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Abstract—In recent years, many networks have become
available for analysis, including social networks, sensor net-
works, biological networks, etc. Graph clustering has shown
its effectiveness in analyzing and visualizing large networks.
The goal of graph clustering is to partition vertices in a large
graph into clusters based on various criteria such as vertex
connectivity or neighborhood similarity. Many existing graph
clustering methods mainly focus on the topological structures,
but largely ignore the vertex properties which are often
heterogeneous. Recently, a new graph clustering algorithm,
SA-Cluster, has been proposed which combines structural and
attribute similarities through a unified distance measure. SA-
Cluster performs matrix multiplication to calculate the random
walk distances between graph vertices. As the edge weights
are iteratively adjusted to balance the importance between
structural and attribute similarities, matrix multiplication is
repeated in each iteration of the clustering process to recalcu-
late the random walk distances which are affected by the edge
weight update.

In order to improve the efficiency and scalability of SA-
Cluster, in this paper, we propose an efficient algorithm Inc-
Cluster to incrementally update the random walk distances
given the edge weight increments. Complexity analysis is
provided to estimate how much runtime cost Inc-Cluster
can save. Experimental results demonstrate that Inc-Cluster
achieves significant speedup over SA-Cluster on large graphs,
while achieving exactly the same clustering quality in terms
of intra-cluster structural cohesiveness and attribute value
homogeneity.
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I. INTRODUCTION

Graphs are popularly used to model structural relationship

between objects in many application domains such as web,

social networks, sensor networks, biological networks and

communication networks, etc. Graph clustering has received

a lot of attention recently with many proposed clustering

algorithms [1], [2], [3], [4], [5]. Clustering on a large graph

aims to partition the graph into several densely connected

components. Typical applications of graph clustering include

community detection in social networks, identification of

functional modules in large protein-protein interaction net-

works, etc. Many existing graph clustering methods mainly

focus on the topological structure of a graph so that each par-

tition achieves a cohesive internal structure. Such methods

include clustering based on normalized cuts [1], modularity

[2], structural density [3] or flows [4]. On the other hand,

a recent graph summarization method [6] aims to partition

a graph according to attribute similarity, so that nodes with

the same attribute values are grouped into one partition.

In many real applications, both the graph topological

structure and the vertex properties are important. For exam-

ple, in a social network, vertex properties describe roles of

a person while the topological structure represents relation-

ships among a group of people. The graph clustering and

summarization approaches mentioned above consider only

one aspect of the graph properties but ignore the other. As a

result, the clusters thus generated would either have a rather

random distribution of vertex properties within clusters, or

have a rather loose intra-cluster structure. An ideal graph

clustering should generate clusters which have a cohesive

intra-cluster structure with homogeneous vertex properties,

by balancing the structural and attribute similarities.

Figure 1 shows an example of a coauthor graph where

a vertex represents an author and an edge represents the

coauthor relationship between two authors. In addition, there

are an author ID, research topic and age associated with

each author. The research topic and age are considered

as attributes to describe the vertex properties. As we can

see, authors r1–r7 work on XML, authors r9–r11 work on

Skyline and r8 works on both. In addition, each author has

a range value to describe his/her age. The problem studied

in this paper is to cluster a graph associated with attributes

(called an attributed graph), such as the example in Figure

1, based on both structural and attribute similarities. The

goal is to partition the graph into k clusters with cohesive

intra-cluster structures and homogeneous attribute values.

The problem is quite challenging because structural and

attribute similarities are two seemingly independent, or even

conflicting goals – in our example, authors who collaborate

with each other may have different values on research topics

and age; while authors who work on the same topics or who

are in a similar age may come from different groups with

no collaborations. It is not straightforward to balance these

two objectives.

In a recent work, Zhou et al. have proposed SA-Cluster

[5], a graph clustering algorithm by combining structural

and attribute similarities. A set of attribute vertices and

attribute edges are added to the original graph. With such

graph augmentation, the attribute similarity is transformed

to vertex vicinity in the graph – two vertices which share

an attribute value are connected by a common attribute
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Figure 1. A Coauthor Network with Two Attributes “Topic” and “Age”

vertex. A neighborhood random walk model, which mea-

sures the vertex closeness on the augmented graph through

both structure edges and attribute edges, unifies the two

similarities. Then SA-Cluster uses the random walk distance

as the vertex similarity measure and performs clustering by

following the K-Medoids framework. As different attributes

may have different degrees of importance, a weight ωi,

which is initialized to 1.0, is assigned to the attribute edges

corresponding to attribute ai. The attribute edge weights

{ω1, . . . , ωm} are updated in each iteration of the clustering

process, to reflect the importance of different attributes. In

the above example, after the first iteration, the weight of

research topic will be increased to a larger value while

the weight of age will be decreased, as research topic

has better clustering tendency than age. Accordingly, the

transition probabilities on the graph are affected iteratively

with the attribute weight adjustments. Thus the random walk

distance matrix needs to be recalculated in each iteration

of the clustering process. Since the random walk distance

calculation involves matrix multiplication, which has a time

complexity of O(n3), the repeated random walk distance

calculation causes a non-trivial computational cost in SA-

Cluster. We find in the experiments that the random walk

distance computation takes 98% of the total clustering time

in SA-Cluster.

With a careful study of the weight self-adjustment mech-

anism in [5], we have observed that the weight increments

only affect the attribute edges in the augmented graph,

while the structure edges are not affected. Motivated by

this, in this paper, we aim to improve the efficiency and

scalability of SA-Cluster with a proposed efficient incre-

mental computation algorithm Inc-Cluster to update the

random walk distance matrix. The core idea is to compute

the full random walk distance matrix only once at the

beginning of the clustering process. Then in each following

iteration of clustering, given the attribute weight increments

{Δω1, . . . ,Δωm}, we use Inc-Cluster to update the original

random walk distance matrix, instead of re-calculating the

matrix from scratch. This incremental computation problem

is quite challenging. Existing incremental approaches [7],

[8] cannot be directly applied to solve our problem, as they

partition the graph into a changed part and an unchanged

part. But in our problem it is hard to find such a clear

boundary between the changed and the unchanged parts on

the graph, because the effect of edge weight adjustments is

propagated widely to the whole graph in multiple steps. The

distance between any pair of vertices may be affected. With

the proposed Inc-Cluster algorithm, we can divide the graph

clustering algorithm into two phases: an offline phase at the

beginning of clustering for the full random walk distance

matrix computation which is relatively expensive, and an

online phase for the fast iterative clustering process with the

incremental matrix calculation which is much cheaper. The

main contributions of this paper are summarized below.

1) We study the problem of incremental computation of

the random walk distance matrix in the context of graph

clustering with structural and attribute similarities. We

propose an efficient algorithm Inc-Cluster to incremen-

tally update the random walk distance matrix given

the attribute weight increments. By analyzing how the

transition probabilities are affected by the weight incre-

ments, the random walk distance matrix is divided into

submatrices for incremental update. Importantly, the

incremental approach is also applicable to fast random

walk computation in continuously evolving graphs with

vertex/edge insertion and deletion.

2) Complexity analysis is provided to quantitatively es-

timate the upper bound and the lower bound of the

number of elements in the random walk distance matrix

that remain unchanged. The upper bound and lower

bound correspond to the best case and the worst case

of the incremental approach respectively.

3) We perform extensive evaluation of the incremen-

tal approach on real large graphs, demonstrating that

our method Inc-Cluster is able to achieve significant

speedup over SA-Cluster, while achieving exactly the

same clustering quality in terms of intra-cluster struc-

tural cohesiveness and attribute value homogeneity.

The rest of the paper is organized as follows. We review

related work on graph clustering in Section II. Section III in-

troduces preliminary concepts and analyzes the runtime cost

of SA-Cluster. Section IV presents our proposed incremental

algorithm Inc-Cluster, followed by a complexity analysis

in Section V. Section VI presents extensive experimental

results. Finally, Section VII concludes the paper.

II. RELATED WORK

Many graph clustering techniques have been proposed

which mainly focused on the topological structures based

on various criteria including normalized cuts [1], modular-

ity [2], structural density [3] or stochastic flows [4]. The

clustering results contain densely connected components

within clusters. However, such methods usually ignore ver-

tex attributes in the clustering process. On the other hand,

Tian et al. [6] proposed OLAP-style aggregation approaches

to summarize large graphs by grouping nodes based on

user-selected attributes. This method achieves homogeneous

attribute values within clusters, but ignores the intra-cluster

topological structures. Recently, Zhou et al. have proposed
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a graph clustering algorithm, SA-Cluster [5], based on

both structural and attribute similarities. Experimental re-

sults have shown that SA-Cluster achieves a good balance

between structural cohesiveness and attribute homogeneity.

Other recent studies on graph clustering include the

following. Sun et al. [9] proposed GraphScope which is

able to discover communities in large and dynamic graphs,

as well as to detect the changing time of communities.

Sun et al. [10] proposed an algorithm, RankClus, which

integrates clustering with ranking in large-scale information

network analysis. Navlakha et al. [11] proposed a graph

summarization method using the MDL principle.

The concept of random walk has been widely used to

measure vertex distances. Jeh and Widom [12] designed

a measure called SimRank, which defines the similarity

between two vertices in a graph by their neighborhood sim-

ilarity. Pons and Latapy [13] proposed to use short random

walks of length l to measure the similarity between two

vertices in a graph for community detection. Desikan et al.

[7] proposed an incremental algorithm to compute PageRank

for the evolving Web graph by partitioning the graph into a

changed part and an unchanged part. [8] computes the local

PageRank scores on a subgraph by assuming that the scores

of external pages are known.

III. PRELIMINARY CONCEPTS

In this section, we first introduce the problem formulation

of graph clustering considering both structural and attribute

similarities. We then give a brief review of an earlier

algorithm SA-Cluster by Zhou et al. [5] and analyze the

computational cost. Our proposed approach to handle the

computational bottleneck is outlined.

A. Attribute Augmented Graph

Definition 1 (Attributed Graph): An attributed graph is

denoted as G = (V,E, Λ), where V is the set of vertices, E
is the set of edges, and Λ = {a1, . . . , am} is the set of m
attributes associated with vertices in V for describing vertex

properties. A vertex v ∈ V is associated with an attribute

vector [a1(v), . . . , am(v)] where aj(v) is the attribute value

of vertex v on attribute aj .

Attributed graph clustering is to partition an attributed

graph G into k disjoint subgraphs {Gi = (Vi, Ei, Λ)}k
i=1,

where V =
⋃k

i=1 Vi and Vi

⋂
Vj = ∅ for any i �= j.

A desired clustering of an attributed graph should achieve

a good balance between the following two objectives: (1)

vertices within one cluster are close to each other in terms

of structure, while vertices between clusters are distant from

each other; and (2) vertices within one cluster have similar

attribute values, while vertices between clusters could have

quite different attribute values.

[5] proposed an attribute augmented graph to represent

vertex associated attributes explicitly as attribute vertices

and edges. In this paper we follow the same representation.
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Figure 2. Attribute Augmented Graph

Definition 2 (Attribute Augmented Graph): Given an at-

tributed graph G = (V,E, Λ) with a set of attributes Λ =
{a1, . . . , am}. The domain of attribute ai is Dom(ai) =
{ai1, . . . , aini

} with a size of |Dom(ai)| = ni. An attribute

augmented graph is denoted as Ga = (V ∪ Va, E ∪ Ea)
where Va = {vij}

m, ni

i=1,j=1 is the set of attribute vertices and

Ea ⊆ V ×Va is the set of attribute edges. An attribute vertex

vij ∈ Va represents that attribute ai takes the jth value. An

attribute edge (vi, vjk) ∈ Ea iff aj(vi) = ajk, i.e., vertex vi

takes the value of ajk on attribute aj . Accordingly, a vertex

v ∈ V is called a structure vertex and an edge (vi, vj) ∈ E
is called a structure edge.

Figure 2 is an attribute augmented graph on the coauthor

network example. Two attribute vertices v11 and v12 repre-

senting the topics “XML” and “Skyline” are added. Authors

with corresponding topics are connected to the two vertices

respectively in dashed lines. We omit the attribute vertices

and edges corresponding to the age attribute, for the sake of

clear presentation.

B. A Unified Random Walk Distance

In this paper we also use the neighborhood random walk

model on the attribute augmented graph Ga to compute a

unified distance between vertices in V . The random walk

distance between two vertices vi, vj ∈ V is based on the

paths consisting of both structure and attribute edges. Thus

it effectively combines the structural proximity and attribute

similarity of two vertices into one unified measure. The

transition probability matrix PA on Ga is defined as follows.

A structure edge (vi, vj) ∈ E is of a different type from

an attribute edge (vi, vjk) ∈ Ea. The m attributes may

also have different importance. Therefore, they may have

different degree of contributions in random walk distance.

Without loss of generality, we assume that a structure edge

has a weight of ω0, attribute edges corresponding to a1, a2,

. . ., am have an edge weight of ω1, ω2, . . ., ωm, respectively.

Therefore, the transition probability from vertex vi to vertex

vj through a structure edge is

pvi,vj
=

⎧⎨
⎩

ω0

|N(vi)| ∗ ω0 + ω1 + . . . + ωm

, if(vi, vj) ∈ E

0, otherwise
(1)

where N(vi) represents the set of structure vertices con-

nected to vi. Similarly, the transition probability from vi to
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vjk through an attribute edge is

pvi,vjk
=

⎧⎨
⎩

ωj

|N(vi)| ∗ ω0 + ω1 + . . . + ωm

, if(vi, vjk) ∈ Ea

0, otherwise
(2)

The transition probability from vik to vj through an attribute

edge is

pvik,vj
=

⎧⎨
⎩

1

|N(vik)|
, if(vik, vj) ∈ Ea

0, otherwise

(3)

The transition probability between two attribute vertices vip

and vjq is 0 as there is no edge between attribute vertices.

pvip,vjq
= 0,∀vip, vjq ∈ Va (4)

The transition probability matrix PA is a |V ∪Va|×|V ∪Va|
matrix, where the first |V | rows (columns) correspond to the

structure vertices and the rest |Va| rows (columns) corre-

spond to the attribute vertices. For the ease of presentation,

PA is represented as

PA =

[
PV1

A1

B1 O

]
(5)

where PV1
is a |V | × |V | matrix representing the transition

probabilities defined by Eq.(1); A1 is a |V |×|Va| matrix rep-

resenting the transition probabilities defined by Eq.(2); B1

is a |Va|×|V | matrix representing the transition probabilities

defined by Eq.(3); and O is a |Va| × |Va| zero matrix.

Definition 3 (Random Walk Distance Matrix): Let PA be

the transition probability matrix of an attribute augmented

graph Ga. Given L as the length that a random walk can go,

c ∈ (0, 1) as the random walk restart probability, the unified

neighborhood random walk distance matrix RA is

RA =

L∑
l=1

c(1− c)lP l
A (6)

C. A Review of SA-Cluster

SA-Cluster adopts the K-Medoids clustering framework.

After initializing the cluster centroids and calculating the

random walk distance at the beginning of the clustering

process, it repeats the following four steps until convergence.

1) Assign vertices to their closest centroids;

2) Update cluster centroids;

3) Adjust attribute edge weights {ω1, . . . , ωm};
4) Re-calculate the random walk distance matrix RA.

Different from traditional K-Medoids, SA-Cluster has

two additional steps (i.e., steps 3-4): in each iteration,

the attribute edge weights {ω1, . . . , ωm} are automatically

adjusted to reflect the clustering tendencies of different

attributes. Interested readers can refer to [5] for the proposed

mechanism for weight adjustment. According to Eq.(2),

when the edge weights {ω1, . . . , ωm} change, the transition

probability matrix PA changes, so does the neighborhood

random walk distance matrix RA. As a result, the random

walk distance matrix has to be re-calculated in each iteration

due to the edge weight changes.

The cost analysis of SA-Cluster can be expressed as

t · (Trandom walk + Tcentroid update + Tassign)

where t is the number of iterations in the clustering process,

Trandom walk is the cost of computing the random walk

distance matrix RA, Tcentroid update is the cost of updating

cluster centroids, and Tassign is the cost of assigning all

points to cluster centroids.

For Tcentroid update and Tassign the time complexity is

O(n) where n = |V |, since each of these two operations

performs a linear scan of the graph vertices. On the other

hand, the random walk distance calculation consists of ma-

trix multiplications and additions, according to Eq.(6). Thus

the time complexity for Trandom walk is O(L · n3
a) where

na = |V ∪Va| is the row (column) number of the transition

probability matrix PA. It is clear that Trandom walk is the

dominant factor in the clustering process. The repeated

calculation of random walk distance in each iteration can

incur a non-trivial efficiency problem for SA-Cluster. We

have observed that computing the random walk distance

takes 98% of the total clustering time in SA-Cluster.

D. Our Solution: An Incremental Approach

The computational bottleneck in the random walk distance

computation motivates us to seek alternative solutions with

a lower cost. A natural direction to explore is “can we

avoid repeated calculation of random walk distance in the

clustering process?” The goal is to reduce the number of

random walk distance calculation. We have observed that

the attribute weight adjustments only change the transition

probabilities of the attribute edges, but not those of the

structure edges. This implies that many elements in the

random walk distance matrix may remain unchanged. This

property sheds light on the problem: we can design an

incremental calculation approach to update the random walk

distance matrix RA iteratively. That is, given the original

random walk distance matrix RA and the weight increments

{Δω1, . . . ,Δωm}, efficiently calculate the increment matrix

ΔRA, and then get the updated random walk distance matrix

RN,A = RA + ΔRA. In this process, we only calculate the

non-zero elements in ΔRA, i.e., those elements which are

affected by the edge weight changes, but can ignore the

unaffected parts of the original matrix. If the number of

affected matrix elements is small, this incremental approach

will be much more efficient than calculating the full matrix

RA from scratch in each iteration.

However, this incremental approach could be quite chal-

lenging, because the boundary between the changed part and

the unchanged part of the graph is not clear. The attribute
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(a) ΔP
1

A
(b) ΔP

2

A
(c) ΔP

20

A

Figure 3. Matrix Increment Series

weight adjustments will be propagated to the whole graph

in L steps. Let us look at an example first.

Example 1: We select 1,000 authors from database, data

mining, artificial intelligence and information retrieval with

3,782 edges for their collaborations. Each author has two

attributes: “prolific” and “research topic”. The first attribute

“prolific” contains two values of “highly prolific” and “low

prolific”, and the second one “research topic” has 100

different values. Thus the augmented graph contains 1,000

structure vertices and 102 attribute vertices. The attribute

edge weights for “prolific” and “research topic” are ω1, ω2

respectively. Figure 3 shows three matrices ΔP 1
A, ΔP 2

A

and ΔP 20
A corresponding to the increments of the 1st, 2nd,

and 20th power of the transition probability matrix, due

to the attribute weight increments {Δω1, Δω2}. The blue

dots represent non-zero elements and the red dashed lines

divide each matrix into submatrices according to the block

matrix representation in Eq.(5). As shown in Figure 3, ΔP l
A

becomes denser when l increases.

For ΔP 1
A, the attribute weight increments only affect the

transition probabilities in the submatrix A1, but cause no

changes in the other three submatrices. Therefore, most

elements in ΔP 1
A are zero. ΔP 2

A becomes denser with

more non-zero elements. ΔP 20
A becomes even denser, which

demonstrates that the effect of attribute weight increments is

propagated to the whole graph through matrix multiplication.

Existing fast random walk [14] or incremental PageRank

computation approaches [7], [8] can not be directly applied

to our problem. Tong et al. [14] proposed an algorithm

for fast random walk computation, which relies on par-

titioning the graph into k clusters apriori, to decompose

the transition probability matrix into a within-partition one

and a cross-partition one for a lower complexity. However,

our graph clustering problem is much more difficult due

to the augmented attribute edges and the iterative weight

adjustments. The Incremental PageRank Algorithm (IPR)

[7] computes PageRank for the evolving Web graph by

partitioning the graph into a changed part and an unchanged

part. The distribution of PageRank values in the unchanged

part will not be affected. Two recent algorithms IdealRank

and ApproxRank in [8] compute the PageRank scores in

a subgraph, which is a small part of a global graph, by

assuming that the scores of external pages, i.e., unchanged

pages, are known. Our incremental computation problem is

much more challenging than the above problems. As we

can see from Figure 3, although the edge weight increments

{Δω1, . . . ,Δωm} affect a very small portion of the tran-

sition probability matrix PA, (i.e., see ΔP 1
A), the changes

are propagated widely to the whole graph through matrix

multiplication (i.e., see ΔP 2
A and ΔP 20

A ). It is difficult to

partition the graph into a changed part and an unchanged

part and focus the computation on the changed part only.

IV. THE INCREMENTAL ALGORITHM

In this section, we will describe the incremental algorithm.

According to Eq.(6), RA is the weighted sum of a series of

matrices P l
A, where P l

A is the l-th power of the transition

probability matrix PA, l = 1, . . . , L. Hence the problem of

computing ΔRA can be decomposed into the subproblems

of computing ΔP l
A for different l values. Therefore, our

target is, given the original matrix P l
A and the edge weight

increments {Δω1, . . . ,Δωm}, compute the increment ΔP l
A.

A. Calculate 1st Power Matrix Increment ΔP 1
A

According to Eq.(5), the transition probability matrix PA

can be expressed as four submatrices PV1
, A1, B1 and O.

Based on the transition probabilities defined in Eqs.(1)-(4)

and the properties
∑m

i=1 ωi = m and ω0 is fixed, it is

not hard to verify that the attribute weight increments only

affect the transition probabilities in the submatrix A1, but

cause no changes in the other three submatrices. Therefore,

the increment of the transition probability matrix ΔP 1
A is

denoted as

ΔP 1
A =

[
O ΔA1

O O

]

Consider a probability p(vi, vjk) =
ωj

|N(vi)|∗ω0+ω1+...+ωm
as

defined in Eq.(2). Given a new weight ω′j = ωj + Δωj , the

probability increment is

Δp(vi, vjk) =
Δωj

|N(v i)| ∗ ω 0+ ω 1+ . . .+ ω m

= Δωj ·p(vi, vjk)

(7)

Eq.(7) holds because ωj = 1.0 and
∑m

i=1 ωi =
∑m

i=1 ω′i =
m. Thus we denote A1 = [Aa1

, Aa2
, . . . , Aam

] where Aai

is a |V | ×ni matrix representing the transition probabilities

from structure vertices in V to attribute vertices correspond-

ing to attribute ai. The column number ni corresponds to
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the ni possible values in Dom(ai). An element Aai
(p, q)

represents the transition probability from the p-th vertex

vp ∈ V to the q-th value aiq of ai. Then ΔA1 is equal

to

ΔA1 = [Δω1 ·Aa1
, Δω2 ·Aa2

, . . . ,Δωm ·Aam
] (8)

where Δωi · Aai
is scalar multiplication, i.e., multiplying

every element in Aai
with Δωi according to Eq.(7). Then

the new transition probability matrix PN,A after the edge

weights change is represented as

PN,A =

[
PV1

A1 + ΔA1

B1 O

]
=

[
PV1

AN,1

B1 O

]

B. Calculate l-th Power Matrix Increment ΔP l
A

Similar to the computation of ΔP 1
A, we can calculate

ΔP l
A (l ≥ 2), with a more complicated computation. The

original l-th power matrix P l
A = P l−1

A × PA is represented

as

P l
A =

[
PVl−1

Al−1

Bl−1 Cl−1

]
×

[
PV1

A1

B1 O

]

=

[
PVl−1

PV1
+ Al−1B1 PVl−1

A1

Bl−1PV1
+ Cl−1B1 Bl−1A1

]

Similarly, the new matrix P l
N,A = P l−1

N,A × PN,A given the

weight increments {Δω1, . . . ,Δωm} is

P l
N,A =

[
PN,Vl−1

AN,l−1

BN,l−1 CN,l−1

]
×

[
PV1

AN,1

B1 O

]

=

[
PN,Vl−1

PV1
+ AN,l−1B1 PN,Vl−1

AN,1

BN,l−1PV1
+ CN,l−1B1 BN,l−1AN,1

]

Then the l-th power transition probability matrix increment

ΔP l
A is denoted as

ΔP l
A =

[
ΔPVl

ΔAl

ΔBl ΔCl

]

Based on the original matrix P l
A and the new matrix P l

N,A,

the increment ΔPVl
is

ΔPVl
= (PN,Vl−1

PV1
+ AN,l−1B1)− (PVl−1

PV1
+ Al−1B1)

= (PVl−1
+ ΔPVl−1

)PV1
+ (Al−1 + ΔAl−1)B1

− (PVl−1
PV1

+ Al−1B1)

= ΔPVl−1
PV1

+ ΔAl−1B1

The increment ΔBl is

ΔBl = (BN,l−1PV1
+ CN,l−1B1)− (Bl−1PV1

+ Cl−1B1)

= (Bl−1 + ΔBl−1)PV1
+ (Cl−1 + ΔCl−1)B1

− (Bl−1PV1
+ Cl−1B1)

= ΔBl−1PV1
+ ΔCl−1B1

The increment ΔAl is

ΔAl = PN,Vl−1
AN,1 − PVl−1

A1

= (PVl−1
+ ΔPVl−1

)AN,1 − PVl−1
A1

= PVl−1
ΔA1 + ΔPVl−1

AN,1

(9)

In Eq.(9), there is one component PVl−1
ΔA1. As shown in

Eq.(8), ΔA1 = [Δω1 ·Aa1
, . . . ,Δωm ·Aam

], we then have

PVl−1
ΔA1 = PVl−1

[Δω1 ·Aa1
, . . . ,Δωm ·Aam

]

= [Δω1 · PVl−1
Aa1

, . . . ,Δωm · PVl−1
Aam

]

Note that the submatrix Al in P l
A is computed by the

following submatrix multiplication:

Al = PVl−1
A1 + Al−1O = PVl−1

A1

If we rewrite Al as a series of |V | × ni submatrices as

Al = [Al,a1
, Al,a2

, . . . , Al,am
], then Al,ai

= PVl−1
Aai

. As

a result, PVl−1
ΔA1 can be expressed as

PVl−1
ΔA1 = [Δω1 · PVl−1

Aa1
, . . . ,Δωm · PVl−1

Aam
]

= [Δω1 ·Al,a1
, . . . ,Δωm ·Al,am

]

Therefore, to compute PVl−1
ΔA1 in Eq.(9), we only need

to compute [Δω1 · Al,a1
, . . . ,Δωm · Al,am

]. The advantage

is that Δωi · Al,ai
is scalar multiplication, which is much

cheaper than the matrix multiplication on PVl−1
ΔA1. Com-

bining the above equations, we have

ΔAl = [Δω1 ·Al,a1
, . . . ,Δωm ·Al,am

] + ΔPVl−1
AN,1

where the first part represents the attribute increment (i.e.,

the weight increments Δωi’s on Al), while the second part

represents the accumulative increment from ΔPVl−1
.

Similarly, the increment ΔCl is

ΔCl = BN,l−1AN,1 −Bl−1A1

= (Bl−1 + ΔBl−1)AN,1 −Bl−1A1

= Bl−1ΔA1 + ΔBl−1AN,1

= [Δω1 · Cl,a1
, . . . ,Δωm · Cl,am

] + ΔBl−1AN,1

where we represent Cl = [Cl,a1
, Cl,a2

, . . . , Cl,am
].

In summary, the l-th power matrix increment ΔP l
A can

be calculated based on: (1) the original transition probability

matrix PA and increment matrix ΔA1, (2) the (l-1)-th power

matrix increment ΔP l−1
A , and (3) the original l-th power

submatrices Al and Cl. The key is that, if ΔA1 and ΔP l−1
A

contain many zero elements, we can apply sparse matrix

representation to speed up the matrix multiplication.

C. The Incremental Algorithm

Algorithm 1 presents the incremental algorithm for calcu-

lating the new random walk distance matrix RN,A given the

original RA and the weight increments {Δω1, . . . ,Δωm}.
The algorithm iteratively computes the increments ΔP l

A for

l = 1, . . . , L, and accumulates them into the increment

matrix ΔRA according to Eq.(6). Finally the new random

walk distance matrix RN,A = RA + ΔRA is returned.

The total runtime cost of the clustering process with Inc-

Cluster can be expressed as

Trandom walk +(t−1) ·Tinc +t ·(Tcentroid update +Tassign)
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Algorithm 1 The Incremental Algorithm Inc-Cluster

Input: The original matrices RA, PA, Al, Cl, l = 2, . . . , L
the attribute edge weight increments {Δω1, . . . ,Δωm}

Output: The new random walk distance matrix RN,A

1: Calculate ΔP 1
A according to Eq.(8);

2: ΔRA = c(1− c)ΔP 1
A;

3: for l = 2, . . . , L
4: ΔPVl

= ΔPVl−1
PV1

+ ΔAl−1B1;

5: ΔBl = ΔBl−1PV1
+ ΔCl−1B1;

6: ΔAl = [Δω1 ·Al,a1
, . . . ,Δωm ·Al,am

] + ΔPVl−1
AN,1;

7: ΔCl = [Δω1 · Cl,a1
, . . . ,Δωm · Cl,am

] + ΔBl−1AN,1;

8: ΔRA+ = c(1− c)lΔP l
A;

9: end for

10:return RN,A = RA + ΔRA;

where Tinc is the time for incremental computation and

Trandom walk is the time for computing the random walk

distance matrix at the beginning of clustering. The speedup

ratio r between SA-Cluster and Inc-Cluster is

t(Trandom walk + Tcentroid update + Tassign)

Trandom walk + (t− 1)Tinc + t(Tcentroid update + Tassign)

Since Tinc, Tcentroid update, Tassign 
 Trandom walk, the

speedup ratio is approximately

r ≈
t · Trandom walk

Trandom walk

= t

Therefore, Inc-Cluster can improve the runtime cost of SA-

Cluster by approximately t times, where t is the number of

iterations in clustering.

V. COMPLEXITY ANALYSIS

In this section, we will perform some complexity analysis

to estimate the number of zero elements in ΔP l
A, as an

indication to show how much cost Inc-Cluster can save.

Intuitively, the more zero elements in the matrix increment

ΔP l
A, the less cost the incremental algorithm has. It is

hard to give a closed form analytical result for a general

l ∈ {1, . . . , L}, because we need to consider all possible

length-l paths between any two vertices. So we focus on the

analysis on ΔP 2
A. Given a general attributed graph, we will

provide an upper bound and a lower bound of the number

of zero elements in ΔP 2
A. This quantity directly affects the

computational complexity of the incremental calculation.

Although we cannot provide the theoretical bounds for

ΔP l
A (l > 2), we observe in Figure 3 that the number of

non-zero elements increases as l increases. However, we

also observe from experiments, a large number of entries

in ΔP l
A approach to zero quickly when l increases, due

to the multiplication of probabilities on the sequence of

edges. Confirmed by our testing, over 75% of entries in

ΔP l
A become smaller than a very small threshold and can

be treated as zero. Therefore, practically the number of non-

zero elements in ΔP l
A is very small even for large l values.

In our analysis, we use the following notations: the m at-

tributes a1, . . . , am contain n1, . . . , nm values respectively.

The number of structure vertices is |V | = n. Note that the

following derived bounds do not make any assumption about

the type of data or the value of m. Due to space limit, the

detailed proofs of Lemmas 1 and 2 are omitted.

A. Upper Bound of The Number of Zero Elements in ΔP 2
A

Lemma 1: There are totally
∏m

i=1 ni combinations of

attribute values among the m attributes, since an attribute

ai takes ni values. Assume each combination has at least

one vertex (without this assumption, we can find a special

case with a trivial upper bound). When all vertices are evenly

distributed in the
∏m

i=1 ni combinations of attribute values,

i.e., each combination has n∏
m
i=1

ni
vertices, it gives the upper

bound of the number of zero elements in ΔP 2
A.

Theorem 1: The upper bound of the number of zero

elements in ΔP 2
A is

n2 ×
∏m

i=1(ni − 1)∏m

i=1 ni

(10)

Proof. If two vertices vi, vj ∈ V have no common values on

any attributes, then ΔP 2
A(i, j) = ΔP 2

A(j, i) = 0. Given one

combination of the attribute values, there are
∏m

i=1(ni − 1)
combinations which do not share any attribute values with

this combination. Since all vertices are evenly distributed

in the
∏m

i=1 ni combinations of attribute values, there are
n∏

m
i=1

ni
vertices belonging to each combination. Therefore,

for any vertex vi, the total number of vertices which do not

share any attribute values with vi is
n×

∏m
i=1

(ni−1)∏
m
i=1

ni
. Accord-

ingly, there are
n×

∏m
i=1

(ni−1)∏
m
i=1

ni
zero elements in ΔP 2

A(i, :).

Since there are totally n vertices in the graph, the total

number of zero elements in ΔP 2
A is

n2 ×
∏m

i=1(ni − 1)∏m

i=1 ni

n2×
∏m

i=1
(ni−1)∏

m
i=1

ni
is in the scale of O(n2), which implies

that most elements in ΔP 2
A do not change. This corresponds

to the best case of the incremental computation, since only

a small number of elements in ΔP 2
A need to be updated.

B. Lower Bound of The Number of Zero Elements in ΔP 2
A

Lemma 2: Assume each attribute value combination has

at least one vertex. Among the
∏m

i=1 ni combinations of

attribute values, assume for each of the first
∏m

i=1 ni − 1
combinations, there exists exactly one vertex with the at-

tribute vector corresponding to that combination. The re-

maining n− (
∏m

i=1 ni − 1) vertices have the same attribute

vector corresponding to the last combination. This case gives

the lower bound of the number of zero elements in ΔP 2
A.
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Theorem 2: The lower bound of the number of zero

elements in ΔP 2
A is

(2n−
m∏

i=1

ni)×
m∏

i=1

(ni − 1) (11)

Proof. Without loss of generality, we assume that exactly one

vertex belongs to each of the first
∏m

i=1 ni−1 combinations

of the attribute values. The set of such vertices is denoted

as S. The set of the remaining vertices belonging to the

last combination of attribute values is denoted as T . Let

S = S1 ∪ S2 where S1 is the set of vertices which do not

share any attribute values with vertices in T ; S2 is the set

of vertices which share one or more attribute values with

vertices in T .

There are three cases to be discussed in the following to

count the number of zero elements in ΔP 2
A.

Case 1. Consider two vertices u and v. If u, v do not share

the value on an attribute ai, then v can take any of the other

ni − 1 values except the value taken by u. Since vertices

in T and S1 do not share any attribute values on the m
attributes, there are totally

∏m

i=1(ni − 1) combinations of

attribute values that do not share with vertices in T . As we

have assumed that there is exactly one vertex for each of

such combinations, the size of S1 is |S1| =
∏m

i=1(ni −
1) and the size of T is |T | = n − (

∏m

i=1 ni − 1). If two

vertices vi, vj have no common values on any attributes, then

ΔP 2
A(i, j) = ΔP 2

A(j, i) = 0. Therefore, ∀vi ∈ T, ∀vj ∈ S1,

ΔP 2
A(i, j) = 0 and ΔP 2

A(j, i) = 0. The number of such

elements between T and S1 is

LB1 = 2|T | × |S1| = 2(n− (
m∏

i=1

ni − 1))×
m∏

i=1

(ni − 1)

Case 2. There exist some vertices in S which do not share

any attribute values with any vertex in S1. We denote this set

as S0, S0 ⊂ S. The size of S0 is |S0| =
∏m

i=1(ni − 1)− 1.

So the total number of zero elements in ΔP 2
A is:

2|S1| × |S0| = 2
m∏

i=1

(ni − 1)× (
m∏

i=1

(ni − 1)− 1)

Since S0 ∩ S1 �= ∅, the above number double counts the

following case: vi, vj ∈ S1 and vi, vj do not share any

attribute values. As a result, we have to deduct from the

above
∏m

i=1(ni − 1)×
∏m

i=1(ni − 2) elements. Finally the

number of zero elements in ΔP 2
A in case 2 is

LB2 = 2

m∏
i=1

(ni−1)×(

m∏
i=1

(ni−1)−1)−
m∏

i=1

(ni−1)×
m∏

i=1

(ni−2)

Case 3. There exist some vertices in S which do not share

any attribute values with those in S2. The size of S2 is

|S2| =
∏m

i=1 ni− 1−
∏m

i=1(ni− 1). So the total number of

zero elements in ΔP 2
A in case 3 is:

(

m∏
i=1

ni − 1−
m∏

i=1

(ni − 1))×
m∏

i=1

(ni − 1)

However, the elements between any vi ∈ S1, vj ∈ S2 have

been counted in case 2. So we should deduct the repeated

counts. For a vertex vi ∈ S1, there are
∏m

i=1(ni − 1) −∏m

i=1(ni − 2) − 1 vertices in S2 which do not share any

attribute values with it. Thus the number of repeated counts

is (
∏m

i=1(ni − 1) −
∏m

i=1(ni − 2) − 1) ×
∏m

i=1(ni − 1).
Finally the number of zero elements for case 3 is

LB3 = (
m∏

i=1

ni +
m∏

i=1

(ni− 2)− 2
m∏

i=1

(ni− 1))×
m∏

i=1

(ni− 1)

By adding up LB1, LB2 and LB3, we can generate the

lower bound of the number of zero elements in ΔP 2
A.

LB = LB1 + LB2 + LB3 = (2n−
m∏

i=1

ni)×
m∏

i=1

(ni − 1)

As m and ni, i = 1, . . . , m, are usually much smaller than

n, LB is in the scale of O(n), which is 
 n2, the number

of elements in ΔP 2
A. Thus the lower bound corresponds to

the worst case of the incremental computation, since most

elements in ΔP 2
A need to be updated.

VI. EXPERIMENTAL STUDY

In this section, we performed extensive experiments to

evaluate the performance of Inc-Cluster on real graph data.

All experiments were done in Matlab on a Dell PowerEdge

R900 server with 2.67GHz six-core CPU and 128GB main

memory running Windows Server 2008.

A. Experimental Datasets

We use the DBLP Bibliography data with 10,000 authors

from four research areas of database, data mining, informa-

tion retrieval and artificial intelligence. We build a coauthor

graph where nodes represent authors and edges represent

their coauthor relationships. In addition, we use two relevant

attributes: prolific and primary topic. For “prolific”, authors

with ≥ 20 papers are labeled as highly prolific; authors with

≥ 10 and < 20 papers are labeled as prolific and authors

with < 10 papers are labeled as low prolific. For “primary

topic”, we use a topic modeling approach [15] to extract

100 topics from a document collection composed of paper

titles from the selected authors. Each extracted topic consists

of a probability distribution of keywords which are most

representative of the topic. Then each author will have one

out of 100 topics as his/her primary topic.

We also use a larger DBLP dataset with 84,170 authors,

selected from the following areas: database, data mining, in-

formation retrieval, machine learning, artificial intelligence,

computer systems, theory, computer vision, architecture,

programming language, networking, simulation, natural lan-

guage processing, multimedia, and human-computer interac-

tion. The coauthor graph and the vertex attributes are defined

similarly as in the 10,000 coauthor network.

696



B. Comparison Methods and Evaluation

We tested the following algorithms for the clustering

quality and efficiency comparison.

• Inc-Cluster Our proposed algorithm which incremen-

tally updates the random walk distance matrix.

• SA-Cluster The non-incremental graph clustering algo-

rithm [5] which considers both structural and attribute

similarities.

• S-Cluster The graph clustering algorithm which only

considers topological structure. Random walk distance

is used to measure vertex closeness while attribute

similarity is ignored.

• W-Cluster A fictitious clustering algorithm which

combines structural and attribute similarities through a

weighted function as α·dS(vi, vj)+β·dA(vi, vj), where

dS(vi, vj) is the random walk distance, and dA(vi, vj)
is their attribute similarity, and the weighting factors

are α = β = 0.5.

• k-SNAP The k-SNAP algorithm [6] that groups vertices

with the same attribute values into one cluster.

Evaluation Measures We use two measures of density and

entropy to evaluate the quality of clusters {Vi}
k
i=1 generated

by different methods. The definitions are as follows.

density({Vi}
k
i=1) =

k∑
i=1

|{(vp, vq)|vp, vq ∈ Vi, (vp, vq) ∈ E}|

|E|

entropy({Vi}
k
i=1) =

m∑
i=1

ωi∑m

p=1 ωp

k∑
j=1

|Vj |

|V |
entropy(ai, Vj)

where entropy(ai, Vj) = −
∑ni

n=1 pijnlog2pijn and pijn is

the percentage of vertices in cluster j which have value ain

on attribute ai. entropy({Vi}
k
i=1) measures the weighted

entropy from all attributes over k clusters.

Besides the clustering quality comparison, we also com-

pare the runtime efficiency of these methods.

C. Clustering Quality Comparison

Since SA-Cluster and Inc-Cluster generate the same clus-

tering results, their quality results are shown in the same

column in Figures 4 and 5.

Figure 4 (a) shows the density on the DBLP graph with

10,000 authors by different methods. The density values by

SA-Cluster and Inc-Cluster are around 0.51 − 0.60, which

are slightly lower than those of S-Cluster. The density values

by W-Cluster and k-SNAP are much lower, in the range of

0.15−0.18. This shows the clusters generated by W-Cluster

and k-SNAP have a very loose intra-cluster structure.

Figure 4 (b) shows the entropy comparison on DBLP with

10,000 authors. S-Cluster has the highest entropy around

2.7− 3.0, because it partitions a graph without considering

vertex attributes. SA-Cluster and Inc-Cluster have a low en-

tropy around 1.1−1.2. W-Cluster has an even lower entropy

but also a very low density. This is because its distance
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Figure 5. Cluster Quality on DBLP 84,170 Authors

function combines (or compromises) both structural and

attribute similarities through a weighted function. However,

as it is not clear how to set or tune the weighting factors α
and β, it is hard to achieve an optimal result on W-Cluster.

Since k-SNAP strictly enforces the attribute homogeneity in

each cluster, k-SNAP achieves an entropy of 0.

Figures 5 (a) and (b) show the density and entropy on

DBLP with 84,170 authors when k = 400, 800, 1200, 1600.

These two figures have a similar trend with Figures 4 (a)–

(b). SA-Cluster and Inc-Cluster achieve similar high density

values (>0.90) with S-Cluster, but with much lower entropy.

W-Cluster and k-SNAP achieve very low entropy (the en-

tropy by k-SNAP is 0), but with very low density values

at 0.2 − 0.3. The comparison on both density and entropy

demonstrates that both SA-Cluster and Inc-Cluster achieve a

very good balance between the structural cohesiveness and

attribute homogeneity.

D. Clustering Efficiency Comparison

In this experiment, we compare the efficiency of dif-

ferent clustering algorithms. Figures 6 (a) and (b) show

the clustering time on DBLP with 10,000 and 84,170 au-

thors respectively. We make the following observations on

the runtime costs of different methods. First, SA-Cluster

is usually 3.1 − 3.8 times slower than Inc-Cluster, as it

iteratively computes the random walk distance matrix from

scratch. According to our analysis, the speedup ratio r is

determined by the number of iterations in clustering, which

are 3−6 iterations in the experiments. We have also observed

that the random walk distance matrix computation takes

98% of the total clustering time in SA-Cluster. Second, S-

Cluster and W-Cluster are usually faster than Inc-Cluster,

as they compute the random walk distance only once on

a smaller scale matrix (i.e., without augmentation with

attribute vertices and edges). Third, the runtime of k-SNAP

increases dramatically with k.

The statistics on the number of zero elements in ΔP 2
A
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also testify our previously proved bounds. On DBLP 10, 000
data, there are 24M zero entries in ΔP 2

A, while the theoret-

ical upper and lower bounds are 66M and 4M, respectively.

On DBLP 84, 170 data, there are 4.4B zero entries, while

the upper and lower bounds are 4.7B and 33M, respectively.

Figure 7 compares Trandom walk and Tinc to compute

the random walk distance matrix RA on DBLP with 84,170

authors. To illustrate the difference between the two ap-

proaches, we use a threshold δ to prune small values in

P l
A, i.e., P l

A(i, j) := 0 if P l
A(i, j) ≤ δ. Specifically, we set

δ = 0.0001/xl to progressively prune small values in P l
A,

l ∈ {1, . . . , L}. x is a decay factor because values in P l
A be-

come smaller and smaller as l increases. We set x = 2.8−3.3
as shown in the x-axis. The smaller x is, the more elements

are set to 0 in P l
A, thus the faster the matrix multiplication

is. As shown in Figure 7, Trandom walk is very sensitive to

the decay factor – the runtime increases dramatically with

x, because more and more non-zero elements exist in P l
A

when x increases. On the other hand, Tinc remains stable as

x increases, because Tinc is determined only by the number

of zero elements in ΔP l
A, but not by the number of zero

elements in P l
A. In other words, although many elements

are non-zero in P l
A when x is large, as long as most of

them remain unchanged with the attribute weight update,

there is little overhead for the incremental approach.

VII. CONCLUSION

In this paper, we propose an incremental algorithm Inc-

Cluster to quickly compute a random walk distance matrix,

in the context of graph clustering considering both structural

and attribute similarities. To avoid recalculating the random

walk distances from scratch in each iteration due to the

attribute weight changes, we divide the transition probability

matrix into submatrices and incrementally update each one.

Time complexity analysis is provided to show the properties

of Inc-Cluster. Experimental results show that Inc-Cluster

achieves significant speedup over SA-Cluster, while achiev-

ing the same clustering quality.
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