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LARGE GRAPHS

o Many interactions can be represented as
graphs
Webgraphs: search engine, etc.

» Netflow graphs (which IPs talk to each other):
traffic patterns, security, worm attacks

» Social (friendship) networks:
mine user communities, viral marketing

* Email exchanges: security. virus spread,
spam detection

advertizing

o Need to compress, understand

* Webgraph ~ 50 billion edges;
social networks ~ few million, growing
ﬂ1'l1("1(-|‘7
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° Compression reduces size to one-tenth
(webgraphs)




OUR APPROACH

Graph Compression (reference encoding)
Not applicable to all graphs: use urls, node labels for compression
Resulting structure is hard to visualize/interpret

Graph Clustering
Nice summary, works for generic graphs
No compression: needs the same memory to store the graph itself

Our MDL-based representation R = (S,C)

S is a high-level summary graph: compact, highlights dominant trends, easy
to visualize

(C'is a set of edge corrections: help in reconstructing the graph

Compression based on MDL principle: minimize cost of S+C
information-theoretic approach; parameter less; applicable to any graph

Novel Approximate Representation: reconstructs graph with bounded error
(e); results in better compression



How DO WE COMPRESS?

o Compression possible (S)

» Many nodes with similar
neighborhoods

o Communaities in social networks; link-
copying in webpages

e (Collapse such nodes into
supernodes (clusters)
and the edges 1nto superedges

o Bipartite subgraph to two supernodes
and a superedge

o Clique to supernode with a “self-edge”




Cost = 14 edges

How DO WE COMPRESS?

o Compression possible (S)
» Many nodes with similar neighborhoods

o Communities in social networks; link-copying in
webpages

e Collapse such nodes into supernodes (clusters) and the
edges into superedges

o Bipartite subgraph to two supernodes and a
superedge

o Clique to supernode with a “self-edge”

o Need to correct mistakes (C)
»  Most superedges are not complete

o Nodes don’t have exact same neighbors: friends
in social networks

Cost=H

e Remember edge-corrections
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o Extra edges not counted in superedges (+ve 4 corrections)

corrections)

o Minimize overall storage cost = S+C




REPRESENTATION STRUCTURE R=(S,()

o Summary S(Vg, Eg)

» Each supernode v represents a set of nodes A,
» Each superedge (u,v) represents
all pair of edges 1, = A X A,

o Corrections C: {(a,b); a and b are nodes of
Gj

o Supernodes are key, superedges/corrections
easy

» A, actual edges of G between A, and A,
* Costwith (u,v)=1+ |, — E
» Cost without (u,v) = [ E,, |

» Choose the minimum, decides whether edge (u,v)
1s1n S
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REPRESENTATION STRUCTURE R=(S,()

o Summary S(Vg, Eg)
» Each supernode v represents a set of nodes A,
» EKach superedge (u,v) represents ‘

all pair of edges 1, = A X A,
o Corrections C: {(a,b); a and b are nodes of G}

o Supernodes are key, superedges/corrections
easy
» A, actual edges of G between A, and A,
o Costwith (u,v)=1+ |no,—E
» Cost without (u,v) = [E,, |
» Choose the minimum, decides whether edge (u,v) is in

S

uv |

o Reconstructing the graph from R

» For all superedges (u,v) in S, insert all pair of edges

HUV

» For all +ve corrections +(a,b), insert edge (a,b)
» For all -ve corrections -(a,b), delete edge (a,b)




REPRESENTATION STRUCTURE R=(S,()

o Summary S(Vg, Eg)
» Each supernode v represents a set of nodes A,
* Each superedge (u, V) represents ‘
all pair of edges m,, = A X A,

o Corrections C: {(a,b), a and b are nodes of G}

o Supernodes are key, superedges/corrections
easy
» A, actual edges of G between A, and A,
* Costwith (w,v)=1+ |, — E
» Cost without (u,v) = [ E,, |
» Choose the minimum, decides whether edge (u,v) is

mnsS

v |

o Reconstructing the graph from R
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» For all +ve corrections +(a,b), insert edge (a,b)
» For all -ve corrections -(a,b), delete edge (a,b)
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APPROXIMATE REPRESENTATION R,

o Approximate representation

Recreating the input graph exactly is not always
necessary

Reasonable approximation enough: to compute
communities, anomalous traffic patterns, etc.

Use approximation leeway to get further cost reduction

o Generlc Neighbor Query

Given node v, find its neighbors N, in G

Apx-nbr set N’ estimates N, with e-accuracy
Bounded error: error(v) = [N’ - N, | + [N, - N’ | <€
| N, |

Number of neighbors added or deleted is at most e-
fraction of the true neighbors

o Intuition for computing R,

If correction (a,d) 1s deleted, 1t adds error for both a

amAd A

ana a

From exact representation R for G, remove (maximum)
corrections s.t. e-error guarantees still hold

For e=.5, we can remove
one correction of a




COMPARISON WITH EXISTING TECHNIQUES

Webgraph compression [Adler-DCC-01]
Use nodes sorted by urls: not applicable to other graphs

More focus on bitwise compression: represent sequence of
neighbors (ids) using smallest bits

Clique stripping [Feder-pods-99] 1

Collapses edges of complete bi-partite subgraph into single
cluster

Only compresses very large, complete bi-cliques

Representing webgraphs [Raghavan-icde-03]
Represent webgraphs as SNodes, Sedges

Use urls of nodes for compression (not applicable for other
graphs)

No concept of approximate representation
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OUTLINE

Compressed graph
MDL representation R=(S,C); e-representation

Computing R

GREEDY, RANDOMIZED
Computing R,

APX-MDL, APX-GREEDY
Experimental results

Conclusions and future work



GREEDY

Cost of merging supernodes u and v into
single supernode w
Recall: cost of a superedge (u,x):

c(u,x) = min{|o, — A, [+1, |A |}
c, = sum of costs of all its edges = X_c(u,x)
s(u,v) =(c, +c,-c,)/(c, +c,)

Main 1dea: recursive bottom-up merging of
supernodes

If s(u,v) > 0, merging u and v reduces the cost of
reduction

Normalize the cost: remove bias towards high
degree nodes




Cost reduction: 11 to 6

GREEDY

o Recall: s(u,v) =(c, + ¢, —c,)/(c, +c,)
o GREEDY algorithm

o Start with S=G

» At every step, pick the pair with max s(.)
value, merge them

» If no pair has positive s(.) value, stop

=> =

s(b,c)=.5 s(g,h)=3/7
[ = 2. ¢c=2; ¢,.=2] [ ¢y = 3: =4 cy=4 ] s(e,f)=1/3 . _

[c. = 2. cs=1;




RANDOMIZED

GREEDY 1s slow

Need to find the pair with (globally) max s(.) value

Need to process all pair of nodes at a distance of 2-
hops

Every merge changes costs of all pairs containing N

Main 1dea: light weight randomized procedure
Instead of choosing the globally best pair,
Choose (randomly) a node u



RANDOMIZED

o Randomized algorithm
» Unfinished set U=V,

» At every step, randomly pick a node u
from U

* Find the node v with max s(u,v) value 1

o If s(u,v) >0, then merge u and v into w,
put win U

Picked e; s(e,f)= 3/5
[C - 3 Cf-2 Cef-3]

» Else remove u from U
» Repeat till U is not empty

“




OUTLINE

Compressed graph
MDL representation R=(S,C); e-representation

Computing R

GREEDY, RANDOMIZED
Computing R,

APX-MDL, APX-GREEDY
Experimental results

Conclusions and future work



COMPUTING APPROX REPRESENTATION

Reducing size of corrections

Correction graph H: For every (+ve or —ve) correction (a,b) in C,
add edge (a,b) to H

Removing (a,b) reduces size of C, but adds error of 1 to a and b
Recall bounded error: error(v) = [N, - N, | + [N,- N, | <e |N|
Implies in H, we can remove up to b, =€ | N, | edges incident on v

Maximum cost reduction: remove subset M of Ey of max size s. t.
M has at most b, edges incident on v

Same as the b-matching problem
Find the matching M\subset Eg s.t. at most b, edges incident on v
are in M
For all b, = 1, traditional matching problem
Solvable in time O(mn?) [Gabow-STOC-83] (for graph with n

~ ainA mr Ad A
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COMPUTING APPROX REPRESENTATION

Reducing size of summary

Removing superedge (a,b) implies bulk removal of
all pair edges 1,

But, each node in A, and A, has different b value
Does not map to a clean matching-type problem

A greedy approach
Pick superedges by increasing |, | value

Delete (u,v) i1f that doesn’t violate €-bound for
nodes in A UA,

If there 1s correction (a,b) for m, in C, we cannot
remove (u,v); since removing (u,v) violates error
bound for a or b




APXMDL

o Compute the R(S,C) for G

o Find C,
» Compute H, with V=C

* Find maximum b-matching M for H; C_=C-
M

o Find S,

» Pick superedges (u,v) in S having no
correction in C,
1n increasing || value

* Remove (u,v) if that doesn’t violate e-bound |
for any nodein A, U A,

o Axp-representation R_=(C,, S,)




OUTLINE

Compressed graph
MDL representation R=(S,C); e-representation

Computing R

GREEDY, RANDOMIZED
Computing R,

APX-MDL, APX-GREEDY
Experimental results

Conclusions and future work



EXPERIMENTAL SET-UP

Algorithms to compare
Our techniques GREEDY, RANDOMIZED, APXMDL

REF: reference encoding used for web-graph
compression
(we disabled bit-level encoding techniques)

GRAC: graph clustering algorithm

(make supernodes for clusters returned)
Datasets

CNR: web-graph dataset

Routeview: autonomous systems topology of the
Internet

Wordnet: English words, edges between related
words (synonym, similar, etc.)

Facebook: social networking



Cost (k)

COST REDUCTION (CNR DATASET)
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COST BREAKUP (CNR DATASET)

807% cost of representation

is due to correction
x‘s\_ No. supernodes —=— ]
Summary Cost «--x--- B

Corrections =
Total Cost =

100 r

80 r

Cost (k)

20

0 20 40 60 80 100 120




APX-REPRESENTATION

Cost (k)

Cost reduces linearly
as e is increased;
With e=.1, 10% cos
reduction over R
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CONCLUSIONS

MDL-based representation R(S,C) for graphs

Compact summary S: highlights trends
Corrections C: reconstructs graph together with S

Extend to approximate representation with bounded
error

Our techniques, GREEDY, RANDOMIZED give up to
40% cost reduction

Future directions
Hardness of finding minimum-cost representation

Runningo o‘rnnh ﬂ]O‘ﬂY‘ﬂ']’\mQ (gn‘mﬂnsnmﬂtp]v\ ﬂw'pnﬂv
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on the compressed structure apx- shortest path Wlth
bounded error on S?

Extend to labeled/weighted edges



ON COMPRESSING SOCIAL NETWORKS

Flavio Chierichetti, University of Rome
Ravi Kumar, Yahoo! Research

Silvio Lattanzi, University of Rome
Michael Mitzenmacher, Harvard
Alessandro Panconesi, University of Rome
Prabhakar Raghavan, Yahoo! Research



BEHAVIOURAL GRAPHS

Web graphs

Host graphs

Social networks
Collaboration networks
Sensor networks
Biological networks

e “ citation
web - hehworks

s o J)eos)
flickr- D)o,

LIVEJOURNAL

Research trends

oEmpirical analysis: examining
properties of real-world graphs
oModeling: finding good models
for behavioural graphs

There has been a
tendency to lump
together behavioural
graphs arising from a
variety of contexts



PROPERTIES OF BEHAVIOURAL GRAPHS

In=degree (May 99, Oct 99) distr.

Power law degree distribution fe+1® — T _—

1e+09 | In-degree (May 99) 8

Heavy tail le+B83 r-—. In—degree (0Oct 99 + -

le+dr

Clustering
High clustering coefficient

le+ds
lepaaa
1gaaa
1a6a

Communities and dense subgraphs o

18

Abundance; locally dense, globally 1 a
sparse; spectrum i 18 1ea 100000

in-degres

number of pages

Connectivity

Exhibit a “bow-tie” structure; low
diameter; small-world phenomenon:
Any two vertices are connected by a
short path. Two vertices having a
common neighbor are more likely to
be neighbors.




A REMARKABLE EMPIRICAL FACT

18.5 Mpages, 300 Mlinks from . uk

o Snap Shots Of the Web graph R Average reference cham Bris/mode Bats/link

W =1 W=3 | W=7 |W=I1|W=3|W=T|W=1| W=73 [

can be Compressed U_Sing oc | 17145 | 19868 | 19598 | 4422 | 3828 | 3581 275 2.38

3 104 1.41 1.70) 62.31 323 45.30 EF ) 3.25

-

.36 .55 (164 H1.24 G204 35.69 3 3.91

less then 3 bits per edge e
o 18.50 25,34 2661 36.23 334H 31.E8 225 2.08

o BOldl, Vigna WWW 2004 3| 06| 01| 123 368 | 3s00 | 3| 234 | 208

1 027 043 (.51 39E3 | 36097 35.69 247 .30
~ ° ° 118 Mpages, | Glinks from WehBase
O Improved tO 2 bltS US1ng R Awerage reference chain Bits/node Bits/link
. . W=l W=7 W=7 W =1 W=3 W=7 W=1 W=3 W=7

an()ther data mining oc | B5.27 | 11856 | 119.65 | 3099 | 27.79 | 26.57 | 359 | 3.22

o . . 3 0.7 1.10 1.32 IR 13,86 32.29 4.4 3.9z
lnSplred Compre S Slon 1 0.28 0.43 0L51 4663 3880 36,02 540 4.44

Tr.'anuM.'

t h 1 DG 27.49 NG9 31460 27.86 25.97 24.96 3z 3.01
eC nlque 3 .76 1.4 1.31 29.20 2740 26.75 338 3.17

° Buehrer, Chellapﬂ]a WSDM 1 029 | 046 O054| 3100| 2000 | 2835 360 336
2008

Key insights

- Boldi, Santinin, Vigna WAW 1. Many web pages have
2009 similar set of neighbors

2. Edges tend to be “local”




ARE SOCIAL NETWORKS COMPRESSIBLE?

Review of BV compression

A different compression mechanism that works
better for social networks

A heuristic

its performance

and a formalization

Why study this question?
Efficient storage

Serve adjacency queries efficiently in-memory
Archival purposes — multiple snapshots

Obtain insights
Compression has to utilize special structure of the network
Study the randomness in such networks



ADJACENCY TABLE REPRESENTATION

Each row corresponds to a node u in the graph

Entries in a row are sorted integers, representing
the neighborhood of u, 1.e., edges (u, v)
1:1,2, 4, 8, 16, 32, 64
2:1,4,9, 16, 25, 36, 49, 64
3: 1,2, 3,5, 8,13, 21, 34, 55, 89, 144
4: 1, 4, 8, 16, 25, 36, 49, 64
Can answer adjacency queries fast
Expensive (better than storing a list of edges)



BOLDI-VIGNA (BV): MAIN IDEAS i-

Similar neighborhoods: The neighborhood of a
web page can be expressed 1n terms of other web
pages with similar neighborhoods

Rows 1n adjacency table have similar entries
Possible to choose to prototype row

Locality: Most edges are intra-host and hence
local

Small integers can represent edge destination wrt
source

each edge, store the difference from the previous
entry in the same row



FINDING SIMILAR NEIGHBORHOODS

Canonical ordering: Sort URLs lexicographically,
treating them as strings

17:
18:
19:
20:
21:
22:

www.stanford.edu/alchemy
www.stanford.edu/biology
wwwW.stanford.edu/biology/plant

www . stanford.edu/biology/plant/copyright
www .stanford.edu/biology/plant/people
www.stanford.edu/chemistry

This gives an 1dentifier for each URL
Source and destination of edges are likely to get

il TT
LUjall)y 115

Templated webpages
Many edges are intra-host or intra-site



(GAP ENCODINGS

Given a sorted list of integers x, vy, z, ...,
represent them by x, y-x, z-y, ...

Compress each integer using a code

y code: x 1s represented by concatenation of unary
representation of |_|g XJ (length of x in bits) followed
by binary representation of x — 2!'¢*

Number of bits = 1+ 2|_|g XJ

(see slide 12,
http://vigna.dsi.unimi.it/algoweb/webgraph.pdf)

6 code: ...
Information theoretic bound: 1+ i_ig XJ' bits

( code: Works well for integers from a power law
Boldi Vigna DCC 2004




BV COMPRESSION

Each node has a unique ID from
the canonical ordering

Let w = copying window parameter

To encode a node v

Check if out-neighbors of v are
similar to any of w-1 previous nodes
in the ordering

If yes, let u be the prototype: use lg w
bits to encode the gap from v to u +
difference between out-neighbors of u
and v

If no, write lg w zeros and encode
out-neighbors of v explicitly

Use gap encoding on top of this

Ve




MAIN ADVANTAGES OF BV

Depends only on locality in a canonical ordering

Lexicographic ordering works well for web graph
Adjacency queries can be answered very
efficiently

To fetch out-neighbors, trace back the chain of
prototypes until a list whose encoding beings with Ig
w zeros 1s obtained (no-prototype case)

This chain 1s typically short in practice (since
similarity is mostly intra-host)

Can also explicitly limit the length of the chain
during encoding

Easy to implement and a one-pass algorithm



BACKLINKS (BL) COMPRESSION

Social networks are highly reciprocal, despite
being directed
If A 1s a friend of B, then it 1s likely B 1s also A’s
friend
(u, v) 1s reciprocal if (v, u) also exists
reciprocal(u) = set of v’s such that (u, v) 1s
reciprocal

How to exploit reciprocity in compression?

Can avoid storing reciprocal edges twice

Tiiat +h o voarctrrac txr “That?”? 3o a11FF3 mn+
Uubb bllU LUle_JLUbllJ)’ Ulb i Dulj.lb C1l1u



BACKLINKS COMPRESSION (CONTD)

Given a canonical ordering of nodes and copying
window w

To encode a node v

Base information: encode out-degree of v minus 1 (if self
loop) minus #reciprocal(v) + “self-loop” bit

Try to choose a prototype u as in BV within a window w
If yes, encode the difference between out-neighbors of u and
non-reciprocal out-neighbors of v
Encode the gap between u and v
Specify which out-neighbors of u are present in v
For the rest of out-neighbors of v, encode them as gaps
Encode the reciprocal out-neighbors of v

For each out-neighbor v’ of v and v’ > v, store if v’ € reciprocal(v)or
not; discard the edge (v’, v)



CANONICAL ORDERINGS

BV and BL compressions depend just on
obtaining a canonical ordering of nodes

This canonical ordering should exploit neighborhood
similarity and edge locality

Question: how to obtain a good canonical
ordering?
Unlike the web page case, it 1s unclear if social
networks have a natural canonical ordering

Caveat: BV/BL 1s only one genre of compression
scheme

Lack of good canonical ordering does not mean graph
1s iIncompressible



SOME CANONICAL ORDERINGS IN
BEHAVIORAL GRAPHS

Random order
Natural order

Time of joining in a social network
Lexicographic order of URLSs
Crawl order

Graph traversal orders
BFS and DFS

Geographic location: order by zip codes
Produces a bucket order

Ties can be broken using more than one order



PERFORMANCE OF SIMPLE ORDERINGS

Graph #nodes Hedges Y%reciprocal
edges
Flickr 25.1M 69.7M 64.4
UK host graph 0.58M 12.8M 18.6
IndoChina 7.4M 194.1M 20.9
BV BL
Graph Natural Random DFS Graph Natural | Random DFS
Flickr 218 239 229 Flickr 16.4 178 172
UK host 108 155 146 UK host 10.5 145 138
IndoChina 202 21.44 - IndoChina 2.35 176 -




SHINGLE ORDERING HEURISTIC

Obtain a canonical ordering by bringing nodes
with similar neighborhoods close together

Fingerprint neighborhood of each node and order
the nodes according to the fingerprint

If fingerprint can capture neighborhood similarity
and edge locality, then 1t will produce good
compression via BV/BL, provided the graph has
amenable

Use Jaccard coefficient to measure similarity

between nodes

JA, B)=|AnB|/|AUB]|



A FINGERPRINT FOR JACCARD

Fingerprint to measure set overlap

Shingles have since seen wide usage to estimate the similarity of
web pages using a particular feature extraction scheme based on
overlapping windows of terms (motivating the name “shingles”)

MTL(A) = T (mmaEA {TE( )})
Pr_[M_(A) (B)] = |ANB|/|AUB|

The probability that the smallest element of A and B 1s the

same, where smallest 1s defined by the permutation 7 , 1s
mmr*ﬂv the similarity of the two sets according to the Jaccwrd

MLARN VL) VaAaANS RoaAaasdasdsal~a v aaNrs NN A A

coeff1<:1ent

Min-wise independent permutations suffice
Broder, Charikar, Frieze, Mitzenmacher STOC 1998

Hash functions work well in practice



SHINGLE ORDERING HEURISTIC (CONTD)

Fingerprint of a node u = M_(out-neighbors of u)

Order the nodes by their fingerprint

Two nodes with lot of overlapping neighbors are
likely to have same shingle

Double shingle order: break ties within shingle
order using a second shingle



PERFORMANCE OF SHINGLE ORDERING

BV BL
Graph Natural | Shingle | Double Graph Natural | Shingle | Double
shingle shingle
Flickr 21.8 135 135 Flickr 16.4 10.9 10.9
UK host 10.8 8.2 8.1 UK host 10.5 8.2 8.1
IndoChina 2.02 2.7 2.7 IndoChina 2.35 2.7 2.7

Geography does not seem to help for Flickr graph




FLICKR: COMPRESSIBILITY OVER TIME
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A PROPERTY OF SHINGLE ORDERING

Theorem. Using shingle ordering, a constant
fraction of edges will be “copied” in graphs
generated by preferential attachment/copying

models
Preferential attachment model: Rich get richer —

a new node links to an existing node with
probability proportional to its degree

Shows that shingle ordering helps BV/BL-style
compressions 1n stylized graph models



(AP DISTRIBUTION

Gap Count
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WHO IS THE CULPRIT
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COMPRESSION-FRIENDLY ORDERINGS

In BV/BL, canonical order 1s all that matters

Problem. Given a graph, find the canonical
ordering that will produce the best compression

in BV/BL

The ordering should capture locality and similarity
The ordering must help BV/BL-style compressions

We propose two formulations of this problem



MLOGA FORMULATION

MLogA. Find an ordering p of nodes such that
Z:(u, v)e E Ig |TE(U)-TE(V) |

1s minimized
Minimize sum of encoding gaps of edges

Without lg, this 1s min linear arrangement (MLinA)

MLinA 1is well-studied ((log n) log log n)
approximable, ...

MLinA and MLogA are very different problems

Theorem. MLogA 1s NP-hard
Proof using the inapproximability of MaxCut



MLOGGAPA FORMULATION

MLogGapA. For an ordering p, let f.(u) = cost of
compressing the out-neighbors of © under

If Uy, -«., U, are out-neighbors ordered wrt 7,
uo = u
f(u) =2 lg | 7(u;)-mo(u; )|
Find an ordering /7 of nodes to minimize Zu fn(u)
Minimize encoding gaps of neighbors of a noae

MLogGapA and MLogA are very different
problems

Theorem. MLinGapA 1s NP-hard
Conjecture. MLogGapA 1s NP-hard



SUMMARY

Social networks appear to be not very compressible
Host graphs are equally challenging

These two graphs are very unlike the web graph,
which 1s highly compressible

Future directions

Can we compress social networks better? Boldi, Santini,
Vigna 2009

Is there a lower bound on incompressibility? Our analysis
applies only to BV-style compressions

Algorithmic questions: Hardness of MLogGapA, Good

approximation algorithms

Modeling: Compressibility of existing graph models, More

nuanced models for the compressible web Chierichetti,
Kumar, Lattanzi, Mitzenmacher, Panconesi, Raghavan FOCS

2009



REFERENCES

Navlakha, S., Rastogi, R., and Shrivastava, N.

Graph summarization with bounded error. In
Proc. of the ACM SIGMOD, 2008.

Chierichetti, F., Kumar, R., Lattanzi, S., and
Mitzenmacher, M., Panconesi, A. and Raghavan,

P. On compressing social networks. In Proc. of
the 15th ACM SIGKDD, 2009.

P. Boldi and S. Vigna. The webgraph framework

: Compression techniques. In Proc. 13th WWW,
s 595-602, 2004.

qQON
AsTO

e

i)



THE END

oThank You




