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Motivation

� Graphs are everywhere

� Social networks, biological networks

� Graph datasets growing rapidly in size.

� Impossible to understand by mere visual 

inspection.

� Need: Graph Summarization

DB Coauthorship

7,445 nodes, 19,971 edges
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Existing Methods

� Statistical methods

� Limited information, hard to interpret & manipulate.

� Frequent subgraph mining methods

� Produce a large number of results.

� Graph partitioning methods

� Largely ignore node attributes.

� Graph compression

� Compact storage.

� Graph visualization

� Ben’s keynote talk.

� MDL-based graph summarization (Nisheeth’s talk)
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Solution: Graph Aggregation

� Two well-defined novel graph aggregation operations: 

SNAP & k-SNAP

� Summarization based on user-selected node 

attributes and relationships. 

� Produce summaries with controllable resolutions.

� Provide “drill-down” and “roll-up” abilities to navigate 

multi-resolution summaries.

� Efficient algorithms

� Produce meaningful summaries for real applications.

� Efficient and scalable for very large graphs.
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SNAP Operation

� Group nodes by user-selected node attributes & relationships

� Nodes in each group are homogenous w.r.t. attributes and 
relationships

� The grouping with the minimum # groups

For example: 
�All students in the blue group have the 

same gender and are in the same dept

�Every student in the blue group has:

�at least one “friend” in the green group

�at least one “classmate” in the purple 

group

�at least one “friend” in the orange group

�at least one “classmate” in the orange 

group

friends
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Evaluating SNAP Operation

Top-Down Approach

� Step 1: group nodes just based on user-selected attributes.

� Iterative Step: 

while a group breaks homogeneity requirement for relationships

split the group based on its relationships with other groups

SplitGroup
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Limitations of SNAP Operation

� Problems with the SNAP operation

� Homogeneity requirement for relationships

� Noise and uncertainty

� Users have no control over the resolutions of summaries

� SNAP operation can result in a large number of small groups

� k-SNAP operation:

� Relax the homogeneity requirement for relationships

� Let users control the resolutions of summaries

� Provide “drill-down” and “roll-up” abilities to navigate 

summaries with different resolutions.

SNAP Reality

100%

0%

98%

3%

strong relationship

weak relationship
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k-SNAP Operation

� Users control # groups in the resulting summary: k

� Maintain homogeneity requirement for attributes.

� Relax homogeneity requirement for relationships.

� Assess the quality of a summary

ΔMeasure

Δ=∑{δgi,gj
(gi) + δgi,gj

(gj) }
gi,gj

δgi,gj
(gi)=

|Pgi,gj
(gi)| if  pi,j≤0.5

|gi|−|Pgi,gj
(gi)|      otherwise
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(95,19):95%

Δ= 0

�5% ≤ 50% (weak)

Δ+= 3+4 � extra participants

�95% > 50% (strong)

Δ+= (100-95)+(20-19) � missing participants

……
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Evaluating k-SNAP Operation

� Goal: Find the summary of size k with the 

minimum Δ value (best quality)

� Proved to be NP-Complete!

� Infeasible to produce exact k-SNAP summaries.

� Alternative: heuristics

� Top-Down Approach

� Bottom-Up Approach
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Top-Down Approach

� Similar to the SNAP evaluation algorithm (coarse � fine)

� (Difference) At each iteration, it needs to decide:

� which group to split?

� how to split the group?

� Heuristics:

� Split a group into two subgroups at each iteration

� Find gi with the maximumδgi,gj
(gi) (the most contribution to Δ)

� Split group gi based on whether the nodes in gi connect to gj.

gi gj

gj

gi’’

gi’
max

Δ=∑{δgi,gj
(gi) + δgi,gj

(gj) }
gi,gj

Split
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Bottom-Up Approach

� Compute the SNAP summary first (fine � coarse)

� Iteratively merge two groups until the # groups is k

� Which two groups to merge?

� Heuristics:

� Same attribute values 

� Similar neighbors

� Similar participation ratio

Merge two groups with the minimum MergeDist.

MergeDist(gi, gj)=∑| pi,k - pk,j |
k≠i,j

gi

gj

gk

p k,j

p
i,k
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Experimental Evaluation

� Implementation

� C++ on top of PostgreSQL

� Evaluation Platform

� 2.8GHz P4, 2GB RAM, 250GB SATA disk, FC2

� PostgreSQL: version 8.1.3, 512 MB buffer pool

� Evaluation Measures:

� Effectiveness & Efficiency 

� Verified by the SIGMOD repeatability committee.
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Effectiveness: DB Coauthorship

DBLP Database Coauthorship Graph

(7,445 nodes, 19,971 edges)

Node Attributes:

name (string), numPub (int), prolific (LP, P, HP)

LP:[1, 5], P:[6, 20], HP:[21, -]

Relationship: coauthorship

SNAP
Attribute: prolific
Relationship: coauthorship

3,569 groups, 
11,293 group relationships
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Effectiveness: DB Coauthorship

K=4

K=5K=6K=7

SNAP
Attribute: prolific

k-SNAP
Attribute: prolific
Relationship: coauthorship

36

1.66

1.23

2.23

1.26

1.55

9.74



Effectiveness: DB Coauthorship

Impact of Double-Blind 
Reviewing on SIGMOD
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k-SNAP: Top-Down vs. Bottom-Up 

Quality

� Measure: Δ/k

� Top-down beats 
bottom-up for 
small k values

Execution Time

� Top-down is 
much faster than 
bottom-up
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Overall, top-down is the winner!

Dataset: DBLP DB Coauthorship Graph
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Efficiency: Synthetic Graphs
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Conclusion

� Database-style aggregation for graph summarization

� Customized summaries

� Controllable resolutions

� “drill-down” and “roll-up” abilities

� Meaningful summaries for real applications

� Efficient and scalable for very large graphs

� Incorporated in Periscope/GQ graph querying system

� Combined with other graph operations to perform complex 

analysis on graphs (VLDB’08 Demo)
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Questions?

Suggestions?

Thanks! ☺☺☺☺


