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Abstract—Supported by the technical advances and the com-
mercial success of GPS-enabled mobile devices, geo-tagged photos
have drawn plenteous attention in research community. The
explosive growth of geo-tagged photos enables many large-scale
applications, such as location-based photo browsing, landmark
recognition, etc. Meanwhile, as the number of geo-tagged photos
continues to climb, new challenges are brought to various
applications. The existence of massive near-duplicate geo-tagged
photos jeopardizes the effective presentation for the above ap-
plications. A new dimension in the search and presentation of
geo-tagged photos is urgently demanded. In this paper, we devise
a location visualization framework to efficiently retrieve and
present diverse views captured within a local proximity. Novel
photos, in terms of capture locations and visual content, are
identified and returned in response to a query location for diverse
visualization. For real-time response and good scalability, a new
Hybrid Index structure which integrates R-tree and Geographic
Grid is proposed to quickly identify the Maximal Near-duplicate
Photo Groups (MNPG) in the query proximity. The most novel
photos from different groups are then returned to generate
diverse views on the location. Extensive experiments on synthetic
and real-life photo datasets prove the novelty and efficiency of
our methods.

I. INTRODUCTION

The emergence and evolution of GPS-enhanced devices
have created a whole new dimension of existing multimedia
applications in the past decade [21]. The geo-information
encoded in the multimedia data, images and videos in most
cases [7], [5], [1], [21], facilitates various geo-tag driven
applications. The geo-locations recorded in the photos offer
a unique cue for photo browsing [7], [11], photo annotating
and tagging [4], [15], landmark recognition and visualization
[5], [18], [17], [19], [27], etc. For instance, Panoramio1 offers
a sophisticated interface of managing and browsing geo-tagged
photos in an overlaid pattern with satellite images. A user can
browse photos in a multi-level way on the whole map, or just
search photos for a location. Its service has been integrated
to Google Earth2 seamlessly. Meanwhile, Flickr has also
empowered its conventional browsing features with geo-tags,
where similar browsing and searching interfaces are provided.
Additionally, the trajectory of a traveler can be extracted
from a group of his geo-tagged photos, preserving valuable

1www.panoramio.com
2earth.google.com

information about how people travel such as locations, visiting
time, and the views of places. These information grants ample
possibility of mining useful travel patterns to assist the others
[3], [8], [10].

Among those geo-tagged photo applications, one that has
drawn less attention is location visualization. The goal of it is
to provide as much and as novel visual information as possible
to visually describe the environment at and surrounding a
certain location. Not only the objects at the exact location
are considered relevant, but also are the views of interests
surrounding it. That means, the photo can show either nearby
objects around the location, or faraway scenes taken at the
location due to the zoom lens. The StreetView built on top
of Google Earth is one of the popular location visualization
services in the real world. However, it depends heavily on
the operation of particularly designed cars with GPS and
360◦ full-view cameras to collect the views. Naturally the
locations that can be visualized are quite limited due to
the road boundaries and privacy concerns in some countries
and particular regions. On the other hand, current services
present a simple scheme of visualizing a location by listing
the user-uploaded photos captured within the proximity. As the
number of uploaded photos continues to grow dramatically,
this simple scheme begins to be increasingly inadequate. The
overwhelming existence of near-duplicate photos around the
same location makes the visual content for a location highly
redundant. Diverse views around a location which can also be
of great interests are often discarded.

Figure 1 shows a real example of the location visualization
interface around the Sydney Opera House. For each sub
figure, the left half is the browsing interface and the right
half is the visualization interface. The red circle defines the
range for preliminary image search in the proximity. Unlike
landmark visualization, location visualization is supposed to
display various objects and views that can be seen around
the query location. For example, as shown in Figure 1a, the
displayed photos show a convergence on their visual contents,
i.e., most of the photos, even taken at slightly different geo-
coordinates, are of the same object despite the fact that there
also exist many photos for other interesting scenes, e.g., the
sidewalk around the Opera House, the ocean view from near
it, the skyscrapers of the city, etc. Excessive near-duplicates
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Fig. 1: Effect of Diverse Location Visualization

greatly degrade the novelty of displayed photos and bring new
challenges on how to effectively present diverse views to a
user for location visualization. Figure 1b demonstrates much
better visual novelty of the views around the query location.
Given large-scale geo-tagged photo datasets with numerous
near-duplicates, how to achieve this diversity efficiently for
arbitrary queries becomes a great challenge.

Crucial changes and enhancements need to be added to
the existing location visualization frameworks to achieve such
diverse views, and at the mean time maintain satisfactory
efficiency for real-life applications. Consequently, in this pa-
per, as we propose a novel diverse location visualization
framework, we make the following contributions. Firstly,
to get a clear formulation of the problem, in Section III
we introduce the definitions of Geographic-Visual Distance
(GVD), Maximal Near-duplicate Photo Group (MNPG), Seed
Photo and Novelty. We use these definitions to formulate the
diverse location visualization problem. Then we devise a basic
framework to tackle this problem in Section IV, where its
main steps are discussed. In Section V we propose a Hybrid
Indexing structure and explore how to greatly accelerate our
framework with various lower-bound based pruning rules.
Extensive experiments are conducted and discussed in Section
VI to verify the performance of our framework. Finally we
conclude the paper in Section VII.

II. RELATED WORK

Generally, diverse location visualization has not been thor-
oughly studied by the research community, comparing to other
geo-tag driven applications like photo browsing [7], [11],
landmark visualization [5], [16], [17], tag inferring [15], etc.
Landmark visualization is similar to location visualization in
some aspects, but in fact they are very different applica-
tions. The deviation is in several perspectives. The foremost
one is that landmark visualization aims to depict a single
object, e.g. an architect or a mountain, from different view
angles. However, location visualization targets at providing

comprehensive visual information at the query proximity. The
visual information can describe objects within the proximity,
or scenes that can be viewed from the proximity. Nevertheless,
the literature regarding location visualization remains lacking.

In [5], an interesting geo-tagged photo mining system is
designed to generate a tourist map with the icons for land-
marks. It uses geo-tags and user tags of photos to cluster
photos. Content similarity is not considered. [16] proposes a
k-mean based method to classify the images for the landmark
search results. It uses k-means to cluster the photo set by
their visual content and locations, then ranks the clusters
and their representative photos. In video re-ranking, a near-
duplicate graph-based method is invented to identify cohesive
clusters and then pick representative videos from clusters [12].
However, the efficiency issue becomes the major concern for
real-life applications which deal with large-scale datasets and
have high requirement of interactive speed of visualization
[20].

It is natural and necessary to include indexing techniques in
our work when efficiency is of high priority. There exist many
efficient and sophisticated structures to index spatial data and
high-dimensional data. R-Tree [9] has been the most popular
spatial index in the spatial database community. Other well-
known methods include Quadtree, kd-tree, M-tree [6], etc. For
high-dimensional indexing, in recent years, one-dimensional
transformation [24], hashing-based methods (e.g., LSB-Tree
[25]), and data approximation (e.g., data co-reduction [13])
have drawn much attention. An interesting index structure,
which indexes text with geographic reference, is also defined
in [28]. However, none of these indexing methods are able
to provide the ability of quickly and dynamically identifying
Near-duplicate Photo Groups within a query proximity from
a large-scale geo-tagged photo database.

III. DEFINITIONS

In this section we present the necessary definitions to
support the presentation of our work. Table I lists some
notations used throughout the paper.

Notation Description
v the visual feature of a photo
r the geographic search range for the query

dg , dv the geographic and visual distances
λ the weight of geographic distance
ε the GVD threshold

l = {lx, ly} the location of a photo
P = {p1, ...} the local photo set
G = {g1, ...} the MNPG set
S = {s1, ...} the seed photo set

θ the importance of the seed photo
φ the uniqueness of the seed photo

TABLE I: Notations

Definition 1 (Geographic Distance): Given two photos pi
and pj , the geographic distance between them is defined as:

dg(pi, pj) =
√
(lxi − lxj)2 + (lyi − lyj)2 (1)
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where lx is the longitude and ly is the latitude of the location
of a photo.

Definition 2 (Visual Distance): Given two photos pi and
pj , the visual distance between them is defined as:

dv(pi, pj) = f(vi, vj), (2)

where vi and vj are the visual features for pi and pj respec-
tively. f(∗, ∗) is a metric to assess the visual distance between
two photos, which varies according to the type of feature used.
For instance, L2 distance.

Definition 3 (Local Photo Set): Given a database of geo-
tagged photos, a query location q, and a geographic range r
that describes the location proximity around q, a local photo set
corresponding to q, denoted as P = {p1, p2, ...}, is composed
of photos that satisfy

∀pi ∈ P, dg(pi, q) ≤ r. (3)

Here dg computes the geographic distance between pi and the
query location q.

Note that geographic distance and visual distance are not
directly comparable. In order to integrate them into a single
value for all the photos in the local photo set, they have to be
normalized properly into the range of [0,1]. For geographic
distance, we normalize it by the maximal geographic distance
dg.max among indexed photos, i.e., dg =

dg
dg.max

. For visual
distance, we normalize it by the maximal visual distance
among all the photos, i.e., dv = dv

dv.max
.

Given the normalized geographic distance and visual dis-
tance, we define the Geographic-Visual Distance (GVD) as:

Definition 4 (GVD): Given two photos pi and pj , the GVD
between them is defined as:

gvd(pi, pj) = λdg + (1− λ)dv (4)

where λ specifies the weight of dg in the fusion.
Definition 5 (Near-duplicate Photo Group): Given a local

photo set P and a GVD threshold ε, a Near-duplicate Photo
Group (NPG) gk = {pk1, pk2...} ⊆ P satisfies

∀pki ∈ gk, gvd(pki, ck) ≤ ε (5)

where ck is the centroid of gk, which is defined as the mean of
all the photos in the group, along both geographic and visual
dimensions.

Definition 6 (Maximal Near-duplicate Photo Group): A
Near-duplicate Photo Group (NPG) gk = {pk1, pk2...} ⊆ P
is a Maximal Near-duplicate Photo Group (MNPG) if there
does not exist a superset of gk which is also an NPG.

Definition 7 (Seed Photo): Given an MNPG gk =
{pk1, pk2, ...}, its seed photo is the photo that has the smallest
GVD to its centroid ck.

Definition 8 (Seed Photo Set): Given a MNPG set G =
{g1, g2, ...}, all the seed photos from each MNPG form the
the seed photo set, denoted as

S = {s1, s2, ...} (6)

where si is the seed photo of gi.

A seed photo is regarded as the most representative photo
for an MNPG. Among all the seed photos, each can be further
measured by its novelty score, which is used to rank seed
photos so as to select the desired number of most novel photos
for location visualization.

Definition 9 (Novelty): Given a local photo set P =
{p1, p2, ..., } corresponding to a location query q, assume
that the photos have been organized into the MNPG set
G = {g1, g2, ...} and the seed photo set is identified as
S = {s1, s2, ...}. For each seed photo si, its novelty is
determined by its importance θ and uniqueness φ, as:

η(si) = θ(si)φ(si); (7)

where importance θ and uniqueness φ are defined as:

θ(si) =
dg(si, q)|gi|e−

∑
pij∈gi gvd(pij,ci)

|gi|

r|gmax|
(8)

φ(si) = 1− e−
∑j 6=i

sj∈S
gvd(si,sj)

|S|−1

where |∗| is the size of the set and gmax is the largest MNPG.

The importance θ reflects how significant the photo is
by considering three aspects: the group’s homogeneity

e
−

∑
pij∈gi stvd(pij,ck)

|gi| , the relative group size |gi|
|gmax| , and the

relative distance to the query location dg(si,q)
r . The uniqueness

φ describes how distinctive a seed photo is in the seed photo
set by calculating the average distance to other seed photos
in the seed photo set. Clearly the values of θ and φ fall into
the ranges of (0, 1] and [0, 1) respectively, so the range of η
is [0, 1), which describes the novelty of a photo and can be
compared directly with each other.

IV. DIVERSE LOCATION VISUALIZATION

A. Framework

Diverse location visualization requires the identification of
most novel photos from a set of photos. In the order of
processing, our framework to tackle this problem involves the
following major steps, given a query location:

1) Retrieving the subset of photos, taken in the proximity
that have smaller geographic distances than the geo-
graphic search range to the query location, i.e., the local
photo set.

2) Discovering all the MNPGs and their corresponding seed
photos in the local photo set.

3) Ranking all the seed photos based on their novelty values
and return the most novel photos according to the user-
defined number of returned photos.

With the definitions in the previous section, the problem
can now be formalized as follows. Given a database of geo-
tagged photos and a query location q, retrieve the local photo
set P = {p1, p2, ...}, discover the MNPG set G = {g1, g2, ...}
in P and its seed photo set S = {s1, s2, ...}, and subsequently
return the top-k most novel seed photos.
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As the objective is to present diverse photos in terms of
geographic and visual variations, two types of features are
needed. For geographic feature, we simply use the geo-tag
in a photo to describe its location. As for visual feature, there
are certain requirements that make it different from geographic
feature. Firstly, the visual feature should be distinctive so that
irrelevant photos can be filtered quickly. Secondly, the feature
should tolerate considerable changes in scale and rotation,
since people do not always take photos on the same object
at the exact same location with the exact same scale and
direction. Ideally the feature should be able to identify those
photos for the same object from different view angles and
in different zooming scales, while at the same time keep
out irrelevant photos from being further processed. Thirdly,
unlike geographic feature, visual feature requires much more
complex data to preserve the content. In the computation
of GVD between photos, the most time-consuming part is
caused by the visual distance computation. The dimensionality
of the visual feature will greatly affect the performance of
the visualization. Lately in multimedia applications, the Bag-
of-Word (BoW) model from detected scale-rotation invariant
local keypoints has become very popular for its tolerance to
scale-rotation changes, moderately high dimensionality, and
descriptive power for local objects [14]. In our work, it is
very natural to use this model to describe the visual content.

In our framework, step 1 and 2 are most time-consuming
and critical. In the following subsections, we detail the solution
for each step.

B. Retrieving P
To visualize a certain location, naturally only the photos

taken within the local proximity need to be considered. When
a place somewhere in Paris is requested to be visualized, it
makes no sense to include photos taken in London. Geographic
closeness describes an essential discipline for choosing photos
for location visualization. In such a case, the geo-tag of a
photo, i.e., the latitude and longitude of the location, can be
used to compute the geographic distance among photos. Given
the high efficiency of R-tree in managing 2-dimensional data,
R-Tree is used to index the geo-tags of photos in this work.
Given a query location q and a geographic search range r, all
the photos taken within the local proximity specified by q and
r can be quickly retrieved by performing an efficient range
search in R-tree. The results form the local photo set P with
respect to q.

C. Discovering G and S
Given a local photo set P , it is known that finding the

MNPG set G according to Definition 6 is NP-hard [22].
However, the properties that an NPG has provide us with
other feasibilities to tackle the MNPG identification problem.
Here by adopting the definition used in [22], we utilize a
useful property called Maximally Expanded-by-one to define
Maximally-expanded NPG.

Definition 10 (Maximally-expanded NPG): For an NPG
gk = {pk1, pk2, ...pkn}, if there exists a pair of

photos pk1 and pk2 that can establish one permuta-
tion of the NPGs which induces the group sequence
({pk1, pk2}, {pk1, pk2, pk3}, ..., {pk1, pk2, pk3, ..., pkn−2},
{pk1, pk2, pk3, ..., pkn−1}, {pk1, pk2, pk3, ..., pkn}), such that
all groups in the sequence are NPGs, then the NPG sequence
is called expanded-by-one. If gk can not be further expanded
by other photos in the local photo set, then it is maximally
expanded-by-one and gk is called Maximally-expanded NPG.

The intuition behind this definition is that having an NPG
that is started by a pair of near-duplicate photos, when it is
iteratively expanded with the constraint in Definition 5, all
the resulting groups satisfy Definition 5 and are hence NPGs.
When there exists no more photos in the local photo set
that can be added to the current NPG without breaking the
NPG constraint, we can consider that an MNPG is found by
relaxing the definition of MNPG to be Maximally-expanded
NPG. Based on this, we give the MNPG discovery algorithm
in Algorithm 1.

Input : P, ε
Output: G

1 flag ← false;
2 while |P| > 0 do
3 if flag = false then
4 find nearest photo pair in P;
5 if their GVD > ε then
6 return G
7 create a new NPG g with the pair;
8 remove the pair from P;
9 flag ← true;

10 while flag = true do
11 find pi ∈ remaining candidates, so that for

j 6= i, dmaxi , the maximal distance between
group members to the centroid of g

⋃
{pi} is

smaller than any other dmaxj of g
⋃
{pj} ;

12 if dmaxi < ε then
13 add pi to g;
14 remove pi from P;

15 else
16 add g to G;
17 flag ← false;
18 break;

19 return G;
Algorithm 1: Basic Algorithm for Discovering G

The algorithm takes the local photo set and the GVD
threshold as inputs, and it returns all the MNPGs it has found.
Its main body is a loop (Line 2). In this loop, the algorithm
performs two tasks, i.e., creating new NPGs (Line 3-9) and
expanding existing NPGs (Line 10-18). In the first task, it
needs to start a new NPG, so it attempts to find the initial photo
pair for the new NPG by discovering the nearest pair of photos
in the remaining local photo set (Line 4). If the GVD between

508



the nearest pair is already larger than ε, the accumulated NPG
collection G is returned and the algorithm is terminated (Lines
5-6); otherwise the pair is removed from the local photo set
and the newly created NPG is forwarded to the following NPG
expansion task by setting the flag as true (Lines 7-9). In the
expansion task (Lines 10-18), the algorithm tries to evaluate all
the remaining photos in P , by finding the next group member
pi for the current NPG which results in the smallest radius of
the updated group (Line 11). If the radius, i.e., dmaxi is less
than ε, pi is a qualified group member. pi is added into the
current NPG and removed from P (Lines 12-14); otherwise,
the current NPG is a Maximally-expanded NPG and added
into the MNPG set (Lines 15-18). The algorithm iterates until
all the MNPGs are found. Note that the algorithm does not
generate groups with a single photo. The remaining photos
that do not belong to any group are considered as outliers.

It is been widely accepted that the Antimonotonicity prop-
erty greatly affects the effectiveness of all frequent pattern
mining techniques [22], [12]. Antimonotonicity can be under-
stood as if a pattern P satisfies a certain constraint C, then any
sub-pattern P ′ ⊂ P also satisfies C. However, the constraint
defined in Definition 5 is not antimonotone. The reason is
that the centroid of any NPG varies when updates occur to
the group members. It is possible that the original group is an
NPG, but one of its subgroup is not an NPG.

A relaxed definition of the Antimonotonicity is the loose
Antimonotonicity: if a pattern P satisfies a certain constraint
C, then there exists at least one sub-pattern P ′ ⊂ P that
|P ′| = |P | − 1 also satisfies C. Consequently we have the
following lemma:

Lemma 1: The MNPGs discovered by Algorithm 1 are
loose antimonotone.

Proof: The identification of MNPGs mainly follows the ε
constraint which applies when creating a new NPG and adding
new photos to an existing NPG. When creating a new NPG,
the ε constraint (Line 5 in Algorithm 1) guarantees that the
newly created group is an NPG. And then the expansion with
new photos must follow the constraint as well (Line 12 in
Algorithm 1). Now for any MNPG gk, there at least exists
one g′k that is generated by removing the most recently added
photo from gk, has the size of |gk| − 1 and satisfies the ε
constraint. Hence gk is loose antimonotone.

The Loose Antimonotonicity property of Algorithm 1
presents a solid theoretically support to the quality of the
MNPGs identified [12], [22]. After this step, a seed photo for
each MNPG can be easily found based on Definition 8. The
next task is to discover top-k most novel photos from all the
seed photos, whose novelty scores can be computed based on
Definition 9. The definition of novelty reasonably reflects the
photo’s significance in terms of the cohesion of its group, the
size of its group, the geographic distance to the query location,
and the dissimilarity regarding other seed photos. If there do
not exist k MNPGs, we can expand the set with other novel
photos which do not belong to any MNPG.

Algorithm 1 describes the details of the main task in the
diverse location visualization application. However, the major

issue of this algorithm is that its high complexity makes it
hardly scalable. Line 4 and Line 11 consist of expensive
distance computations. In the worst case, the time complexity
of the algorithm is O(|P|3). Thus in the following sections,
we will focus on how to improve the efficiency of Algorithm
1 to enable quick identification of MNPGs.

V. HYBRID INDEXING

In this section, we introduce a new index structure called
Hybrid Index to quickly discover MNPGs for a query location,
powered by query optimization techniques to reduce the full
distance computations. The time complexity of the refined
algorithm for discovering MNPGs is also analyzed.

A. Index Structure

The basic idea of the Hybrid Index is to preprocess as
much as information that is needed to identify the MNPGs
for any arbitrary query. It is obvious that pre-computing the
MNPGs for all the geo-tags or locations in the database is
impractical, not only for the extremely long time needed
but also for that the pre-computed MNPGs may not satisfy
a specific geographic search range. So we devise a hybrid
indexing structure that integrates the followings.

1) An R-Tree is used to index the geo-tags of photos so as
to retrieve the local photo set efficiently.

2) A Geographic Grid is used to partition the geographic
space into grids. For photos within each individual grid,
their local MNGPs are pre-computed and indexed in a
local MNPG table. One grid may contain multiple local
MNPGs. The details of each local MNPG containing
the centroid, ids of members, maximal and minimal
distances from members to centroid are recorded in the
local MNPG table. A distance map that stores auxil-
iary information including every photo’s id, its near-
duplicates (NN), its distances to near-duplicates, its local
MNPG id and the distance to its local MNPG centroid, is
also maintained. According to Definition 5, the distance
threshold for being an NN is 2ε.

Figure 2 illustrates the index structure of the Hybrid Index.
The information in the index structure is used to efficiently
identify MNPGs for a query location with its geographic
search range. To construct the index, standard R-tree opera-
tions can be applied to build an R-tree on photos’ locations. As
for the Geographic Grid, the whole geographic space is firstly
divided into grids. For each grid which represents a locality, all
the photos in the grid then applies Algorithm 1 to find all the
local MNPGs in the grid which are kept in the local MNGP
table. Meanwhile, information for each individual photo on its
near-duplicates and local MNPG in the grid is also recorded
in the distance map. Both the local MNGP table and distance
map are large in size and stored externally.

With the Hybrid Index, the basic algorithm for discovering
MNPGs, i.e., Algorithm 1, can be significantly improved. The
key is to utilize the pre-computed information in the local
MNPG table and distance map. Given a query location and its
geographic search range, the local photo set can be efficiently
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Local MNPG ID Centroid No. Members DMin DMax

1 (0.1,...,0.6) 3 0.11 0.45

2 (0.2,…,0.2) 10 0.23 0.64

3 (0.23…,0.2) 13 0.1 0.19

4 (0.2,…,0.8) 4 0.25 0.56

5 (0.5…,0.2) 2 0.3 0.62

… … … … …

Local MNPG TableGeographic Grid

...

R1 R2

R5 R6 R7R3 R4

R-Tree

...

...

Hybrid Index

DistMap

Photo ID NN NNDist Local MNPG  ID Dist To Centroid

1 p2,p5 0.1,0.3 1 0.3

2 p6,p2,p7 0.2,0.25,0.28 1 0.34

3 p3,p1,p8 0.05,0.1,0.14 4 0.25

4 p3,p2,p11 0.2,0.3,0.5 5 0.4

5 p3,p8 0.2,0.23 5 0.26

6 p9,p4 0.3,0.37 7 0.5

… … … … …

Fig. 2: Hybrid Index

retrieved by searching the R-tree, and all the grids that intersect
with the query search area can be quickly found by searching
the Geographic Grid. The corresponding entries in the distance
map and local MNPG table are then fetched into memory
to facilitate the discovery of MNPGs. The reason we use R-
tree on top of the Geographic Grid is that the local photo set
returned from R-tree is a subset of the photo set contained
in the intersecting grids. Therefore, the partial distance map
fetched into the memory can be smaller. By arranging the data
continuously on the disk, few random accesses occur.

The major challenge here is to reduce the time complexity of
Algorithm 1. Both the local MNPG table and distance map are
designed for this purpose. Especially, the local MNPG table
provides an opportunity to prune data in a group basis. Given
a query location and its geographic search range, either one
or multiple grids are involved. Since the space is pre-split and
the local MNPGs are pre-computed according to the grids, the
pre-computed local MNPGs may not be the correct MNPGs
for the query.

g2

r
g3

q
r

p g1

g1
g2q

Fig. 3: Local Photo Set on Single and Multiple Grids

Figure 3 demonstrates two cases, where the rectangles
are geographic grids, the points are the photos in the grids,
the dashed circles indicate geographic search ranges for the
queries and the solid circles indicate the pre-computed local
MNPGs in the grids. In both cases, there exists inconsistency
in the results for MNPG identification. For instance, in the
left sub figure, part of g1 is included in the local photo set
of the query and may form a single MNPG for the query.

In the right sub figure, two grids are involved for the query
and both local MNPGs from two grids may form a single
MNPG for the query since they are very close. Clearly, if we
directly manipulate these identified local MNPGs to construct
the MNPGs for any arbitrary query, excessive re-computations
are inevitable. Fortunately the way the Hybrid Index stores
data enables great potential for various query optimizations.
In the next subsection, we focus on how to exploit the local
MNPG table and distance map to dramatically reduce the
complexity of discovering MNPGs.

B. Query Optimization

Here we fully utilize the local MNPG table and distance
map to refine the basic algorithm for discovering MNPGs, by
reducing expensive distance computations. We first introduce
some lemmas and theorems to support our refinement.

Lemma 2: The GVD function is metric.
Proof is omitted due to its simplicity.

Lemma 3: Given an MNPG gk and a photo p /∈ gk, the
GVD between the new centroid c′k of gk

⋃
{p} and the original

centroid ck of gk satisfies gvd(ck, c′k) =
gvd(p,ck)
|gk|+1 .

Proof: Given gvd(ck, c′k) = λdg(ck, c
′
k)+(1−λ)dv(ck, c′k), let

us see the visual distance component in gvd(ck, c′k). We have

dv(ck, c
′
k) =

√∑Dv

i=1 (d
i)2, where Dv is the dimensionality

of the visual feature and di is the visual distance on the ith

dimension, i.e. di = cik− cik
′. Obviously, the values on the ith

dimension of ck and c′k are computed with cik =

∑
pkj∈gk

pikj

|gk|

and cik
′
=

∑
pkj∈gk

⋃
{p} p

i
kj

|gk
⋃
{p}| . So by denoting n = |gk| and

ti =
∑
pkj∈gk p

i
kj , we get:

di = cik − cik
′
=
ti

n
− ti + pi

n+ 1
(9)

=
nti + ti − nti − npi

n(n+ 1)
=

ti − npi

n(n+ 1)
=
cik − pi

n+ 1
(10)
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and

dv(ck, c
′
k) =

√√√√Dv∑
i=1

(
cik − pi
n+ 1

)2 (11)

=

√∑Dv

i=1(c
i
k − pi)

n+ 1
=
dv(ck, p)

n+ 1
(12)

Similarly, we get dg(ck, c′k) =
dg(ck,p)
n+1 and hence

gvd(ck, c
′
k) =

gvd(p, ck)

|gk|+ 1
(13)

Lemma 3 is very important as it leads to the computation of
the lower bounds for individual photo candidates.

In Algorithm 1, Line 4 and Line 11 are the major causes
of high complexity. In Line 4, too many unnecessary pair-
wise distance computations are performed, and in Line 11
excessive numbers of candidates are assessed for distance
computations. Our objective is to effectively remove those
false photo candidates, thus to reduce distance computations
as much as possible while keeping the correctness of the found
MNPGs for the query.

1) Lower Bounds for Individual Photos: In NPG expansion
of Algorithm 1, when an individual photo in a grid is con-
sidered, there exist several cases in which the photo can be
quickly neglected without expensive computations. The first
studies the distances between a photo to any photo in the
current NPG.

Theorem 1: Given an NPG gk, if photo p satisfies

∃pki ∈ gk so that gvd(p, pki) > 2ε (14)

then p /∈ g′k ⊇ gk.
Proof: For any NPG, the maximally possible GVD between a
pair of group members is 2ε. Given that the GVD is metric,
if p ∈ gk, the maximal distance between p and any other
photo in gk could be 2ε. This contradicts with the condition
of gvd(p, pki) > 2ε.

In the distance map, we need to keep the near-duplicate
photos that have smaller than or equal to 2ε GVD values.
When we expand an NPG, Theorem 1 guarantees that only
the near-duplicates need to be considered.

Theorem 2: Given an NPG gk, a photo p /∈ gk, denote c′k as
the centroid of the group gk

⋃
{p}, the GVD between pki ∈ gk

and the centroid ck of gk as d1, and the GVD between pki
and p is d2, if

|d1 − d2| >
(|gk|+ 1)ε

|gk|
(15)

then p /∈ g′k ⊇ gk
Proof: Figure 4 demonstrates this theorem. We can easily
prove that gvd(p, c′k) = |gk|gvd(p,ck)

|gk|+1 . Now with triangular
inequity, we have gvd(p, ck) ≥ |d1 − d2|, hence gvd(p, c′k) ≥
|gk||d1−d2|
|gk|+1 . When |gk||d1−d2||gk|+1 > ε, gvd(p, c′k) > ε, the theorem

is established.

p

ck

pki

d1=gvd(pki,ck)

d2=gvd(p,pki)c'k

gk

Fig. 4: Lower Bound for Individual Photos

Theorem 3: Given an NPG gk and a photo p, denote the
centroid of gk as ck, if p satisfies

gvd(p, ck) >
(|gk|+ 1)ε

|gk|
(16)

then p /∈ g′k ⊇ gk.
Proof: According to Lemma 3, after the addition of p,
the new centroid will move towards p for a distance of
gvd(p,ck)
|gk|+1 . So the GVD between p and the new centroid is

gvd(p, c′k) = gvd(p, ck) − gvd(p,ck)
|gk|+1 = |gk|gvd(p,ck)

|gk|+1 . Given
Inequity 16, gvd(p, c′k) > ε, hence p can not be added to gk.

Theorems 1, 2 and 3 provide effective multi-criteria pruning
of the individual candidates and determine the way we build
the distance map. They are seamlessly supported by the Hybrid
Index. With Theorem 1, by joining the NN lists in the distance
map, only a very small set of candidates remain. Then, in each
iteration of NPG expansion, further reduction to the candidate
set is performed with Theorem 2 using the NN distance (i.e.,
d2) and distance to centroid (i.e., d1) in the distance map.
Theorem 3 requires one GVD computation to avoid iterative
distance computations of false candidates in NPG expansion.
As we can see, the distance map is fully utilized to compute
the lower bounds for individual photos in the local photo set.

2) Lower Bounds for Groups: Another major advantage of
the Hybrid Index is that it supports group-based pruning, given
the local MNPG table.

Theorem 4: Given two NPGs gk1 and gk2, denote the
distance between the centroids as d1 = gvd(ck1, ck2), the
maximal distance from the members in gk2 to the centroid
ck2 as d2, ∀pk2i ∈ gk2, pk2i /∈ g′k1 ⊇ gk1, if:

d1 − d2 >
(|gk1|+ 1)ε

|gk1|
(17)

gk1
d1=gvd(ck1,ck2)

ck1
ck2

gk2

d2=maxgvd(pk2i,ck2)

Fig. 5: Lower Bound for Groups

Proof: As Figure 5 shows, the GVD between any photo
pk2i and the centroid ck1 satisfies gvd(pk2i, ck1) ≥ d1 − d2,
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when d1 − d2 > (|gk1|+1)ε
|gk1| and gvd(pk2i, ck1) >

(|gk1|+1)ε
|gk1| .

According to Theorem 3, pk2i can not be added to gk1.
This theorem is used to help to exclude local MNPGs in the

grids from the candidate set. Since the information of the local
MNPGs, such as centroid and maximal distance, is stored in
the local MNPG table, it is very efficient to prune the whole
group of photo candidates from being compared. The only
extra computation involved is to calculate the GVD between
two centroids, according to Theorem 4.

Input : P, ε, distance map DMAP and local
MNPG table MTAB

Output: G
1 flag ← false;
2 while |P| > 0 do
3 if flag = false then
4 find nearest pair in P with DMAP ;
5 if their GVD > ε then
6 return G
7 create a new NPG g with the pair;
8 remove the pair from P;
9 flag ← true;

10 reduce candidate photos with Theorem 1;
11 while flag = true do
12 reduce local MNPGs with Theorem 4;
13 reduce candidate photos with Theorem 2 & 3;
14 find pi ∈ remaining candidates, so that for

j 6= i, dmaxi , the maximal distance between
group members to the centroid in g

⋃
{pi} is

smaller than any other dmaxj of g
⋃
{pj} ;

15 if dmaxi < ε then
16 add pi to g;
17 remove pi from P;

18 else
19 add g to G;
20 flag ← false;
21 break;

22 return G;
Algorithm 2: Refined Algorithm 1 with Hybrid Index

3) Algorithm Refinement: The lower bounds we discovered
provide us with rich options to improve the performance
of MNPG identification with the Hybrid Index. The refined
algorithm, outlined in Algorithm 2, employs all these lower
bounds to improve the efficiency significantly. Note that only
partial distance map and local MNPG table are fetched into
memory based on the search results from R-tree and Geo-
graphic Grid. Compared with the basic Algorithm 1, there
are several major differences. In Line 4 of Algorithm 2, the
nearest pair in the local photo set can be quickly found by
referring to the distance map. In Line 10 of Algorithm 2,
the candidate photo set is filtered with Theorem 1 before the
algorithm enters the expansion loop. For each iteration of the

expansion loop, the number of local MNPGs is firstly reduced
with Theorem 4 (Line 12), followed by pruning the remaining
candidate set with Theorem 2 & 3 (Line 13). After the above
filtering steps are performed, most candidates are removed
from being further considered. Since distance information for
near-duplicate photos is maintained in the distance map, the
number of distance computation can be minimized. Actually,
only the distances to centroids need to be computed. This is
valid with the assumption that the memory is large enough to
hold partial and small distance map and local MNPG table.
Next we estimate the time complexity for Algorithm 2.

4) Complexity Analysis: For analysis purpose, we assume
that all the photos are uniformly distributed in both the
geographic space and the visual space. We note that there
needs no distance computation in Line 4 of Algorithm 2 at
all. So we only need to evaluate the upper bound size of the
candidate photos that are processed in Line 14. In Line 10, it
is guaranteed that for each MNPG, only the photos that have
smaller GVD values than 2ε to all the current group members
are considered. So it is a safe upper bound for the number of
candidate photos to be assessed in Line 14.

We employ the concept of correlation fractal dimension
of the point set [23], [2] for analysis. For a general search
algorithm, the following equation can be used to estimate the
number of neighbors given a search range ρ:

nb(ρ,′ shape′) =

(
v(ρ,′ shape′)

v(ρ,′ rectangle′)

)D2
D

(N − 1)(2ρ)D2 (18)

Here v(ρ,′ shape′) is the volume of a high-dimensional object
with the radius ρ, N is the number of points, D is the
dimensionality of the data space, and D2 is the correlation
fractal dimension of the dataset. nb(ρ,′ shape′) estimates the
number of neighbors within the query volume v(ρ,′ shape′).

Obviously in our case, the search range defined by 2ε is a
hypersphere. Since the computation of a hypersphere depends
on its space dimensionality, here we assume the dimensionality
is even and D = 2k (same method can be applied for an odd
D). Then we get the volumes for the query and the whole data
space respectively as:

v(2ε,′ hypersphere′) =
πk

k!
(2ε)2k (19)

v(2ε,′ hypercube′) = (4ε)2k. (20)

Subsequently Equation 18 for our case can be rewritten as:

nb(2ε,′ hypersphere′) =

(
πk

2k!

)D2
2k

(N − 1)(4ε)D2 (21)

This is the upper bound of the number of photos to be assessed
in the expansion loop. In Line 12 and 13, for each loop the
candidate set is further reduced to be much smaller than the
upper bound. However, it is difficult to theoretically estimate
their reduction degrees. Their effect will be fully tested in the
experiments. Nonetheless, denote the candidate set after Line
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10 as C and the further reduced candidate set after Line 13 in
each loop as C∇, the time complexity of the basic Algorithm 1
is reduced from O(|P|3) to be O(|P|· |C|· |C∇|). It is expected
that |C∇| � |C| � |P|.

VI. EXPERIMENTS

In this section, we investigate the performance of our
framework with extensive experiments on a synthetic dataset
and a real geo-photo dataset. In the experiments, we make ten
random queries and evaluate the average performance. After
the framework has identified all the MNPGs within the search
proximity, top-k most novel seed photos are returned. All the
experiments are conducted on a desktop computer with Intel
Core i7 2.93GHz CPU and 8GB memory.

A. Datasets

Two datasets are prepared to test the quality and efficiency
of the proposed framework for diverse location visualization:

1) Point1M: This is a synthetic dataset containing
1,000,000 points. It is generated in such a way that
all the points are well distributed in the geographic
space, while each point has a random number of near-
duplicates. Such properties provide good reflection of
the performance on a general dataset in our framework.
Specifically, we start with randomly creating a point
with a randomly generated geo-tag, then we generate
a (ranged) random number of near-duplicates for it.
Based on Definition 5, the generated near-duplicates
have the distances smaller than the GVD threshold ε.
The procedure continues until we have 1,000,000 points.
The average number of near-duplicates for a point is
about 30.

2) Geo600K: This dataset consists of 600,000 real geo-
tagged photos collected from Panoramio and Flickr,
which is a superset of Paris500K [26]. Paris500K is
a well organized dataset of geo-tagged photos crawled
from Panoramio, and all the photos in this dataset are
taken at Paris. To further increase the data size, we
complement Paris500K with 100,000 more geo-tagged
photos of Paris from Panoramio and Flickr.

The pre-processing of data involves feature extraction (for
Geo600K) and index construction (for both databsets). The
index construction requires some parameters specified, so
unless specified, we used the default settings as in Table II:

Parameter Default Value(s)
GVD threshold ε 0.15
Number of returned novel photos k 20
Fusion weight of dg in GVD λ 0.5
Geographic Grid size scaler µ 1.0
Geographic search range r 0.003o

TABLE II: Default Parameter Settings

We have carefully generated the data values in Point1M to
make it align with the scales in Geo600K, so that we can use
the same parameter setting for both datasets throughout the
experiments. 500-dimensional BoW feature generated from

SIFT local keypoints is used to represent each photo in
Geo600K. Accordingly, the dimensionality for Point1M is also
500 with the same value range. For the Geographic Grid size,
we first compute the ranges of latitude and longitude from
the geo-tags, and then we split the regions they cover so that
each grid contains around 1000 photos, where the grid size is
0.0033o latitude and 0.0047

o

longitude. To assess the effect
of grid size, we use a scaler µ on it, so that in our index the
actual grid size is 0.0033µo latitude and 0.0047µo longitude.

B. Reference Methods

Two reference methods are implemented to compare the
performance with our framework. The first one is KClustering-
based novel photo identification (KClust) [16], and the second
is Near-duplicate Graph (NG) [12]. After retrieving local photo
set, we perform novel photo identification with both reference
methods, and the outcomes are measured and compared. In
KClust, we use k to specify the number of clusters. And
then we find the nearest point to the center of each cluster.
For NG, we use a carefully tuned value for its parameter γ,
i.e., γ = 0.85, and it defines a similar criteria to identify the
representative photos.

C. Quality of Novel Contents

The effectiveness of our framework is evaluated by the av-
erage novelty of returned seed photos. According to Definition
9, given a set of the k returned photos Sk, the average novelty
is computed by ∑

si∈Sk η(si)

|Sk|
. (22)

All the returned photos by each method are evaluated with the
average novelty, which are are displayed and compared.
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Fig. 6: Comparison on Novelty

1) Comparison: Figure 6 illustrate the difference in the
performance of three methods w.r.t the average novelty values.
In Figure 6a, clearly our MNPG discovering algorithm has
the best quality by giving an average novelty of 15.6, and
NG follows MNPG as the second by an average novelty of
14.9. KCluster yields the worst novelty, i.e., 12.8, which can
be expected since KCluster does not have any constraints and
thus leads to the probability of creating huge clusters. NG uses
a similar strategy with cohesion and connectivity constraints
to find the near-duplicate graphs. Its performance is hence
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similar to MNPG. Figure 6b shows the same order of the
three methods by their average novelty values. We note that
the novelty values for Geo600K are smaller than Point1M.
That is mainly because in Point1M the near-duplicate groups
have slightly greater sizes and the distances between group
members are smaller.
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Fig. 7: Effect of ε on Novelty

2) Effect of ε: The effect of ε on the average novelty
values is reflected in Figure 7. The ε is the only constraint
that determines the quality of the MNPGs. With a greater
ε, the average size of MNPGs is greater. However non-near-
duplicates may be added into the MNPG and thus the average
distance between other group members to the group centroid
also becomes greater. On the other hand, given a small ε,
the MNPGs tend to be tighter, which means the average
distance between other group members to the group centroid
is smaller and the group size is also smaller. However there
exists possibility that true near-duplicates may not be added to
the correct MNPG. Instead it may start another MNPG, which
reduces the uniqueness component in the novelty measure.
Figure 7 supports the observations above. Both figures prove
that only within a proper range the average novelty would
peak. Very small or large ε values degrade the average novelty
values greatly. ε also affects several other aspects of the
framework including total response time, number of expensive
computations, index size and memory usage, etc. Its effect on
those aspects will be further investigated in the rest of the
experiments.

D. Efficiency of Search

The total response time is mainly used to examine the effect
of parameters on the efficiency aspect of our framework.

1) Comparison: The average total response time values are
reported for the two reference methods, our basic algorithm,
and the refined algorithm with the Hybird Index in Figure 8.
KCluster, NG and MNPG-Baseline have similar speed (18, 15
and 14 seconds), while the refined MNPG-hybrid outstands
with 0.4 second only. The high complexity of KCluster,
NG and MNPG-Baseline leads to their unsatisfactory speed.
MNPG-Hybrid is greatly accelerated by the Hybrid Index and
the attached optimizations, where only a small number full
distance computations occur.
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Fig. 8: Comparison on Search Efficiency

2) Effect of ε: Figure 9 illustrates the effect of ε on the
search efficiency, with both total response time and number of
full distance computations reported. The trend of changes in
Figure 9 reflects that in MNPG-Baseline, when ε is increased,
the photos in the local photo set converge into MNPGs more
quickly, making the candidate set shrink faster as well. Hence
the total response time and the number of computations drop
with a larger ε value. MNPG-Hybrid shows a similar pattern
of changes in its total response time but it has a slightly
different change in the number of distance computations. This
is because with the increase of ε, less points can be filtered by
the query optimizations. But the faster construction of MNPGs
compensates this loss and thus the total response time remains
the down trend.

3) Effect of µ: The Geographic Grid size, represented by
µ, determines the average number of photos indexed in a grid,
and consequently affects the quality of local MNPGs in the
grids. A greater µ will make the local MNPG more accurate,
i.e., local MNPGs are more complete with less truncations
by the partition of grids. Its effect on the search efficiency is
demonstrated in Figure 10. As MNPG-baseline is not affected
by this factor, only the performance of MNPG-Hybrid is
shown. Clearly, with local MNPGs being more complete,
more groups are directly removed from the candidate set, thus
both the total response time and the number of computations
declines as µ increases. However it is infeasible to set a very
large µ, as a greater µ will also increase the index size, and
will greatly slow down the index construction. µ’s effects on
index construction and memory usage are reported shortly.
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4) Effect of r: The geographic range of a visualization
query determines the number photos in the local photo set.
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Fig. 9: Effect of ε on Search Efficiency

Naturally it has great impact on the search efficiency. In Figure
11 we test how the total response time and the number of
distance computations change with r. Both the results for
MNPG-Baseline and MNPG-Hybrid are included. r is set
to change through 1e−3 to 5e−3 degrees. Recall that the
default geographic grid size is 0.0033o latitude and 0.0047

o

longitude, the range of r covers the possibility of using single
grid to multiple grids in the query processing. Generally, a
greater r will lead to a greater candidate set in the local
photo set, which slows the query processing down. This is
particularly evident from the total response time and number
of distance computations of MNPG-Baseline. However, for
MNPG-Hybrid, as irrelevant photos can be quickly filtered,
its efficiency is less affected.

E. Index Construction

Next let us see how parameters ε and µ affect the index
construction in terms of the time cost and the index size.

a) Effect of ε: ε has impacts on both the index construc-
tion time and the index size. In Figure 12, the total time cost
does not vary too much with ε, as we previously explained,
a greater ε leads to faster local MNPG identification with
the MNPG-Baseline algorithm. However, the index size grows
rapidly in Figure 12, indicating the number of near-duplicates
a point or photo has increases rapidly when ε gets larger.
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Fig. 12: Effect of ε on Index Construction

b) Effect of µ: When the Geographic Grid size is en-
larged, more photos are involved in the local MNPG iden-
tification. As local MNPG identification is computationally
expensive, the time cost of index construction is greatly
increased. As for index size, an increased µ reduces the total
number of local MNPGs and hence shrinks the local MNPG

table for each Geographic Grid. As the number of total photos
does not change, this slightly reduces the index size. Figure
13 clearly supports the above observations.
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Fig. 13: Effect of µ on Index Construction

F. Memory Usage

As memory usage is an important aspect of efficiency
evaluation, we also test it in our experiments. The results
are shown in Figure 14. The memory usage for a query with
default settings usually takes several MBs only. Two factors
are considered when evaluating the memory usage, i.e., the
query range r and the GVD threshold ε. r affects the memory
usage as the number of grids it fetches varies with r. With a
very small r, at least one grid needs to be fetched, so when
r = 1e−3 and r = 2e−3 the memory usage is almost the same.
As r continues to grow, more frequently the query proximity
covers several grids and subsequently more grids need to be
fetched into memory. For ε, it affects the memory usage in
the sense that the group size is determined by it. It is a direct
result of many larger groups which can be observed in Figure
14.

VII. CONCLUSION

Visualizing a location with geo-tagged photos is a novel
application that requires urgent research attention. However,
fueled by the popularity of GPD-enabled mobile devices, near-
duplicates in the geo-tagged photos are manifesting themselves
ceaselessly. The quality of location visualization is greatly
harmed by highly redundant contents it returns to the user.
To tackle this problem, in this work, a diverse location
visualization framework is proposed to provide the user with
diversified scenes around a location. We define a novelty
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Fig. 11: Effect of r on Search Efficiency
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Fig. 14: Memory Usage

model and a Maximal Near-duplicate Photo Group (MNPG)
identification algorithm to identify the near-duplicate groups.
Then, to improve the efficiency of the framework, we design a
Hybrid Index that simultaneously indexes geographic informa-
tion, near-duplicate information and local MNPG information.
The Hybrid Index creates unique opportunity to refine the
original MNPG identification by lower bound pruning tech-
niques. Finally, we conduct comprehensive experiments on
two datasets, and verify the advantages of our framework on
both quality and efficiency. In future, we plan to investigate
the hierarchical version of the Geographic Grid to visualize
locations in a multi-resolution fasion.
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