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]
[0 Graphs are everywhere RO
B Social networks, biological networks
O Graph datasets growing rapidly in size.
Number of Facebook Users
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Impossible to understand by mere visual
inspection.

0 Need: Graph Summarization




Existing Methods

O

O

Statistical methods
B Limited information, hard to interpret & manipulate.
Frequent subgraph mining methods
B Produce a large number of results.
Graph partitioning methods
B Largely ignore node attributes.
Graph compression
® Compact storage.
Graph visualization
B Ben’s keynote talk.

MDL-based graph summarization (Nisheeth’s talk)




Solution: Graph Aggregation

O

Two well-defined novel graph aggregation operations:
SNAP & k-SNAP

B Summarization based on user-selected node
attributes and relationships.

B Produce summaries with controllable resolutions.

B Provide “drill-down” and “roll-up” abilities to navigate
multi-resolution summaries.

Efficient algorithms
B Produce meaningful summaries for real applications.
B Efficient and scalable for very large graphs.




SNAP Operation

Group nodes by user-selected node attributes & relationships

Nodes in each group are homogenous w.r.t. attributes and
relationships

[0 The grouping with the minimum # groups
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Evaluating SNAP Operation

Top-Down Approach
[0 Step 1: group nodes just based on user-selected attributes.

[0 Iterative Step:
while a group breaks homogeneity requirement for relationships
split the group based on its relationships with other groups




Limitations of SNAP Operation

[0 Problems with the SNAP operation
B Homogeneity requirement for relationships

O Noise and uncertainty
strong relationship
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B Users have no control over the resolutions of summaries
[0 SNAP operation can result in a large number of small groups
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0 k-SNAP operation:
B Relax the homogeneity requirement for relationships
B Let users control the resolutions of summaries
m  Provide “drill-down” and “roll-up” abilities to navigate
summaries with different resolutions. ) B
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k-SNAP Operation

[0 Users control # groups in the resulting summary: k
B Maintain homogeneity requirement for attributes.
B Relax homogeneity requirement for relationships.
[0 Assess the quality of a summary
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Evaluating k-SNAP Operation

Goal: Find the summary of size k with the

minimum A value (best quality)

B Proved to be NP-Complete!

[0 Infeasible to produce exact k-SNAP summaries.

B Alternative: heuristics
[0 Top-Down Approach
[0 Bottom-Up Approach




Top-Down Approach

[0 Similar to the SNAP evaluation algorithm (coarse - fine)
O (Difference) At each iteration, it needs to decide:
B which group to split?
B how to split the group?
O Heuristics:
B Split a group into two subgroups at each iteration
B Find g with the maximum ¢ (g,) (the most contribution to A)
B Split group g; based on whether the nodes in g, connect to g..

gi,

max Split ‘ ‘
A= Z { §gi,gj(gi) + §gi’gj(gj) J ‘ ‘ D> 8j
8r8; gi gj ‘ J

144

8i

10



Bottom-Up Approach

[0 Compute the SNAP summary first (fine > coarse)
[0 Iteratively merge two groups until the # groups is k

Which two groups to merge?
Heuristics:

[0 Same attribute values

0 Similar neighbors

[0 Similar participation ratio

MergeDist(g; g,)= 2. |Dis - Dij !

k#ij

Merge two groups with the minimum MergeDist.
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Experimental Evaluation

0 Implementation
B C++ on top of PostgreSQL

[0 Evaluation Platform
B 2.8GHz P4, 2GB RAM, 250GB SATA disk, FC2
B PostgreSQL: version 8.1.3, 512 MB buffer pool

[0 Evaluation Measures:
B FEffectiveness & Efficiency SREE

B Verified by the SIGMOD repeatability committee.
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DBLP Database Coauthorship Graph
(7,445 nodes, 19,971 edges)

Node Attributes:
name (string), numPub (int), prolific (LP, P, HP)
LP:[1, 5], P:[6, 20], HP:[21, -]

SNAP

Attribute: prolific
Relationship: coauthorship

3,569 groups,
11,293 group relationships
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k-SNAP: Top-Down vs. Bottom-Up

Dataset: DBLP DB Coauthorship Graph

Quality
O Measure: A/k

0 Top-down beats
bottom-up for
small k values

Execution Time
0 Top-down is

much faster than

bottom-up
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Overall, top-down is the winner!
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Efficiency: Synthetic Graphs

Dataset: Synthetic Power-Law Graphs (by GTgraph)
(avg degree:5)
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Conclusion

[0 Database-style aggregation for graph summarization

[0 Incorporated in Periscope/GQ graph querying system

Customized summaries

Controllable resolutions

“drill-down” and “roll-up” abilities
Meaningful summaries for real applications

Efficient and scalable for very large graphs

Combined with other graph operations to perform complex

analysis on graphs (VLDB'08 Demo)




Questions?
Suggestions?
Thanks! ©
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