[Wt+1|Ft]

)
.

��
Now consider a sequence of supersolutions W0, W1, . . . , each obtained from

the previous one using either Eqs. (3.4) or (3.5). Using Lemma 4.1, we can show
that if W0

T = hT(T, XT), then the sequence reaches the optimal value function
V in T steps. Moreover, the agreement between the supersolution and V moves
backward from time T to time 0.
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Theorem 4.2 Consider a sequence of supersolutions W0, W1, . . . , WT with
decompositions Wk = Mk + Dk and Wk = BkAk and

Wk
j = E

[
max

j≤t≤T
(h(t, Xt) − Mk−1

t )

∣∣∣∣Fj

]
+ Mk−1

j

or

Wk
j = EBk−1

[
max

j≤t≤T

h(t, Xt)

Bk−1
t

∣∣∣∣∣Fj

]
Bk−1

j .

Suppose W0
T = hT(T, XT). Then, for all 0 ≤ j ≤ T,

WT−j
t = Vt for all t ≥ j,

where Vt is the optimal value in (2.2).

Proof The proof is by induction. We have W0
T = VT . Suppose therefore that

WT−j−1
t = Vt, for all t = j + 1, . . . , T. Then, for t = j, j + 1, . . . , T, Lemma 4.1

implies

WT−j
t ≤ max{h(t, Xt), E[Vt+1|Ft]} = Vt.

But we also have WT−j ≥ V because it is a supersolution, so we must have
WT−j

t = Vt, t = j, . . . , T. ��

5 Bias comparisons

In Sect. 3, we argued that the additive and multiplicative duals produce upper
bounds of equal quality, in the sense that either could be used to improve the
other in a systematic way. In this section, we turn to other ways of comparing
these bounds—i.e., of comparing the bias in the dual estimates compared with
the optimal value. In the next section, we compare variances.

We know from Sect. 2 that both the additive and multiplicative duals can
achieve the optimal value once we find the corresponding optimal martingale.
But in practice, finding the optimal martingale is as difficult as solving the
original problem (2.1). Thus, a general strategy is to approximate the optimal
martingale and use this approximation in a Monte Carlo simulation to estimate
upper bounds for the optimal value. Such a strategy introduces two kinds of
errors: bias, from using an approximating martingale, and sampling variability,
from the Monte Carlo simulation. Both are captured by an estimator’s mean
square error, which is the sum of its variance and the square of its bias. We
investigate the growth in bias and variance as the time horizon in the optimal
stopping problem grows.
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5.1 Bias of the multiplicative method

First we point out that the worst case of bias of the multiplicative dual grows as
a linear function of T. We use B̃ to denote an arbitrary positive martingale with
B̃0 = 1. Think of this as an approximation to the optimal B.

Proposition 5.1 The bias of the multiplicative method satisfies

0 ≤ EB̃
[

max
0≤t≤T

h(t, Xt)

B̃t

∣∣∣∣F0

]
− V0 ≤ V0 · (T − 1),

where V0 is the value of the optimal stopping problem.

Proof The first inequality is easy because B̃ is a martingale and

EB̃
[

max
0≤t≤T

h(t,Xt)

B̃t

∣∣∣∣F0

]
gives us an upper bound on V0. For the second inequality,

EB̃
[

max
0≤t≤T

h(t, Xt)

B̃t

∣∣∣∣F0

]
− V0 ≤ EB̃

[
max

0≤t≤T

Vt

B̃t

∣∣∣∣F0

]
− V0

= EB̃
[

max
0≤t≤T

BtAt

B̃t

∣∣∣∣F0

]
− V0

≤ A0EB̃
[

max
0≤t≤T

Bt

B̃t

∣∣∣∣F0

]
− V0, (5.1)

where the first line uses h(t, Xt) ≤ Vt, the second applies the multiplicative
decomposition of the supermartingale V, and the third uses the fact that A is a
nonincreasing process. Note that V0 = A0B0 and B0 = 1. By Eq. (5.1),

EB̃
[

max
0≤t≤T

h(t, Xt)

B̃t

∣∣∣∣F0

]
− V0 ≤ V0 ·

(
EB̃

[
max

0≤t≤T

Bt

B̃t

∣∣∣∣F0

]
− 1

)

≤ V0 ·
(

EB̃

[
T∑

t=0

Bt

B̃t

∣∣∣∣∣F0

]
− 1

)

= V0 · (T − 1).

��

This upper bound can be improved dramatically with a more accurate approx-
imation of the optimal martingale. As discussed in Glasserman [7], Sect. 8.7,
there are two broad approaches to approximating the optimal martingale—by
approximating the optimal value function or by approximating the optimal stop-
ping rule. Given a (positive) approximation Ṽ to the (positive) value function
V, one may construct a positive martingale

B̃t =
t∏

i=1

Ṽi

E[Ṽi|Fi−1]
.
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Given a sequence of stopping times τ̃ j, j = 0, 1, . . . , T, taking values in
{j, j + 1, . . . , T} and measurable with respect to F j, one may construct a martin-
gale

B̃t =
t∏

i=1

E[h(τ̃ i, Xτ̃ i)|Fi]
E[h(τ̃ i, Xτ̃ i)|Fi−1] .

The next result shows the improvement achieved if either of these approxima-
tions has uniformly small relative error.

Proposition 5.2 Suppose that for all i = 0, 1, . . . , T,

1 − ε ≤ Ṽi

Vi
≤ 1 + ε or 1 − ε ≤ E[h(τ̃ i, Xτ̃ i)|Fi]

Vi
≤ 1 + ε.

Then,

0 ≤ EB̃
[

max
0≤t≤T

h(t, Xt)

B̃t

∣∣∣∣F0

]
− V0 ≤ V0

√
TO(ε).

Proof The first inequality is immediate, so we prove only the second one. First,

EB̃
[

max
0≤t≤T

h(t, Xt)

B̃t

∣∣∣∣F0

]
− V0 ≤ EB̃

[
max

0≤t≤T

Vt

B̃t

∣∣∣∣F0

]
− V0

= EB̃
[

max
0≤t≤T

BtDt

B̃t

∣∣∣∣F0

]
− V0

≤ D0EB̃
[

max
0≤t≤T

Bt

B̃t

∣∣∣∣F0

]
− V0

= V0

(
EB̃

[
max

0≤t≤T

Bt

B̃t

∣∣∣∣F0

]
− 1

)
.

By Doob’s inequality and the fact that Bt/B̃t − 1 is a martingale under the
probability measure PB̃,

EB̃
[

max
0≤t≤T

h(t, Xt)

B̃t

∣∣∣∣F0

]
− V0 ≤ V0EB̃

[
max

0≤t≤T

(
Bt

B̃t
− 1

) ∣∣∣∣F0

]

≤ V0 · 2

√√√√EB̃

[(
BT

B̃T
− 1

)2
∣∣∣∣∣F0

]
. (5.2)

We know that, by the orthogonality of martingale differences (see, e.g., [11],
p. 331),

EB̃

[(
BT

B̃T
− 1

)2
∣∣∣∣∣F0

]
=

T∑
t=0

EB̃

⎡
⎣
(

Bt

B̃t
− Bt−1

B̃t−1

)2 ∣∣∣∣∣F0

⎤
⎦ . (5.3)
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From Eqs. (5.2) and (5.3),

EB̃
[

max
0≤t≤T

h(t, Xt)

B̃t

∣∣∣∣F0

]
− V0 ≤ 2V0

√√√√√
T∑

t=0

EB̃

⎡
⎣
(

Bt

B̃t
− Bt−1

B̃t−1

)2 ∣∣∣∣∣F0

⎤
⎦

= 2V0

√√√√√
T∑

t=0

EB̃

⎡
⎣
(

Bt−1

B̃t−1

)2 (
Bt/Bt−1

B̃t/B̃t−1
− 1

)2 ∣∣∣∣∣F0

⎤
⎦.

For the ratio Bt/Bt−1

B̃t/B̃t−1
, we know that

Bt/Bt−1

B̃t/B̃t−1
= ∆t/∆̃t

E[∆t|Ft−1]/E[∆̃t|Ft−1]
,

where

1
1 + ε

≤ ∆t

∆̃t
= Ṽt

Vt

(
or

E[h(τ̃ t, Xτ̃ t )|Ft]
Vt

≤ 1
1 − ε

)

which implies

(
Bt/Bt−1

B̃t/B̃t−1
− 1

)2

≤
(

2ε

1 − ε

)2

.

Thus,

EB̃
[

max
0≤t≤T

h(t, Xt)

B̃t

∣∣∣∣F0

]
− V0 ≤ 2V0

√√√√√
T∑

t=0

EB̃

⎡
⎣
(

Bt−1

B̃t−1

)2 (
Bt/Bt−1

B̃t/B̃t−1
− 1

)2 ∣∣∣∣∣F0

⎤
⎦

≤ V0
4ε

1 − ε

√√√√√
T∑

t=0

EB̃

[
EB̃

⎡
⎣
(

Bt−1

B̃t−1

)2 ∣∣∣∣Ft−2

⎤
⎦

∣∣∣∣∣F0

]

= V0
4ε

1 − ε

√√√√ T∑
t=0

EB̃

[
EB

[
Bt−1

B̃t−1

∣∣∣∣Ft−2

] ∣∣∣∣∣F0

]

where we use the Bayes formula for conditional expectations to get the last
equality. Note that Bt−1/B̃t−1 ≤ (1 + ε)t−1/(1 − ε)t−1. Thus,

EB̃
[

max
0≤t≤T

h(t, Xt)

B̃t

∣∣∣∣F0

]
− V0 ≤ V0

4ε

1 − ε

√√√√ T∑
t=1

(1 + ε

1 − ε

)t−1 = V0
√

TO(ε).

��
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5.2 Bias of the additive method

A similar bound applies in the additive case when the absolute (rather than
relative) error in the approximating martingale is uniformly small. For the fol-
lowing, define a martingale M̃ by setting M̃0 = 0 and

M̃i − M̃i−1 = Ṽi − E[Ṽi|Fi−1]
or

M̃i − M̃i−1 = E
[
h
(
τ̃ i, Xτ̃ i

) |Fi
] − E

[
h
(
τ̃ i, Xτ̃ i

) |Fi−1
]

.

Proposition 5.3 Suppose that for all i = 0, 1, . . . , T,

− ε ≤ Ṽi − Vi ≤ ε or − ε ≤ E[h(τ̃ i, Xτ̃ i)|Fi] − Vi ≤ ε. (5.4)

Then,

0 ≤ E
[

max
0≤t≤T

(h(t, Xt) − M̃t)

∣∣∣∣F0

]
− V0 ≤ 4

√
Tε.

Proof We only need to prove the second inequality. Note that

E
[

max
0≤t≤T

(h(t, Xt) − M̃t)

∣∣∣∣F0

]
− V0 ≤ E

[
max

0≤t≤T
(Vt − M̃t)

∣∣∣∣F0

]
− V0

= E
[

max
0≤t≤T

(Dt + Mt − M̃t)

∣∣∣∣F0

]
− V0

≤ D0 + E
[

max
0≤t≤T

(Mt − M̃t)

∣∣∣∣F0

]
− V0

= E
[

max
0≤t≤T

(Mt − M̃t)

∣∣∣∣F0

]
,

where D0 = V0 in Doob’s decomposition. Again, we use Doob’s martingale
inequality and the orthogonality property of martingale differences to get that

E
[

max
0≤t≤T

(h(t, Xt) − M̃t)

∣∣∣∣F0

]
− V0

≤ E
[

max
0≤t≤T

(Mt − M̃t)

∣∣∣∣F0

]
≤ 2

√
E[(MT − M̃T)2|F0]

= 2

√√√√ T∑
t=1

E[((Mt − M̃t) − (Mt−1 − M̃t−1))
2|F0]

= 2

√√√√ T∑
t=1

E[((∆t − ∆̃t) − E[(∆t − ∆̃t)|Ft−1])2|F0]

≤ 2

√√√√ T∑
t=1

E[(∆t − ∆̃t)2|F0].
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Under the assumption (5.4), (∆t − ∆̃t)
2 ≤ 4ε2. Thus,

E
[

max
0≤t≤T

(h(t, Xt) − M̃t)

∣∣∣∣F0

]
− V0 ≤ 4

√
Tε.

��
A comparison of Propositions 5.2 and 5.3 indicates that in both cases the bias

is O(
√

T) when the corresponding optimal martingale can be approximated
accurately.

5.3 Bounds from approximate value functions

We have thus far investigated upper bounds on the optimal value function con-
structed from martingales that approximate the optimal martingales in dual
formulations of the optimal stopping problem. We now turn to an alternative
approach in which one starts from approximations to the optimal value func-
tion and constructs processes from those approximations that would be optimal
martingales if one started from the optimal value function.

To simplify the discussion, in this section we take X to be Markov and we
assume that the payoff function h is dependent only on time and the current state
of process X. The optimal value function Vj satisfies the dynamic programming
recursion

VT(XT) = h(T, XT);

Vj(Xj) = max
(
h(j, Xj), E[Vj+1(Xj+1)|Xj]

)
.

Let C̃j(·), j = 0, 1, . . . , T − 1, denote a sequence of approximations to the
conditional expectations E[Vj+1(Xj+1)|Xj = ·]. From these, define approximate
value functions

ṼT(XT) = h(T, XT);

Ṽj(Xj) = max
(
h(j, Xj), C̃j(Xj)

)
.

In addition, define two residual processes by

ε̃i = Ṽi(Xi) − C̃i−1(Xi−1) or δ̃i = Ṽi(Xi)

C̃i−1(Xi−1)
, (5.5)

in the second case assuming C̃i−1 > 0. From these residuals we define two
further processes

M̃i =
i∑

j=1

ε̃j, M̂0 = 0 and B̃i =
i∏

j=1

δ̃j, B̃0 = 1. (5.6)

The following lemma elaborates on an observation in [7, pp. 477–478] on the
connection between upper bounds computed through duality and dynamic
programming.
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Lemma 5.4

Ṽ0(X0) = max
0≤t≤T

(h(t, Xt) − M̃t) = max
0≤t≤T

h(t, Xt)

B̃t
, a.s.

Proof We prove the additive case only; the multiplicative case is similar. So

max
(

h(T − 1, XT−1) − M̃T−1, h(T, XT) − M̃T

)

= max
(
h(T − 1, XT−1), h(T, XT) − ε̃T

) − M̃T−1

= max
(

h(T − 1, XT−1), h(T, XT) − ṼT(XT) + C̃T−1(XT−1)
)

− M̃T−1

= max
(

h(T − 1, XT−1), C̃T−1(XT−1)
)

− M̃T−1 = ṼT−1(XT−1) − M̃T−1.

Suppose that for time i + 1, we have

max
i+1≤t≤T

(h(t, Xt) − M̃t) = Ṽi+1(Xi+1) − M̃i+1.

Then we get for time i

max
i≤t≤T

(h(t, Xt) − M̃t) = max

(
h(i, Xi) − M̃i, max

i+1≤t≤T
(h(t, Xt) − M̃t)

)

= max
(

h(i, Xi) − M̃i, Ṽi+1(Xi+1) − M̃i+1

)

= max
(

h(i, Xi), Ṽi+1(Xi+1) − ε̃i+1

)
− M̃i

= max
(

h(i, Xi), C̃i+1(Xi+1)
)

− M̃i = Ṽi(Xi) − M̃i.

By induction, we know that

max
i≤t≤T

(h(t, Xt) − M̃t) = Ṽ0(X0) − M̃0 = Ṽ0(X0).

��
If Ṽ and C̃ were the optimal value and continuation functions, M̃ and B̃ would

be the optimal martingales. Because C̃j need not be the conditional expectation
of Ṽj+1, M̃ and B̃ need not even be martingales. Observe that M̃ is a supermar-
tingale if and only if B̃ is a supermartingale and M̃ is a submartingale if and
only if B̃ is a submartingale. The following result gives a sense in which neither
the additive nor the multiplicative bound constructed in this way universally
dominates the other.

Proposition 5.5 If M̃ is a supermartingale, then

E
[

max
0≤t≤T

h(t, Xt)

B̃t
B̃T

∣∣∣∣F0

]
≤ E

[
max

0≤t≤T
(h(t, Xt) − M̃t)

∣∣∣∣F0

]
. (5.7)

If B̃ is a submartingale, then

E
[

max
0≤t≤T

h(t, Xt)

B̃t
B̃T

∣∣∣∣F0

]
≥ E

[
max

0≤t≤T
(h(t, Xt) − M̃t)

∣∣∣∣F0

]
. (5.8)
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Remark 5.6 When M̃ is a supermartingale, E[max0≤t≤T(h(t, Xt)−M̃t)|F0] gives
an upper bound of the optimal value. But Eq. (5.7) does not imply that the multi-

plicative method is better than the additive method because E
[
max0≤t≤T

h(t,Xt)

B̃t

B̃T

∣∣∣F0

]
is not necessarily an upper bound on V0. Similar comments apply to

Eq. (5.8).

Proof of Proposition 5.5 Suppose that M̃ is a supermartingale. Then, for any
stopping time τ , by the optional sampling theorem of supermartingales,

E
[

max
0≤t≤T

(h(t, Xt) − M̃t)

∣∣∣∣F0

]
≥ E[(h(τ , Xτ ) − M̃τ )|F0] ≥ E[h(τ , Xτ )|F0] − M̃0

= E[h(τ , Xτ )|F0].
i.e., E[max0≤t≤T(h(t, Xt)−M̃t)|F0] gives us an upper bound of the optimal value.
Recall that M̃ is a supermartingale if and only if B̃ is a supermartingale. Using
Lemma 5.4,

E
[

max
0≤t≤T

h(t, Xt)

B̃t
B̃T

∣∣∣∣F0

]
= E[Ṽ0(X0) B̃T |F0] = Ṽ0(X0)E[B̃T |F0]

≤ Ṽ0(X0) = E
[

max
0≤t≤T

(h(t, Xt) − M̃t)

∣∣∣∣F0

]
.

A similar argument applies when B̃ and M̃ are submartingales. ��

6 Variance comparison

In previous sections, we have argued from several perspectives that the quality
of the bounds obtained using the additive and multiplicative duals are equiva-
lent. In this section, compare the variance of the two methods and argue that
this represents a significant advantage for the additive method.

6.1 Variance of the multiplicative method

Definition 6.1 (Relative entropy) Let µ1 and µ2 be two mutually absolutely
continuous measures. The relative entropy of µ2 with respect to µ1 is given by

R(µ2‖µ1) =
∫

log

[
dµ2

dµ1

]
dµ2.

Remark 6.2 Jensen’s inequality implies that R(µ2‖µ1) ≥ 0 and that equality
holds only if µ2 = µ1. Thus the relative entropy can be viewed as a kind of
“distance” between two measures, though it is not symmetric.

Using the Bayes formula for conditional expectations ([10], Lemma 5.3), we
get
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Lemma 6.3

EB̃[B̃i+1|Fi] ≥ B̃i exp
(

R
(
PB̃(·|Fi)

∥∥P(·|Fi)
))

where R(PB̃(·|Fi)‖P(·|Fi)) is the relative entropy of PB̃(·|Fi) with respect to
P(·|Fi).

Proof It is easy to see that

EB̃[B̃i+1|Fi] = B̃iEB̃
[

B̃i+1

B̃i

∣∣∣∣Fi

]
= B̃iEB̃

[
exp

(
log

B̃i+1

B̃i

)∣∣∣∣Fi

]

≥ B̃i exp

(
EB̃

[
log

B̃i+1

B̃i

∣∣∣∣∣Fi

])

where the inequality follows the concavity of log and Jensen’s inequality. On
the other hand, by the Bayes formula, for all A ∈ Fi+1,

PB̃(A|Fi) = EB̃[1A|Fi] = 1

B̃i
E[1AB̃i+1|Fi].

In other words, B̃i+1/B̃i is the Radon–Nikodým derivative of PB̃(·|Fi) over
P(·|Fi). The result now follows from the definition of relative entropy. ��

Proposition 6.4 If B̃t ∈ B0 satisfies

R
(
PB̃(·|Fi)

∥∥P(·|Fi)
) ≥ ε, 0 ≤ i ≤ T, (6.1)

then the variance of the resulting multiplicative estimate has the lower bound

Var
[

max
0≤t≤T

h(t, Xt)

B̃t
B̃T

∣∣∣∣F0

]
≥ exp(Tε)E[h2(1, X1)|F0] − V2

0T2.

Remark 6.5 Though perhaps difficult to verify, condition (6.1) is, we believe,
broadly applicable. The optimal probability measure PB for pricing Ameri-
can option is invariably different from the physical probability measure, so
R(PB̃(·|Fi)‖P(·|Fi)) > 0 for all i. Condition (6.1) requires that the relative
entropy be bounded away from 0. For fixed T, this is no more restrictive than
requiring that the relative entropy be positive for all i, so the real content of the
condition is that it should continue to hold as T grows.

Proof of Proposition 6.4 We know that

Var

[
max

0≤t≤T

h(t, Xt)

B̃t
B̃T

∣∣∣∣∣F0

]
= E

[
max

0≤t≤T

(
h(t, Xt)

B̃t
B̃T

)2
∣∣∣∣∣F0

]

−
(

E
[

max
0≤t≤T

h(t, Xt)

B̃t
B̃T

∣∣∣∣F0

])2

. (6.2)
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For the first term on the right, we have

E

[
max

0≤t≤T

(
h(t, Xt)

B̃t
B̃T

)2
∣∣∣∣∣F0

]
≥ E

[(
h(1, X1)

B̃1
B̃T

)2
∣∣∣∣∣F0

]

= E

[
h2(1, X1)

B̃2
1

E[B̃2
T |F1]

∣∣∣∣F0

]

= E
[

h2(1, X1)

B̃1
EB̃[B̃T |F1]

∣∣∣∣F0

]
,

using the Bayes rule for conditional expectations in the last equality. Using
Lemma 6.3 and induction, we know that

E
[

h2(1, X1)

B̃1
EB̃[B̃T |F1]

∣∣∣∣F0

]

= E
[

h2(1, X1)

B̃1
EB̃

[
EB̃[B̃T |FT−1]

∣∣∣F1

]∣∣∣∣F0

]

≥ E
[

h2(1, X1)

B̃1
EB̃

[
B̃T−1 exp

(
R
(
PB̃(·|FT−1)

∥∥P(·|FT−1)
))∣∣∣F1

] ∣∣∣∣F0

]

≥ E
[

h2(1, X1)

B̃1
EB̃[B̃T−1 exp(ε)|F1]

∣∣∣∣F0

]
≥ · · ·

≥ exp(Tε)E[h2(1, X1)|F0].
On the other hand, by Proposition 5.1, the second term on the right side of Eq.
(6.2) satisfies

(
E

[
max

0≤t≤T

h(t, Xt)

B̃t
B̃T

∣∣∣∣F0

])2

≤ (V0T)2.

Thus,

Var
[

max
0≤t≤T

h(t, Xt)

B̃t
B̃T

∣∣∣∣F0

]
≥ exp(Tε)E[h2(1, X1)|F0] − V2

0T2.

��

6.2 Variance of the additive method

Proposition 6.6 Suppose that the martingale M̃ ∈ M0 and the optimal martin-
gale M satisfy, for all 0 ≤ i ≤ T,

E[(M̃i − M̃i−1) − (Mi − Mi−1)]2 ≤ K.

Then the variance of the additive method satisfies

Var
[

max
0≤t≤T

(h(t, Xt) − M̃t)

∣∣∣∣F0

]
≤ 4V0

√
TK + 2T2K2.
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Remark 6.7 This proposition suggests that good estimations of optimal martin-
gales (i.e., small K) will lead to small variance.

Proof of Proposition 6.6 By the definition of variance,

Var
[

max
0≤t≤T

(h(t, Xt) − M̃t)

∣∣∣∣F0

]
≤ E

[(
max

0≤t≤T
(h(t, Xt) − M̃t)

)2
∣∣∣∣∣F0

]

−
(

E
[

max
0≤t≤T

(h(t, Xt) − M̃t)

∣∣∣∣F0

])2

≤ E

[(
max

0≤t≤T
(h(t, Xt) − M̃t)

)2
∣∣∣∣∣F0

]
− V2

0 .

Note that h(t, Xt) ≤ Vt. Then

E

[(
max

0≤t≤T
(h(t, Xt) − M̃t)

)2
∣∣∣∣∣F0

]
≤ E

[(
max

0≤t≤T
(V(t, Xt) − M̃t)

)2
∣∣∣∣∣F0

]
.

Doing Doob’s decomposition for the supermartingale V and noting that D is a
decreasing process yields

E

[(
max

0≤t≤T
(V(t, Xt) − M̃t)

)2
∣∣∣∣∣F0

]
= E

[(
max

0≤t≤T
(Mt + Dt − M̃t)

)2
∣∣∣∣∣F0

]

≤ E

[(
D0 + max

0≤t≤T
(Mt − M̃t)

)2
∣∣∣∣∣F0

]
.

A little algebra and Doob’s inequality lead to

E

[(
D0 + max

0≤t≤T
(Mt − M̃t)

)2
∣∣∣∣∣F0

]

= D2
0 + 2D0E

[
max

0≤t≤T
(Mt − M̃t)

∣∣∣∣F0

]
+ E

[
max

0≤t≤T
(Mt − M̃t)

2
∣∣∣∣F0

]

≤ V2
0 + 4V0

√
E[(MT − M̃T)2|F0] +

∑
0≤t≤T

E[(Mt − M̃t)
2|F0].



N. Chen, P. Glasserman

Using the orthogonality property of martingale differences, we get

Var

⎡
⎣ max

0≤t≤T
(h(t, Xt) − M̃t)

∣∣∣∣∣∣F0

⎤
⎦ ≤ 4V0

√
E[(MT − M̃T)2|F0]

+
∑

0≤t≤T

E[(Mt − M̃t)
2|F0]

= 4V0

√√√√ T∑
i=1

E[(M̃i − M̃i−1) − (Mi − Mi−1)]2

+ 2
T∑

t=1

t∑
j=1

E[(M̃i − M̃i−1) − (Mi − Mi−1)]2

≤ 4V0
√

TK + 2T2K2.

��
Comparison of Propositions 6.4 and 6.6 indicates a strong advantage to com-

puting upper bounds through the additive dual rather than the multiplicative.
We illustrate this result numerically in Sect. 6.3. Before doing so, we point out
a property of the optimal martingales under the two methods which is consis-
tent with the variance advantage of the additive method. The following result
follows from Lemma 5.4.

Proposition 6.8 Suppose the optimal value process admits the decompositions
V = M + D and V = BA, with B positive. Then

V0 = max
0≤t≤T

(h(t, Xt) − Mt) = max
0≤t≤T

h(t, Xt)

Bt
. (6.3)

The expression in the middle of Eq. (6.3) is the additive dual estimate; thus,
with the optimal martingale, this method has zero variance. But the expression
on the far right of Eq. (6.3) is not the multiplicative dual estimate because it is
missing a factor of BT . Multiplying by BT gives this expression positive vari-
ance. Thus, even when the optimal martingales are known, the additive method
produces strictly smaller variance. The expression on the far right in Eq. (6.3)
becomes an unbiased estimate of V0 under PBT ; in other words, achieving zero
variance with the multiplicative method requires applying a change of measure
in the Monte Carlo simulation. Bolia et al. [3] use this observation to try and
develop near-optimal measure changes from near-optimal martingales, but the
variance of the multiplicative method is problematic there as well.

6.3 Numerical illustration

Suppose the interest rate r = 4% and the underlying stock price follows the
Black–Scholes model with volatility σ = 30%. Assume that the current position
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of the stock price is S0 = 100. We consider a family of American put options
with strike price K = 100. In this example, the interval between two exercise
dates is 0.01 and we use the values of European options with the same maturities
and the same strike prices as approximations from which to define martingales.
The number of sample paths is 100,000. For the purpose of comparison, we use
the same sample paths in both methods. The following table shows estimated
upper bounds and their variances in parentheses:

Exercise chances True value Additive Multiplicative

N = 10 3.5601 3.6028 (0.0020) 3.6212 (26.5825)
N = 50 7.5495 7.6135 (0.0887) 7.5638 (110.0690)
N = 100 10.1993 10.3291 (0.4313) 10.3101 (196.4814)
N = 150 12.0428 12.2623 (1.0718) 12.1688 (267.4694)

This example shows that both methods have very close biases while the multi-
plicative method incurs much higher variance than the additive method.

Our next example is extreme. We still consider American puts, but we set
the interest rate to be a very high 20% and we make the options deep in-the-
money by setting S0 = 50. With these parameters, the optimal strategy is to
exercise the options immediately. But we still use the European options as our
approximations. The table below shows that, again, the biases are similar but
the variance of the multiplicative method is much greater.

Exercise chances True value Additive Multiplicative

N = 10 50 50 (0) 50.0127 (24.6831)
N = 50 50 50 (0) 50.1964 (171.6656)
N = 100 50 50.0001 (2.7452 × 10−6) 50.7807 (490.4612)
N = 150 50 50.0482 (0.0093) 51.1385 (907.2639)

7 Duality and linear programming

In this section, we show that in the case of a finite state space, the additive
dual coincides with duality in the sense of linear programming. We establish a
related property for the multiplicative dual.

Suppose that the stochastic process X has a discrete state space
S = {S1, . . ., SN}. Define a path as a sequence of nodes (0, Sj0) → (1, Sj1) →
· · · → (t, Sjt ), where Sj1 , . . ., Sjt ∈ S and 0 ≤ t ≤ T. Let Pt denote the set of all
paths of length t. For any path q in PT , let q|(0,t) denote the truncation of q to
its initial t + 1 nodes. This is an element of Pt.

The process X induces a probability measure on the set {Pt : 0 ≤ t ≤ T}.
Let ωq denote the probability of path q. For any two paths q, q′ ∈ PT , let

Pt,q,q′ = P
(

Xt+1 = q′|(0,t+1)

∣∣∣Xt = q|(0,t)

)
; this is the probability that the path

evolves from q|(0,t) to q′|(0,t+1). For any q ∈ PT , define h(t, q) to be the payoff
when the process is stopped at time t on path q. Because we model a prob-
lem in which the payoff is adapted, we require that the function h have the
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property that h(t, q′) = h(t, q) if q|(0,t) = q′|(0,t), for all q, q′ ∈ PT . Introduce
variables {M(t, q), t = 0, 1, . . . , T; q ∈ PT} and consider the following problem
of minimizing over these variables:

min
∑

q∈PT

ωq max
t

(
h(t, q) − M(t, q)

)

s.t. M(0, q) = 0, for all q ∈ PT ; (7.1)∑
q′

M(t + 1, q′)Pt,q,q′ = M(t, q); (7.2)

M(t, q) = M(t, q′) for all q, q′ ∈ PT with q|(0,t) = q′|(0,t). (7.3)

The objective function corresponds to the additive dual in the sense of Proposi-
tion 2.1. Constraint (7.3) is an adaptedness condition on M(t, q); constraint (7.1)
corresponds to the requirement M0 = 0; and constraint (7.2) is the martingale
property.

We can formulate this minimization problem as a linear programming prob-
lem by introducing an artificial variable Z:

min
∑

q∈PT

ωqZq

s.t. M(0, q) = 0, for all q ∈ PT ;∑
q′

M(t + 1, q′)Pt,q,q′ = M(t, q); (7.4)

M(t, q) = M(t, q′) for all q, q′ ∈ PT and q|(0,t) = q′|(0,t); (7.5)

Zq ≥ h(t, q) − M(t, q) for all t and q ∈ PT . (7.6)

We now formulate the dual of this problem. We associate dual variables s(t, q)

with the constraints in (7.4), dual variables u(t, q) with the constraints in (7.6)
and dual variables v(t, q, q′) with those in Eq. (7.5). Using standard linear pro-
gramming duality, we arrive at the following problem:

max
∑

t

∑
q∈PT

h(t, q)u(t, q)

s.t. u(t, q) ≥ 0, s(t, q) free, t = 0, . . . , T; q ∈ PT ;

v(t, q, q′) free, t = 0, . . . , T; q, q′ ∈ PT , q|(0,t) = q′|(0,t);∑
t

u(t, q) = ωq, q ∈ PT ;

u(t, q) − s(t, q) + Pt−1,q,q ×
∑

q′:q′|(0,t−1)=q|(0,t−1)

s(t − 1, q′)

+
∑

q′:q′|(0,t)=q|(0,t)

v(t, q, q′) −
∑

q′:q′|(0,t)=q|(0,t)

v(t, q′, q) = 0. (7.7)
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From constraint (7.7), we know that

u(T, q)

PT−1,q,q
= u(T, q′)

PT−1,q′,q′
for all q and q′ such that q|(0,T−1) = q|(0,T−1); (7.8)

and for 0 ≤ t ≤ T − 1 and any r, r′ ∈ Pt such that r|(0,t−1) = r′|(0,t−1),∑T
i=t

∑
q:q|(0,t)=r

u(i, q)

Pt−1,r|(0,t−1),r
=

∑T
i=t

∑
q:q|(0,t)=r′ u(i, q)

Pt−1,r′|(0,t−1),r′
. (7.9)

Thus, we can eliminate the variables s and v by introducing the constraints (7.8)
and (7.9) to obtain the problem

max
∑

t

∑
q∈PT

h(t, q)u(t, q)

s.t. u(t, q) ≥ 0, t = 0, . . . , T, q ∈ PT ;∑
t

u(t, q) = ωq, q ∈ PT ;

u satisfies (7.8) and (7.9) for all t.

We claim that this dual formulation is indeed the discrete counterpart of the
optimal stopping problem. To see this, interpret u(t, q), q ∈ PT , as the proba-
bility of following path q and stopping at time t. The objective function is then
the expected payoff upon stopping; the first constraint requires that the prob-
abilities be nonnegative; and the second constraint requires that the stopping
probabilities along a path sum to the probability of that path. (This formulation
is slightly more general than the original optimal stopping problem in that it
allows randomized stopping rules: the conditional probability of stopping given
the observed path could, in principle, be between 0 and 1.) The last constraint
cares about the adaptedness requirement of the exercise policy.

Furthermore, we can show that the above linear programming can be solved
using the idea of backward induction. We skip the details here.

Now consider the multiplicative method, which can be formulated as a min-
imization problem over variables {B(t, q), t = 0, 1, . . . , T; q ∈ PT}:

min
∑

q∈PT

ωq max
t

[
h(t, q)

B(t, q)

]
B(T, q) (7.10)

s.t. B(0, q) = 1, for all q ∈ PT ; (7.11)∑
q′

B(t + 1, q′)Pt,q,q′ = B(t, q) for all q ∈ PT ; (7.12)

B(t, q) = B(t, q′), t = 0, . . . , T; q, q′ ∈ PT , q|(0,t) = q′|(0,t); (7.13)

B(t, q) > 0. (7.14)

As before we can introduce an artificial variable Z to rewrite the objective as

min
∑

q∈PT

ωqZqB(T, q)
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and introduce the constraints

ZqB(t, q) ≥ h(t, q), for all q ∈ PT . (7.15)

For any fixed B satisfying the constraints (7.11)–(7.14), the optimization prob-
lem becomes a linear programming problem. We can easily write down its dual
as follows:

max
∑

t

∑
q∈PT

h(t, q)u(t, q)

s.t. u(t, q) ≥ 0;∑
t

u(t, q)B(t, q) = ωqB(T, q). (7.16)

It is obvious that this dual problem will give us an upper bound for the value of
the primal problem (7.10)–(7.14). Furthermore, we claim that the optimal value
of the primal problem will be achieved if we choose B carefully. To formulate
our result, define a Lagrangian as follows, with Lagrange multipliers s, u, v, ν:

L =
∑

q∈PT

ωqZqB(T, q) −
∑

t

∑
q∈PT

s(t, q)
(

B(t, q) −
∑

q′
B(t + 1, q′)Pt,q,q′

)

−
∑

t

∑
q∈PT

ν(t, q)B(t, q) −
∑

t

∑
q∈PT

u(t, q)
(

ZqB(t, q) − h(t, q)
)

. (7.17)

Given B and Z, the KKT conditions (cf. [14]) for s, u, v, ν at B and Z are

∇B,ZL(B, Z; s, u, v, ν) = 0;

u(t, q) = 0 for all t, q such that ZqB(t, q) > h(t, q);

u(t, q) ≥ 0 for all t, q;

u(t, q)
(
ZqB(t, q) − h(t, q)

) = 0;

v(t, q) = 0 for all t, q such that B(t, q) > 0;

v(t, q) ≥ 0;

v(t, q)B(t, q) = 0.

Proposition 7.1 Suppose that B∗ and Z∗ solve the primal problem (7.10)–(7.14)

and s∗, u∗, v∗, ν∗ satisfy the KKT conditions at B∗ and Z∗. Then u∗ solves the
dual problem (7.16), and the optimal value of this dual problem is equal to the
optimal value of the primal problem.

Proof Suppose that s∗, u∗, v∗, ν∗ satisfy the KKT conditions at B∗, Z∗. Then
∇Z∗L = 0. This implies

∑
t u∗(t, q)B∗(t, q) = ωqB∗(T, q). Accordingly, u∗ is a

feasible solution to the dual when B = B∗. On the other hand, for any feasible
solution u,
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∑
t

∑
q∈PT

h(t, q)u∗(t, q) = L(B∗, Z∗; s∗, u∗, v∗, ν∗)

=
∑

q∈PT

Z∗
qωqB∗(T, q) =

∑
q∈PT

Z∗
q

∑
t

u(t, q)B∗(t, q)

where the first equality follows from the KKT conditions and the second
equality holds because the second, third and fourth terms in Eq. (7.17) are
all zero. In addition, Eq. (7.15) gives∑

q∈PT

Z∗
q

∑
t

u(t, q)B∗(t, q) =
∑

q∈PT

∑
t

u(t, q)Z∗
qB∗(t, q)

≥
∑

q∈PT

∑
t

h(t, q)u(t, q).

Thus, u∗ is an optimal solution when B = B∗ and the optimal value is the same
as that of the primal problem. ��
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