

Efficient Aggregation for Graph Summarization

Yuanyuan Tian (University of Michigan) Richard A. Hankins (Nokia Research Center) Jignesh M. Patel (University of Michigan)

Motivation

- □ Graphs are everywhere
 - Social networks, biological networks
- □ Graph datasets growing rapidly in size.

□ Need: Graph Summarization

Existing Methods

- Statistical methods
 - Limited information, hard to interpret & manipulate.
- □ Frequent subgraph mining methods
 - Produce a large number of results.
- □ Graph partitioning methods
 - Largely ignore node attributes.
- □ Graph compression
 - Compact storage.
- □ Graph visualization
 - Ben's keynote talk.
- MDL-based graph summarization (Nisheeth's talk)

Solution: Graph Aggregation

- Two well-defined novel graph aggregation operations: SNAP & k-SNAP
 - Summarization based on user-selected node attributes and relationships.
 - Produce summaries with controllable resolutions.
 - Provide "drill-down" and "roll-up" abilities to navigate multi-resolution summaries.
- □ Efficient algorithms
 - Produce meaningful summaries for real applications.
 - Efficient and scalable for very large graphs.

SNAP Operation

- Group nodes by user-selected node attributes & relationships
- Nodes in each group are homogenous w.r.t. attributes and relationships
- The grouping with the minimum # groups

For example:

- All students in the blue group have the same gender and are in the same dept
- Every student in the blue group has:
 - at least one "friend" in the green group
 - at least one "classmate" in the purple

group

- at least one "friend" in the orange group
- at least one "classmate" in the orange group

Evaluating SNAP Operation

Top-Down Approach

- **Step 1:** group nodes just based on user-selected attributes.
- Iterative Step:

while a group breaks homogeneity requirement for relationships split the group based on its relationships with other groups

Limitations of SNAP Operation

- Problems with the SNAP operation
 - Homogeneity requirement for relationships
 - □ Noise and uncertainty

100%

0%

SNAP

strong relationship

- Users have no control over the resolutions of summaries
 - □ SNAP operation can result in a large number of small groups

k-SNAP operation:

- Relax the homogeneity requirement for relationships
- Let users control the resolutions of summaries
- Provide "drill-down" and "roll-up" abilities to navigate summaries with different resolutions.

k-SNAP Operation

- Users control # groups in the resulting summary: k
 - Maintain homogeneity requirement for attributes.
 - Relax homogeneity requirement for relationships.
- □ Assess the quality of a summary

Evaluating k-SNAP Operation

- □ Goal: Find the summary of size k with the minimum △ value (best quality)
 - Proved to be NP-Complete!
 - □ Infeasible to produce exact k-SNAP summaries.
 - Alternative: heuristics
 - □ Top-Down Approach
 - Bottom-Up Approach

Top-Down Approach

- □ Similar to the SNAP evaluation algorithm (coarse \rightarrow fine)
- □ (Difference) At each iteration, it needs to decide:
 - which group to split?
 - how to split the group?
- □ Heuristics:
 - Split a group into two subgroups at each iteration
 - Find g_i with the maximum $\delta_{g_i,g_i}(g_i)$ (the most contribution to Δ)
 - Split group g_i based on whether the nodes in g_i connect to g_j .

Bottom-Up Approach

- $\Box \quad Compute the SNAP summary first (fine \rightarrow coarse)$
- □ Iteratively merge two groups until the # groups is k
 - Which two groups to merge?
 - Heuristics:
 - Same attribute values
 - □ Similar neighbors
 - Similar participation ratio

$$MergeDist(g_{i,} g_{j}) = \sum_{k \neq i,j} |p_{i,k} - p_{k,j}|$$

Merge two groups with the minimum MergeDist.

Experimental Evaluation

- Implementation
 - C++ on top of PostgreSQL
- Evaluation Platform
 - 2.8GHz P4, 2GB RAM, 250GB SATA disk, FC2
 - PostgreSQL: version 8.1.3, 512 MB buffer pool
- Evaluation Measures:
 - Effectiveness & Efficiency

Verified by the SIGMOD repeatability committee.

Effectiveness: DB Coauthorship

SNAP Attribute: prolific Relationship: coauthorship

DBLP Database Coauthorship Graph

(7,445 nodes, 19,971 edges)

Node Attributes:

name (string), numPub (int), prolific (LP, P, HP) LP:[1, 5], P:[6, 20], HP:[21, -]

Relationship: coauthorship

3,569 groups, 11,293 group relationships

Effectiveness: DB Coauthorship

Effectiveness: DB Coauthorship

k-SNAP: Top-Down vs. Bottom-Up

Dataset: DBLP DB Coauthorship Graph

Quality

- \square Measure: \triangle / k
- Top-down beats bottom-up for small k values

Overall, top-down is the winner!

Efficiency: Synthetic Graphs

Dataset: Synthetic Power-Law Graphs (by GTgraph) (avg degree:5)

Conclusion

Database-style aggregation for graph summarization

- Customized summaries
- Controllable resolutions
- "drill-down" and "roll-up" abilities
- Meaningful summaries for real applications
- Efficient and scalable for very large graphs
- □ Incorporated in Periscope/GQ graph querying system
 - Combined with other graph operations to perform complex analysis on graphs (VLDB'08 Demo)

Questions? Suggestions? Thanks! ③