
Yuanyuan Tian (University of Michigan)

Richard A. Hankins (Nokia Research Center)

Jignesh M. Patel (University of Michigan)

Efficient Aggregation for
Graph Summarization

Motivation

� Graphs are everywhere

� Social networks, biological networks

� Graph datasets growing rapidly in size.

� Impossible to understand by mere visual

inspection.

� Need: Graph Summarization

DB Coauthorship

7,445 nodes, 19,971 edges

Number of Facebook Users

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

J
u

n
-0

4

S
e

p
-0

4

D
e

c
-0

4

M
a

r-
0

5

J
u

n
-0

5

S
e

p
-0

5

D
e

c
-0

5

M
a

r-
0

6

J
u

n
-0

6

S
e

p
-0

6

D
e

c
-0

6

M
a

r-
0

7

J
u

n
-0

7

S
e

p
-0

7

D
e

c
-0

7

33

Existing Methods

� Statistical methods

� Limited information, hard to interpret & manipulate.

� Frequent subgraph mining methods

� Produce a large number of results.

� Graph partitioning methods

� Largely ignore node attributes.

� Graph compression

� Compact storage.

� Graph visualization

� Ben’s keynote talk.

� MDL-based graph summarization (Nisheeth’s talk)

44

Solution: Graph Aggregation

� Two well-defined novel graph aggregation operations:

SNAP & k-SNAP

� Summarization based on user-selected node

attributes and relationships.

� Produce summaries with controllable resolutions.

� Provide “drill-down” and “roll-up” abilities to navigate

multi-resolution summaries.

� Efficient algorithms

� Produce meaningful summaries for real applications.

� Efficient and scalable for very large graphs.

55

SNAP Operation

� Group nodes by user-selected node attributes & relationships

� Nodes in each group are homogenous w.r.t. attributes and
relationships

� The grouping with the minimum # groups

For example:
�All students in the blue group have the

same gender and are in the same dept

�Every student in the blue group has:

�at least one “friend” in the green group

�at least one “classmate” in the purple

group

�at least one “friend” in the orange group

�at least one “classmate” in the orange

group

friends

66

Evaluating SNAP Operation

Top-Down Approach

� Step 1: group nodes just based on user-selected attributes.

� Iterative Step:

while a group breaks homogeneity requirement for relationships

split the group based on its relationships with other groups

SplitGroup

C

A

B

A
A

A
B

B

A
C

A

A

C

A

77

Limitations of SNAP Operation

� Problems with the SNAP operation

� Homogeneity requirement for relationships

� Noise and uncertainty

� Users have no control over the resolutions of summaries

� SNAP operation can result in a large number of small groups

� k-SNAP operation:

� Relax the homogeneity requirement for relationships

� Let users control the resolutions of summaries

� Provide “drill-down” and “roll-up” abilities to navigate

summaries with different resolutions.

SNAP Reality

100%

0%

98%

3%

strong relationship

weak relationship

8

k-SNAP Operation

� Users control # groups in the resulting summary: k

� Maintain homogeneity requirement for attributes.

� Relax homogeneity requirement for relationships.

� Assess the quality of a summary

ΔMeasure

Δ=∑{δgi,gj
(gi) + δgi,gj

(gj) }
gi,gj

δgi,gj
(gi)=

|Pgi,gj
(gi)| if pi,j≤0.5

|gi|−|Pgi,gj
(gi)| otherwise

40

100

80

20

40

100

80

20
(95,19):95%

Δ= 0

�5% ≤ 50% (weak)

Δ+= 3+4 � extra participants

�95% > 50% (strong)

Δ+= (100-95)+(20-19) � missing participants

……

99

Evaluating k-SNAP Operation

� Goal: Find the summary of size k with the

minimum Δ value (best quality)

� Proved to be NP-Complete!

� Infeasible to produce exact k-SNAP summaries.

� Alternative: heuristics

� Top-Down Approach

� Bottom-Up Approach

1010

Top-Down Approach

� Similar to the SNAP evaluation algorithm (coarse � fine)

� (Difference) At each iteration, it needs to decide:

� which group to split?

� how to split the group?

� Heuristics:

� Split a group into two subgroups at each iteration

� Find gi with the maximumδgi,gj
(gi) (the most contribution to Δ)

� Split group gi based on whether the nodes in gi connect to gj.

gi gj

gj

gi’’

gi’
max

Δ=∑{δgi,gj
(gi) + δgi,gj

(gj) }
gi,gj

Split

1111

Bottom-Up Approach

� Compute the SNAP summary first (fine � coarse)

� Iteratively merge two groups until the # groups is k

� Which two groups to merge?

� Heuristics:

� Same attribute values

� Similar neighbors

� Similar participation ratio

Merge two groups with the minimum MergeDist.

MergeDist(gi, gj)=∑| pi,k - pk,j |
k≠i,j

gi

gj

gk

p k,j

p
i,k

1212

Experimental Evaluation

� Implementation

� C++ on top of PostgreSQL

� Evaluation Platform

� 2.8GHz P4, 2GB RAM, 250GB SATA disk, FC2

� PostgreSQL: version 8.1.3, 512 MB buffer pool

� Evaluation Measures:

� Effectiveness & Efficiency

� Verified by the SIGMOD repeatability committee.

1313

Effectiveness: DB Coauthorship

DBLP Database Coauthorship Graph

(7,445 nodes, 19,971 edges)

Node Attributes:

name (string), numPub (int), prolific (LP, P, HP)

LP:[1, 5], P:[6, 20], HP:[21, -]

Relationship: coauthorship

SNAP
Attribute: prolific
Relationship: coauthorship

3,569 groups,
11,293 group relationships

1414

Effectiveness: DB Coauthorship

K=4

K=5K=6K=7

SNAP
Attribute: prolific

k-SNAP
Attribute: prolific
Relationship: coauthorship

36

1.66

1.23

2.23

1.26

1.55

9.74

Effectiveness: DB Coauthorship

Impact of Double-Blind
Reviewing on SIGMOD

0

0.1

0.2

0.3

0.4

A
v
e

ra
g

e
 #

 P
u

b
li
c
a

ti
o

n
s

VLDB 0.161 0.305

SIGMOD 0.125 0.217

1994-2000 2001-2007

89%

73%

00.1 1994-2000 2001-2007 00.1 1994-2000 2001-2007-12%

107%

26%

139%

012345 1994-2000 2001-2007012 1994-2000 2001-2007
00.10.2 1994-2000 2001-2007

00.10.20.30.4 1994-2000 2001-2007

00.10.20.3 1994-2000 2001-200791%

75%

50%

26%

73%

32%

165%

101%

99%

161%

1616

k-SNAP: Top-Down vs. Bottom-Up

Quality

� Measure: Δ/k

� Top-down beats
bottom-up for
small k values

Execution Time

� Top-down is
much faster than
bottom-up

0

500

1000

1500

8 16 32 64 12
8

25
6

51
2

10
24

20
48

35
69

k (log scale)
D

e
lt
a
/k Top-Down

Bottom-Up

1

10

100

1000

10000

100000

1 10 100 1000 10000

k(log scale)

E
x
e
c
u

ti
o

n
 T

im
e

(l
o

g
 s

c
a
le

) Top-Down

Bottom-Up

Overall, top-down is the winner!

Dataset: DBLP DB Coauthorship Graph

1717

Efficiency: Synthetic Graphs

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 200,000 400,000 600,000 800,000 1,000,000

Graph Size (#nodes)

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
)

k=10

k=100

k=1000

Dataset: Synthetic Power-Law Graphs (by GTgraph)
(avg degree:5)

Conclusion

� Database-style aggregation for graph summarization

� Customized summaries

� Controllable resolutions

� “drill-down” and “roll-up” abilities

� Meaningful summaries for real applications

� Efficient and scalable for very large graphs

� Incorporated in Periscope/GQ graph querying system

� Combined with other graph operations to perform complex

analysis on graphs (VLDB’08 Demo)

1919

Questions?

Suggestions?

Thanks! ☺☺☺☺

