
Linear Algebra and its Applications 386 (2004) 51–65
www.elsevier.com/locate/laa

Adaptive methods for the computation
of PageRank

Sepandar Kamvar a,∗, Taher Haveliwala b, Gene Golub a

aScientific Computing and Computational Mathematics, Stanford University, P.O. Box 18544, Stanford,
CA 94305, USA

bDepartment of Computer Science, Stanford University, Stanford, CA 94305, USA

Received 12 August 2003; accepted 13 December 2003

Submitted by C. Meyer

Abstract

We observe that the convergence patterns of pages in the PageRank algorithm have a non-
uniform distribution. Specifically, many pages converge to their true PageRank quickly, while
relatively few pages take a much longer time to converge. Furthermore, we observe that these
slow-converging pages are generally those pages with high PageRank. We use this observation
to devise a simple algorithm to speed up the computation of PageRank, in which the PageRank
of pages that have converged are not recomputed at each iteration after convergence. This
algorithm, which we call Adaptive PageRank, speeds up the computation of PageRank by
nearly 30%.
© 2004 Published by Elsevier Inc.

Keywords: PageRank; Eigenvalue problem; Web matrix

1. Introduction

One of the best-known algorithms in web search is Google’s PageRank algorithm
[8]. PageRank computes the principal eigenvector of the matrix describing the hy-
perlinks in the web using the famous Power Method [1]. Due to the sheer size of the
web (over 3 billion pages), this computation can take several days. Speeding up this

∗ Corresponding author.
E-mail addresses: sdkamvar@stanford.edu (S. Kamvar), taherh@stanford.edu (T. Haveliwala),

golub@stanford.edu (G. Golub).

0024-3795/$ - see front matter � 2004 Published by Elsevier Inc.
doi:10.1016/j.laa.2003.12.008

52 S. Kamvar et al. / Linear Algebra and its Applications 386 (2004) 51–65

computation is important for two reasons. First, computing PageRank quickly is nec-
essary to reduce the lag time from when a new crawl is completed to when that crawl
can be made available for searching. Secondly, recent approaches to personalized
and topic-sensitive PageRank schemes [3,6,9] require computing many PageRank
vectors, each biased towards certain types of pages. These approaches intensify the
need for faster methods for computing PageRank.

Accelerating the PageRank algorithm poses many challenges. First, the conver-
gence rate of the Power Method is very fast (generally, |λ2|/|λ1| = 0.85 [4]) due to
the structure of the Google matrix [4]. The Power Method on a web data set of over
80 million pages converges in about 50 iterations. Improving on this already fast
convergence rate is a difficult problem. Further, many other fast eigensolvers (e.g.
inverse iteration) are not feasible for this problem because the size and sparsity of
the web matrix makes inversion or factorization prohibitively expensive.

In this paper, we make the following simple observation: the convergence rates
of the PageRank values of individual pages during application of the Power Method
is nonuniform. That is, many pages converge quickly, with a few pages taking much
longer to converge. Furthermore, the pages that converge slowly are generally those
pages with high PageRank.

We devise a simple algorithm that exploits this observation to speed up the com-
putation of PageRank, called Adaptive PageRank. In this algorithm, the PageRank of
pages that have converged are not recomputed at each iteration after convergence. In
large-scale empirical studies, this algorithm speeds up the computation of PageRank
by nearly 30%.

2. Preliminaries

In this section we summarize the definition of PageRank [8] and review some of
the mathematical tools we will use in analyzing and improving the standard iterative
algorithm for computing PageRank.

Underlying the definition of PageRank is the following basic assumption. A link
from a page u ∈ Web to a page v ∈ Web can be viewed as evidence that v is an
“important” page. In particular, the amount of importance conferred on v by u is
proportional to the importance of u and inversely proportional to the number of pages
u points to. Since the importance of u is itself not known, determining the importance
for every page i ∈ Web requires an iterative fixed-point computation.

To allow for a more rigorous analysis of the necessary computation, we next
describe an equivalent formulation in terms of a random walk on the directed Web
graph G. Let u → v denote the existence of an edge from u to v in G. Let deg(u)

be the outdegree of page u in G. Consider a random surfer visiting page u at time
k. In the next time step, the surfer chooses a node vi from among u’s out-neighbors
{v|u → v} uniformly at random. In other words, at time k + 1, the surfer lands at
node vi ∈ {v|u → v} with probability 1/deg(u).

S. Kamvar et al. / Linear Algebra and its Applications 386 (2004) 51–65 53

The PageRank of a page i is defined as the probability that at some particular
time step k > K , the surfer is at page i. For sufficiently large K , and with minor
modifications to the random walk, this probability is unique, illustrated as follows.
Consider the Markov chain induced by the random walk on G, where the states are
given by the nodes in G, and the stochastic transition matrix describing the transition
from i to j is given by P with Pij = 1/deg(i).

For P to be a valid transition probability matrix, every node must have at least 1
outgoing transition; i.e., P should have no rows consisting of all zeros. This holds
if G does not have any pages with outdegree 0, which does not hold for the Web
graph. P can be converted into a valid transition matrix by adding a complete set of
outgoing transitions to pages with outdegree 0. In other words, we can define the new
matrix P ′ where all states have at least one outgoing transition in the following way.
Let n be the number of nodes (pages) in the Web graph. Let �v be the n-dimensional
column vector representing a uniform probability distribution over all nodes

�v =
[

1

n

]
n×1

. (1)

Let �e be the n-dimensional column vector where every element ei = 1

�e = [1]n×1. (2)

Let �d be the n-dimensional column vector identifying the nodes with outdegree 0

di =
{

1 if deg(i) = 0,

0 otherwise.

Then we construct P ′ as follows:

D = �d · �vT

P ′ = P + D.

In terms of the random walk, the effect of D is to modify the transition probabilities
so that a surfer visiting a dangling page (i.e., a page with no outlinks) randomly
jumps to another page in the next time step, using the distribution given by �v.

By the Ergodic Theorem for Markov chains [2], the Markov chain defined by P ′
has a unique stationary probability distribution if P ′ is aperiodic and irreducible; the
former holds for the Markov chain induced by the Web graph. The latter holds iff
G is strongly connected, which is generally not the case for the Web graph. In the
context of computing PageRank, the standard way of ensuring this property is to add
a new set of complete outgoing transitions, with small transition probabilities, to all
nodes, creating a complete (and thus strongly connected) transition graph. In matrix
notation, we construct the irreducible Markov matrix P ′′ as follows:

E = �e · �vT,

P ′′ = cP ′ + (1 − c)E.

In terms of the random walk, the effect of E is as follows. At each time step, with
probability (1 − c), a surfer visiting any node will jump to a random Web page

54 S. Kamvar et al. / Linear Algebra and its Applications 386 (2004) 51–65

(rather than following an outlink). The destination of the random jump is chosen
according to the probability distribution given in �v. Artificial jumps taken because
of E are referred to as teleportation.

By redefining the vector �v given in Eq. (1) to be nonuniform, so that D and E add
artificial transitions with nonuniform probabilities, the resultant PageRank vector
can be biased to prefer certain kinds of pages. For this reason, we refer to �v as the
personalization vector.

For simplicity and consistency with prior work, the remainder of the discussion
will be in terms of the transpose matrix, A = (P ′′)T; i.e., the transition probability
distribution for a surfer at node i is given by row i of P ′′, and column i of A.

Note that the edges artificially introduced by D and E never need to be explic-
itly materialized, so this construction has no impact on efficiency or the sparsity of
the matrices used in the computations. In particular, the matrix–vector multiplica-
tion �y = A�x can be implemented efficiently using Algorithm 1. In the algorithms
presented in this paper, all matrix multiplications are assumed to use Algorithm 1.

Algorithm 1. Computing �y = A�x
�y = cP T �x;
w = ‖�x‖1 − ‖�y‖1;
�y = �y + w�v;

Assuming that the probability distribution over the surfer’s location at time 0 is
given by �x(0), the probability distribution for the surfer’s location at time k is given by
�x(k) = Ak �x(0). The unique stationary distribution of the Markov chain is defined as
limk→∞ �x(k), which is equivalent to limk→∞ Ak �x(0), and is independent of the initial
distribution �x(0). This is simply the principal eigenvector of the matrix A = (P ′′)T,
which is exactly the PageRank vector we would like to compute.

The standard PageRank algorithm computes the principal eigenvector using the
Power Method (Algorithm 2). That is, it begins with the uniform distribution �x(0) =
�v and computes successive iterates �x(k) = A�x(k−1) until convergence. Haveliwala
and Kamvar show in [4] that the convergence rate of the Power Method, in terms of
number of iterations, is fast for this problem (generally, |λ2|/|λ1| = 0.85). However,
it is still important to accelerate the computation, since each matrix multiplication is
so expensive (on the order of 10 billion flops).

Algorithm 2. PageRank
function pageRank(A, �x(0), �v){
repeat

�x(k+1) = A�x(k);
δ = ‖�x(k+1) − �x(k)‖1;

until δ < ε;
return �x(k+1);
}

S. Kamvar et al. / Linear Algebra and its Applications 386 (2004) 51–65 55

While many algorithms have been developed for fast eigenvector computations,
many of them are unsuitable for this problem because of the size and sparsity of the
Web matrix (see Section 1 for a discussion of this).

3. Experimental setup

In the following sections, we will be describing experiments run on the follow-
ing data sets. The STANFORD.EDU link graph was generated from a crawl of the
stanford.edu domain created in September 2002 by the Stanford WebBase project.
This link graph contains roughly 280,000 nodes, with 3 million links, and requires 12
MB of storage. We used STANFORD.EDU while developing the Adaptive PageRank
algorithm, to get a sense for its performance. For real-world, Web-scale performance
measurements, we used the LARGEWEB link graph, generated from a large crawl of
the Web that had been created by the Stanford WebBase project in January 2001 [5].
LARGEWEB contains roughly 80M nodes, with close to a billion links, and requires
3.6 GB of storage. Both link graphs had dangling nodes removed as described in [8].
The graphs are stored using an adjacency list representation, with pages represented
by 4-byte integer identifiers. On an AMD Athlon 1533 MHz machine with a 6-way
RAID-5 disk volume and 2 GB of main memory, each application of Algorithm 1
on the 80M page LARGEWEB dataset takes roughly 10 min. Given that computing
PageRank generally requires anywhere from 30 to 100 applications of Algorithm 1,
depending on the desired error, the need for fast methods for graphs with billions of
nodes is clear.

We measured the rates of convergence of the PageRank and Adaptive PageRank
using the L1 norm of the residual vector; i.e.,

‖Ax(k) − x(k)‖1.

We describe why the L1 residual is an appropriate measure in [7].

4. Distribution of convergence rates

Table 1 and Fig. 1 show convergence statistics for the pages in the
STANFORD.EDU dataset. We say that the PageRank xi of page i has converged
when ∣∣∣x(k+1)

i − x
(k)
i

∣∣∣/∣∣∣x(k)
i

∣∣∣ < 10−3.

Table 1 shows the number of pages and average PageRanks of those pages that
converge in less than 15 iterations, and those pages that converge in more than 15
iterations. Notice that most pages converge in less than 15 iterations, and their aver-
age PageRank is far lower than those pages that converge in more than 15 iterations.

Fig. 1(a) shows the profile of the bar graph, where each bar represents a page i and
the height of the bar is the convergence time ti of that page i. The pages are sorted

56 S. Kamvar et al. / Linear Algebra and its Applications 386 (2004) 51–65

Table 1
Statistics about pages in the STANFORD.EDU dataset whose convergence times are quick (ti � 15) and
pages whose convergence times are long (ti > 15)

Number of pages Average PageRank

ti � 15 227597 2.6642e−06
ti > 15 54306 7.2487e−06

Total 281903 3.5473e−06

0 0.5 1 1.5 2 2.5 3

x 10
5

0

10

20

30

40

50

Pages

C
on

ve
rg

en
ce

 T
im

e

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5
x 10 4

Convergence Time

N
um

be
r

of
 P

ag
es

(a) (b)

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9
x 10 –5

Convergence Times

P
ag

eR
an

k

7 14 21 28 35 42 49
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10 –5

Convergence Times

P
ag

eR
an

k

(c) (d)

Fig. 1. Experiments on STANFORD.EDU dataset. (a) Profile of bar graph where each bar represents a
page i, and its height represents its convergence time ti . (b) Bar graph where x-axis represents the discrete
convergence time t , and the height of ti represents the number of pages that have convergence time t . (c)
Bar graph where the height of each bar represents the average PageRank of the pages that converge in
a given convergence time. (d) Bar graph where the height of each bar represents the average PageRank
of the pages that converge in a given interval.

from left to right in order of convergence times. Notice that most pages converge
in under 15 iterations, but there are some pages that require over 40 iterations to
converge.

S. Kamvar et al. / Linear Algebra and its Applications 386 (2004) 51–65 57

Fig. 1(b) shows a bar graph where the height of each bar represents the number
of pages that converge at a given convergence time. Again, notice that most pages
converge in under 15 iterations, but there are some pages that over 40 iterations to
converge.

Fig. 1(c) shows a bar graph where the height of each bar represents the average
PageRank of the pages that converge in a given convergence time. Notice that those
pages which converge in less than 15 iterations generally have a lower PageRank
than those pages who converge in over 40 iterations. This is illustrated in Fig. 1(d) as
well, where the height of each bar represents the average PageRank of those pages
that converge within a certain interval (i.e., the bar labeled “7” represents the pages
that converge in anywhere from 1 to 7 iterations, and the bar labeled “42” represents
the pages that converge in anywhere from 36 to 42 iterations.)

Figs. 2 and 3 show some statistics for the LARGEWEB dataset. Fig. 2(a) shows
the proportion of pages whose ranks converge to a relative tolerance of 0.001 in

0 5 10 15 20 25 30 35 40 45
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Convergence Time

P
ro

po
rt

io
n

of
 P

ag
es

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Convergence Time

P
ro

po
rt

io
n

of
 P

ag
es

 (
C

um
ul

at
iv

e)

(a) (b)

Fig. 2. Experiments on the LARGEWEB dataset. (a) Bar graph where x-axis represents the convergence
time t in number of iterations, and the height of bar ti represents the proportion of pages that have con-
vergence time t . (b) Cumulative plot of convergence times. The x-axis gives the time t in number of
iterations, and the y-axis gives the proportion of pages that have a convergence time � t .

0 10 20 30 40 50
0

1

2

3

4

5

6

7
x 10–8

Fig. 3. Average PageRank vs. Convergence time (in number of iterations) for the LARGEWEB dataset.
Note that pages that are slower to converge to a relative tolerance of 0.001 tend to have high PageRank.

58 S. Kamvar et al. / Linear Algebra and its Applications 386 (2004) 51–65

each iteration. Fig. 2(b) shows the cumulative version of the same data; i.e., it shows
the percentage of pages that have converged up through a particular iteration. We
see that in 16 iterations, the ranks for over two-thirds of pages have converged.
Fig. 3 shows the average PageRanks of pages that converge in various iterations.
Notice that those pages that are slow to converge tend to have higher PageRank.

5. Adaptive PageRank algorithm

The skewed distribution of convergence times shown in the previous section sug-
gests that the running time of the PageRank algorithm can be significantly reduced
by eliminating redundant computation. In particular, we do not need to recompute
the PageRanks of the pages that have already converged, and we do not need to
recompute the contribution of PageRank from pages that have converged to other
pages. We discuss in this section how each of these redundancies can be elimi-
nated.

5.1. Algorithm intuition

We begin by describing the intuition behind the Adaptive PageRank algorithm.
We consider next a single iteration of the Power Method, and show how we can
reduce the cost.

Consider that we have completed k iterations of the Power Method. Using the
iterate �x(k), we now wish to generate the iterate �x(k+1). Let C be the set of pages
that have converged to a given tolerance, and N be the set of pages that have not yet
converged.

We can split the matrix A defined in Section 2 into two submatrices. Let AN be
the m × n submatrix corresponding to the inlinks of those m pages whose PageRanks
have not yet converged, and AC be the (n − m) × n submatrix corresponding to the
inlinks of those pages that have already converged.

Let us likewise split the current iterate of the PageRank vector �x(k) into the m-
vector �x(k)

N corresponding to the components of �x(k) that have not yet converged, and

the (n − m)-vector �x(k)
C corresponding to the components of �x(k) that have already

converged.
We may order A and �x(k) as follows:

�x(k) =
(

�x(k)
N

�x(k)
C

)
(3)

and

A =
(

AN

AC

)
. (4)

S. Kamvar et al. / Linear Algebra and its Applications 386 (2004) 51–65 59

We may now write the next iteration of the Power Method as(
�x(k+1)
N

�x(k+1)
C

)
=

(
AN

AC

)
·
(

�x(k)
N

�x(k)
C

)
.

However, since the elements of �x(k)
C have already converged, we do not need to

recompute �x(k+1)
C . Therefore, we may simplify each iteration of the computation to

be

�x(k+1)
N =AN �x(k), (5)

�x(k+1)
C = �x(k)

C . (6)

The basic Adaptive PageRank algorithm is given in Algorithm 3.

Algorithm 3. Adaptive PageRank
function adaptivePR(A, �x(0), �v) {
repeat

�x(k+1)
N = AN �x(k);

�x(k+1)
C = �x(k)

C ;

[N, C] = detectConverged(�x(k), �x(k+1), ε);

periodically, δ = ‖A�x(k) − �xk‖1;

until δ < ε;
return �x(k+1);
}

Identifying pages in each iteration that have converged is inexpensive. However,
reordering the matrix A at each iteration is expensive. Therefore, we exploit the
idea given above by periodically identifying converged pages and constructing AN

without explicitly reordering identifiers. Since AN is smaller than A, the iteration
cost for future iterations is reduced. We describe the details of the algorithm in the
next section.

5.2. Filter-based adaptive PageRank

Since the web matrix A is several gigabytes in size, forming the submatrix AN

needed in Eq. (5) will not be practical to do in each iteration. Furthermore, there is
in general no efficient way to simply “ignore” the unnecessary entries (e.g., edges
pointing to converged pages) in A if they are scattered throughout A. We describe in
this section an efficient implementation of the Adaptive PageRank scheme.

Consider the following reformulation of the algorithm that was described in the
previous section. Consider the matrix A as described in Eq. (4). Note that the

60 S. Kamvar et al. / Linear Algebra and its Applications 386 (2004) 51–65

submatrix AC is never actually used in computing �x(k+1). Let us define the matrix
A′ as

A′ =
(

AN

0

)
, (7)

where we have replaced AC with an all-zero matrix of the same dimensions as AC .
Similarly, let us define �x′(k)

C as

�x′(k)

C =
(�0

�x(k)
C

)
. (8)

Now note that we can express an iteration of Adaptive PageRank as

�x(k+1) = A′ �x(k) + �x′(k)

C . (9)

Since A′ has the same dimensions as A, it seems we have not reduced the iteration
cost; however, note that the cost of the matrix–vector multiplication is essentially
given by the number of nonzero entries in the matrix, not the matrix dimensions.1

The above reformulation gives rise to the filter-based Adaptive PageRank scheme:
if we can periodically increase the sparsity of the matrix A, we can lower the average
iteration cost. Consider the set of indices C of pages that have been identified as
having converged. We define the matrix A′′ as follows:

A′′
ij =

{
0 if i ∈ C,

Aij otherwise.
(10)

In other words, when constructing A′′, we replace the row i in A with zeros if i ∈ C.
Similarly, define �x′′(k)

C as follows:

(x′′(k)
C)i =

{
(x(k))i if i ∈ C,

0 otherwise.
(11)

Note that A′′ is much sparser than A, so that the cost of the multiplication A′′ �x is
much cheaper than the cost of the multiplication A�x. In fact, the cost is the same as
if we had an ordered matrix, and performed the multiplication AN �x. Now note that

�x(k+1) = A′′ �x(k) + �x′′(k)

C (12)

1 More precisely, since the multiplication A�x is performed using Algorithm 1 using the matrix P and
the vector �v, the number of nonzero entries in P determines the iteration cost. Note that subsequently,
when we discuss zeroing out rows of A, this corresponds implementationally to zeroing out rows of the
sparse matrix P .

S. Kamvar et al. / Linear Algebra and its Applications 386 (2004) 51–65 61

represents an iteration of the Adaptive PageRank algorithm. No expensive reordering
of page identifiers is needed. The filter-based implementation of Adaptive PageRank
is given in Algorithm 4.

Algorithm 4. Filter-Based Adaptive PageRank
function filterAPR(A, �x(0), �v) {
repeat

�x(k+1) = A′′ �x(k) + �x′′
C ;

periodically,

[N, C] = detectConverged(�x(k), �x(k+1), ε);

[A′′] = filter(A′′, N, C);

[�x′′
C] = filter(�x(k), C);

periodically, δ = ‖A�x(k) − �xk‖1;

until δ < ε

return �x(k+1);
}

5.3. Modified adaptive PageRank

The core of the Adaptive PageRank algorithm is in replacing the matrix multipli-
cation A�x(k) with Eqs. (5) and (6), reducing redundant computation by not recom-
puting the PageRanks of those pages in C (i.e., those pages that have converged).

In this section, we show how to further reduce redundant computation by not
recomputing the components of the PageRanks of those pages in N due to links
from those pages in C.

More specifically, we can write the matrix A in Eq. (4) as follows:

A =
(

ANN ANC

ACN ACC

)
,

where ANN are the links from pages that have not converged to pages that have not
converged, ACN are links from pages that have converged to pages that have not
converged, and so on.

We may now rewrite Eq. (5) as follows:

�x(k+1)
N = ANN �x(k)

N + ACN �x(k)
C .

Since the �xC does not change at each iteration, the component ACN �x(k)
C does

not change at each iteration. Therefore, we only need to recompute ACN �x(k)
C each

time the matrix A is reordered. This variant of Adaptive PageRank is summarized in
Algorithm 5.

62 S. Kamvar et al. / Linear Algebra and its Applications 386 (2004) 51–65

Algorithm 5. Modified Adaptive PageRank
function modifiedAPR(A, �x(0), �v) {
repeat

�x(k+1)
N = ANN �x(k)

N + �y;

�x(k+1)
C = �x(k)

C ;

periodically,

[N, C] = detectConverged(�x(k), �x(k+1), ε);

�y = ACN �x(k)
C ;

periodically, δ = ‖A�x(k) − �xk‖1;

until δ < ε

return �x(k+1);
}

As with the standard Adaptive PageRank scheme, explicit reordering of iden-
tifiers is not necessary in the implementation. As shown in Algorithm 6, we can
simply form two matrices ACN and ANN that have their “deleted” columns and
rows zeroed out, increasing their sparsity and thereby reducing their effective size.
We expect that this algorithm should speed up the computation of PageRank even
further as the partial sum denoted as �y in Algorithm 6 is not recomputed in every
iteration.

Algorithm 6. Filter-Based Modified Adaptive PageRank
function filterMAPR(A, �x(0), �v) {
repeat

�x(k+1) = ANN �x(k) + �y + �x′′
C ;

periodically,

N ′ = N , C′ = C; /* Keep track of prev. values */

[N, C] = detectConverged(�x(k), �x(k+1), ε);

[A′′
NN, A′′

CN] = filter(A′′
N ′N ′ , A′′

C′N ′ , N, C);

[�x′′
C] = filter(�x(k), C);

�y = ACN �x(k);

periodically, δ = ‖A�x(k) − �xk‖1;

until δ < ε

return �x(k+1);
}

S. Kamvar et al. / Linear Algebra and its Applications 386 (2004) 51–65 63

5.4. Advantages

We now discuss how the Adaptive PageRank scheme speeds up the computation
of PageRank. The key parameter in the algorithm is how often to identify converged
pages and construct the “compacted” matrix A′′ (or in the case of Modified Adaptive-
PageRank, A′′

CN and A′′
NN); since the cost of constructing A′′ from A is on the order

of the cost of the multiply A�x, we do not want to apply it too often. However, looking
at the convergence statistics given in Section 4, it is clear that even periodically
filtering out the “converged edges” from A will be effective in reducing the cost of
future iterations for three reasons:

1. Reduced i/o for reading in the link structure.
2. Fewer memory accesses when executing Algorithm 1.
3. Fewer flops when executing Algorithm 1.

We expect the number of iterations required for convergence to stay roughly con-
stant, although the average iteration cost will be lowered.

5.5. Misconvergence

It is possible that the convergence test determines incorrectly that the PageRank
of a page has converged, when in fact, it has not. For example, a page i may have the
same value for several iterations, and later on change significantly. In this case, the
adaptive algorithms proposed will decide that the page i has converged, and fix the
ith component.

To combat this, we run the adaptive PageRank algorithm in phases where in each
phase, we begin with the original version of the link structure, iterate a certain num-
ber of times (in our case 8), prune the link structure, and iterate some additional
number of times (again, 8). In successive phases, we reduce the tolerance threshold
used when pruning. In each phase, pruning using the current threshold is done once,
during the 8th iteration.2 This strategy tries to keep all pages at roughly the same
level of error while computing successive iterates to achieve some specified final
tolerance.

6. Experimental results

A comparison of the total cost of the standard PageRank algorithm and the two
variants of the Adaptive PageRank algorithm follow. Fig. 4(a) depicts the total num-
ber of FLOPS needed to compute the PageRank vector to an L1 residual threshold of

2 For slightly better performance, our implementations of Algorithms 4 and 6 fold the filter() opera-
tion into the previous matrix multiply step.

64 S. Kamvar et al. / Linear Algebra and its Applications 386 (2004) 51–65

Fig. 4. Experiments on LARGEWEB dataset depicting total cost for computing the PageRank vector to
an L1 residual threshold of 10−3 and 10−4: (a) FLOPS, (b) wallclock time, (c) number of iterations.

10−3 and 10−4 using the Power Method and the two variants of the Adaptive Power
Method. The Adaptive algorithms operated in phases as described above using 10−2,
10−3, and 10−4 as the successive tolerances. As shown in Fig. 4(a), the Modified
Adaptive PageRank (MAPR) algorithm decreases the number of FLOPS needed by
26.2% and 27.8% in reaching final L1 residuals of 10−3 and 10−4, respectively, com-
pared with the standard Power Method. Fig. 4(b) depicts the total wallclock time
needed for the same scenarios. The MAPR algorithm reduces the wallclock time
needed to compute the PageRank vectors by 20.3% and 21.6% in reaching final L1
residuals of 10−3 and 10−4, respectively. Note that the adaptive methods took a few
more iterations for reaching the desired tolerances than the standard Power Method,
as shown in Fig. 4(c); however, as the average iteration cost was much lower, the
overall speedup is still significant.

7. Conclusion

In this work, we present two contributions. First, we show that most pages in the
web converge to their true PageRank quickly, while relatively few pages take much
longer to converge. We further show that those slow-converging pages generally have
high PageRank, and those pages that converge quickly generally have low PageRank.

S. Kamvar et al. / Linear Algebra and its Applications 386 (2004) 51–65 65

Second, we develop two algorithms, called Adaptive PageRank and Modified Adap-
tive PageRank, that exploit this observation to speed up the computation of PageRank
by 18% and 28%, respectively, by avoiding redundant computation.

Acknowledgements

We would like to thank Chris Manning for useful conversations.
This paper is based on work supported in part by the National Science Founda-

tion under Grant No. IIS-0085896 and Grant No. CCR-9971010, and in part by the
Research Collaboration between NTT Communication Science Laboratories, Nip-
pon Telegraph and Telephone Corporation and CSLI, Stanford University (research
project on Concept Bases for Lexical Acquisition and Intelligently Reasoning with
Meaning).

References

[1] G.H. Golub, C.F.V. Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore,
1996.

[2] G. Grimmett, D. Stirzaker, Probability and Random Processes, Oxford University Press, 1989.
[3] T.H. Haveliwala, Topic-sensitive PageRank, in: Proceedings of the 11th International World Wide

Web Conference, 2002.
[4] T.H. Haveliwala, S.D. Kamvar, The second eigenvalue of the Google matrix, Stanford University

Technical Report, 2003.
[5] J. Hirai, S. Raghavan, H. Garcia-Molina, A. Paepcke, WebBase: a repository of web pages, in: Pro-

ceedings of the Ninth International World Wide Web Conference, 2000.
[6] G. Jeh, J. Widom, Scaling personalized web search, in: Proceedings of the 12th International World

Wide Web Conference, 2003.
[7] S.D. Kamvar, T.H. Haveliwala, C.D. Manning, G.H. Golub, Extrapolation methods for accelerat-

ing PageRank computations, in: Proceedings of the 12th International World Wide Web Conference,
2003.

[8] L. Page, S. Brin, R. Motwani, T. Winograd, The PageRank citation ranking: bringing order to the
web, Stanford Digital Libraries Working Paper, 1998.

[9] M. Richardson, P. Domingos, The intelligent surfer: probabilistic combination of link and content
information in PageRank, in: Advances in Neural Information Processing Systems, vol. 14, MIT
Press, Cambridge, MA, 2002.

