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LARGE GRAPHS
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yahoo.com
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Many interactions can be represented as 
graphs

Webgraphs: search engine  etc

C

D
A B

10.1.1.1 GWebgraphs: search engine, etc.
Netflow graphs (which IPs talk to each other): 
traffic patterns, security, worm attacks
Social (friendship) networks: 

jokes.comNetflow

( p)
mine user communities, viral marketing
Email exchanges: security. virus spread, 
spam detection
Market basket data: customer profiles  targeted Market basket data: customer profiles, targeted 
advertizing

Need to compress  understand

Social Networks

emailNeed to compress, understand
Webgraph ~ 50 billion edges; 
social networks ~ few million, growing 
quicklyquickly
Compression reduces size to one-tenth 
(webgraphs)



OUR APPROACH

Graph Compression (reference encoding)
Not applicable to all graphs: use urls  node labels for compressionNot applicable to all graphs: use urls, node labels for compression
Resulting structure is hard to visualize/interpret

Graph Clustering
Nice summary  works for generic graphsNice summary, works for generic graphs
No compression: needs the same memory to store the graph itself

Our MDL based representation R = (S C)Our MDL-based representation R = (S,C)
S is a high-level summary graph: compact, highlights dominant trends, easy 
to visualize
C is a set of edge corrections: help in reconstructing the graphC is a set of edge corrections: help in reconstructing the graph
Compression based on MDL principle: minimize cost of S+C 
information-theoretic approach; parameter less; applicable to any graph
Novel Approximate Representation: reconstructs graph with bounded error pp p g p
(є);  results in better compression



HOW DO WE COMPRESS?
d e f g

Compression possible (S)
Many nodes with similar 

a b c

Many nodes with similar 
neighborhoods 

Communities in social networks; link-
i  i  b

SummaryX = {d,e,f,g}
copying in webpages

Collapse such nodes into 
supernodes (clusters) Y = {a,b,c}supernodes (clusters) 
and the edges into superedges

Bipartite subgraph to two supernodes 
d  dand a superedge

Clique to supernode with a “self-edge”



Cost = 14 edges

HOW DO WE COMPRESS? h
j

i
d e f g

Compression possible (S)
Many nodes with similar neighborhoods

C       

ja b c

Communities in social networks; link-copying in 
webpages

Collapse such nodes into supernodes (clusters) and the 
edges into superedges

SummaryX = {d,e,f,g}g p g
Bipartite subgraph to two supernodes and a 
superedge
Clique to supernode with a “self-edge” Y = {a,b,c}

h
i

i

Need to correct mistakes (C)
Most superedges are not complete

N d  d ’t h  t  i hb  f i d  Nodes don’t have exact same neighbors: friends 
in social networks

Remember edge-corrections 
Edges not present in superedges ( ve corrections)

+(a,h)
( i)

Correction
s Cost = 5

(1 superedge + Edges not present in superedges (-ve corrections)
Extra edges not counted in superedges (+ve
corrections)

+(c,i)
+(c,j)
-(a,d)

(1 superedge  
4 corrections) 

Minimize overall storage cost = S+C
( , )



REPRESENTATION STRUCTURE R=(S C)REPRESENTATION STRUCTURE R=(S,C)
X = {d,e,f,g}

Summary S(VS, ES)
Each supernode v represents a set of nodes Av
E h d  ( ) t  

Y = {a,b,c}

h

j
i

Each superedge (u,v) represents 
all pair of edges πuv = Au x Av

Corrections C: {(a,b); a and b are nodes of 
C = {+(a,h), +(c,i), +(c,j), -(a,d)}

G}
Supernodes are key, superedges/corrections 
easyeasy

Auv actual edges of G between Au and Av
Cost with (u,v) = 1 + |πuv – Euv|
C t ith t ( )  |E | d e f gCost without (u,v) = |Euv|
Choose the minimum, decides whether edge (u,v) 
is in S

h

j
i

f g

a b c ja b c



REPRESENTATION STRUCTURE R=(S C)REPRESENTATION STRUCTURE R=(S,C)
X = {d,e,f,g}

Summary S(VS, ES)
Each supernode v represents a set of nodes Av
Each superedge (u,v) represents Y = {a,b,c}
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p g ( , ) p
all pair of edges πuv = Au x Av

Corrections C: {(a,b); a and b are nodes of G}
Supernodes are key  superedges/corrections 

C = {+(a,h), +(c,i), +(c,j), -(a,d)}

Supernodes are key, superedges/corrections 
easy

Auv actual edges of G between Au and Av
Cost with (u,v) = 1 + |π – E |Cost with (u,v)  1 + |πuv Euv|
Cost without (u,v) = |Euv|
Choose the minimum, decides whether edge (u,v) is in 
S d e f g

Reconstructing the graph from R
For all superedges (u,v) in S, insert all pair of edges 

h

j
i

f g

a b cπuv
For all +ve corrections +(a,b), insert edge (a,b)
For all -ve corrections -(a,b), delete edge (a,b)

ja b c



REPRESENTATION STRUCTURE R=(S C)REPRESENTATION STRUCTURE R=(S,C)
X = {d,e,f,g}

Summary S(VS, ES)
Each supernode v represents a set of nodes Av
Each superedge (u v) represents 

Y = {a,b,c}
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Each superedge (u,v) represents 
all pair of edges πuv = Au x Av

Corrections C: {(a,b); a and b are nodes of G}
Supernodes are key  superedges/corrections 

C = {+(a,h), +(c,i), +(c,j), -(a,d)}

Supernodes are key, superedges/corrections 
easy

Auv actual edges of G between Au and Av
Cost with (u v) = 1 + |π E |Cost with (u,v) = 1 + |πuv – Euv|
Cost without (u,v) = |Euv|
Choose the minimum, decides whether edge (u,v) is 
in S d e f gin S

Reconstructing the graph from R
For all superedges (u v) in S  insert all pair of edges 

h
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f g

a b cFor all superedges (u,v) in S, insert all pair of edges 
πuv
For all +ve corrections +(a,b), insert edge (a,b)
For all -ve corrections -(a,b), delete edge (a,b)

ja b c



REPRESENTATION STRUCTURE R=(S C)REPRESENTATION STRUCTURE R=(S,C)
X = {d,e,f,g}

Summary S(VS, ES)
Each supernode v represents a set of nodes Av
Each superedge (u,v) represents Y = {a,b,c}

h

j
i

p g ( , ) p
all pair of edges πuv = Au x Av

Corrections C: {(a,b); a and b are nodes of G}
Supernodes are key  superedges/corrections 

C = {+(a,h), +(c,i), +(c,j), -(a,d)}

Supernodes are key, superedges/corrections 
easy

Auv actual edges of G between Au and Av
Cost with (u,v) = 1 + |π – E |Cost with (u,v)  1 + |πuv Euv|
Cost without (u,v) = |Euv|
Choose the minimum, decides whether edge (u,v) is in 
S d e f g

Reconstructing the graph from R
For all superedges (u,v) in S, insert all pair of edges 
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f g

a b cπuv
For all +ve corrections +(a,b), insert edge (a,b)
For all -ve corrections -(a,b), delete edge (a,b)

ja b c



APPROXIMATE REPRESENTATION RЄ
  { b}

X = {d,e,f,g}

Approximate representation
Recreating the input graph exactly is not always 
necessary C = {-(a,d), -(a,f)}

Y = {a,b}

necessary
Reasonable approximation enough: to compute 
communities, anomalous traffic patterns, etc.
Use approximation leeway to get further cost reduction

{ ( , ), ( ,f)}

d e f g
Generic Neighbor Query

Given node v, find its neighbors Nv in G
Apx-nbr set N’v estimates Nv with є-accuracy

d e f g

a b

G 

p v v y
Bounded error: error(v) = |N’v - Nv| + |Nv - N’v| < є 
|Nv|
Number of neighbors added or deleted is at most є-
fraction of the true neighbors 

a b

For є=.5, we can remove 
one correction of afraction of the true neighbors 

Intuition for computing Rє
If correction (a,d) is deleted, it adds error for both a 
and d

one correction of a

d e f gand d
From exact representation R for G, remove (maximum) 
corrections s.t. є-error guarantees still hold

d e f g

a ba b



CCOMPARISON WITH EXISTING TECHNIQUES

Webgraph compression [Adler-DCC-01]
Use nodes sorted by urls: not applicable to other graphs

d e f g

Use nodes sorted by urls: not applicable to other graphs
More focus on bitwise compression: represent sequence of 
neighbors (ids) using smallest bits

Cli  t i i  

a b c

Clique stripping [Feder-pods-99]
Collapses edges of complete bi-partite subgraph into single 
cluster

d e f gOnly compresses very large, complete bi-cliques
Representing webgraphs [Raghavan-icde-03]

Represent webgraphs as SNodes, Sedges

d e f g

Represent webgraphs as SNodes, Sedges
Use urls of nodes for compression (not applicable for other 
graphs)
No concept of approximate representation

a b c

No concept of approximate representation



OUTLINE

Compressed graph 
MDL representation R=(S C); є-representationMDL representation R (S,C); є-representation

Computing R
GREEDY  RANDOMIZEDGREEDY, RANDOMIZED

Computing Rє
APX MDL  APX GREEDYAPX-MDL, APX-GREEDY

Experimental results
Conclusions and future work



GREEDY
Cost of merging supernodes u and v into 
single supernode w

Recall: cost of a superedge (u,x): p g ( , )
c(u,x) = min{|πvx – Avx|+1, |Avx|}

cu = sum of costs of all its edges = Σx c(u,x)
s(u,v) = (cu + cv – cw)/(cu + cv)

u v

( , ) ( u v w) ( u v)

Main idea: recursive bottom-up merging of 
supernodessupernodes

If s(u,v) > 0, merging u and v reduces the cost of 
reduction
N li  th  t   bi  t d  hi h 

w

Normalize the cost: remove bias towards high 
degree nodes
Making supernodes is the key: superedges and 
corrections can be computed later

cu = 5; cv =4
cw = 6 (3 edges, 3 corrections
s(u v) = 3/9corrections can be computed later s(u,v) = 3/9



Cost reduction: 11 to 6

GREEDY
Recall: s(u v) = (c + c c )/(c + c ) a

bc

dRecall: s(u,v) = (cu + cv – cw)/(cu + cv)
GREEDY algorithm

Start with S=G

d

ef
gh

At every step, pick the pair with max s(.) 
value, merge them
If no pair has positive s(.) value, stop

g

C = {+(h,d),+(a,e)}

b c bc bc
a

c
d

e

a d

e

a d

e

fg

h
fg

h fgh
C = {+(h,d)}

s(b,c)=.5
[ cb = 2; cc=2; cbc=2 ]

{ ( , )}

s(e,f)=1/3
[ ce = 2; cf=1; cef=2 ]

s(g,h)=3/7
[ cg = 3; ch=4; cgh=4 ]

[ e ; f ; ef ]



RANDOMIZED
GREEDY is slow

Need to find the pair with (globally) max s( ) valueNeed to find the pair with (globally) max s(.) value
Need to process all pair of nodes at a distance of 2-
hopsops
Every merge changes costs of all pairs containing Nw

Main idea: light weight randomized procedure
Instead of choosing the globally best pairInstead of choosing the globally best pair,
Choose (randomly) a node u
Merge the best pair containing uMerge the best pair containing u



b

RANDOMIZED a
c

d

e

Randomized algorithm
U fi i h d t U=V

e

fg

h

Unfinished set U=VG
At every step, randomly pick a node u 
from U

g
Picked e; s(e,f)=3/5
[ ce = 3; cf=2; cef=3 ]from U

Find the node v with max s(u,v) value
If s(u v) > 0  then merge u and v into w  bIf s(u,v) > 0, then merge u and v into w, 
put w in U
Else remove u from U

a
b c

d
Else remove u from U
Repeat till U is not empty

ef
h

efg
C = {+(a,e)}



OUTLINE

Compressed graph 
MDL representation R=(S C); є-representationMDL representation R (S,C); є-representation

Computing R
GREEDY  RANDOMIZEDGREEDY, RANDOMIZED

Computing Rє
APX MDL  APX GREEDYAPX-MDL, APX-GREEDY

Experimental results
Conclusions and future work



COMPUTING APPROX REPRESENTATION S

Reducing size of corrections
Correction graph H: For every (+ve or –ve) correction (a,b) in C, 
add edge (a,b) to Hadd edge (a,b) to H
Removing (a,b) reduces size of C, but adds error of 1 to a and b
Recall bounded error: error(v) = |N’v - Nv| + |Nv - N’v| < є |Nv|
Implies in H  we can remove up to b = є |N | edges incident on v ( b)

C
Implies in H, we can remove up to bv = є |Nv| edges incident on v
Maximum cost reduction: remove subset M of EH of max size s. t. 
M has at most bv edges incident on v

+(a,b)
+(.)
-(.)

Same as the b-matching problem
Find the matching M\subset EG s.t. at most bv edges incident on v 
are in M

( )

are in M
For all bv = 1, traditional matching problem
Solvable in time O(mn2) [Gabow-STOC-83] (for graph with n 
nodes and m edges) +(.)

Cє
nodes and m edges) (.)

-(.)



COMPUTING APPROX REPRESENTATION S

Reducing size of summary
Removing superedge (a,b) implies bulk removal of g p g ( , ) p
all pair edges πuv
But, each node in Au and Av has different b value
Does not map to a clean matching-type problem

A d  h
Sє

A greedy approach
Pick superedges by increasing |πuv| value
Delete (u v) if that doesn’t violate є bound for Delete (u,v) if that doesn t violate є-bound for 
nodes in AuUAv
If there is correction (a,b) for πuv in C, we cannot +(.)

Cє( , ) uv ,
remove (u,v); since removing (u,v) violates error 
bound for a or b

(.)
-(.)



APXMDL S
( b)
C

Compute the R(S,C) for G
Find Cє

+(a,b)
+(.)
-(.)Find Cє

Compute H, with VH=C
Find maximum b-matching M for H; Cє=C-

( )

g ; є
M

Find Sє
Pick superedges (u,v) in S having no 
correction in Cє
in increasing |π | value Cє

Sє
in increasing |πuv| value
Remove (u,v) if that doesn’t violate є-bound 
for any node in Au U Av

+(.)
-(.)

є

y u v

Axp-representation Rє=(Cє, Sє)



OUTLINE

Compressed graph 
MDL representation R=(S C); є-representationMDL representation R (S,C); є-representation

Computing R
GREEDY  RANDOMIZEDGREEDY, RANDOMIZED

Computing Rє
APX MDL  APX GREEDYAPX-MDL, APX-GREEDY

Experimental results
Conclusions and future work



EXPERIMENTAL SET-UP

Algorithms to compare
Our techniques GREEDY, RANDOMIZED, APXMDL q , ,
REF: reference encoding used for web-graph 
compression 
(  di bl d bit l l di  t h i )(we disabled bit-level encoding techniques)
GRAC: graph clustering algorithm 
(make supernodes for clusters returned)(make supernodes for clusters returned)

Datasets
CNR: web-graph datasetCNR: web graph dataset
Routeview: autonomous systems topology of the 
internet
Wordnet: English words, edges between related 
words (synonym, similar, etc.)
F b k  i l t kiFacebook: social networking



COST REDUCTION (CNR DATASET)COST REDUCTION (CNR DATASET)
Reduces the cost down to 40%

Cost of GREEDY 20% 
lower than RANDOMIZED

25 | 
Gra
ph 

Sum
mar
izati

RANDOMIZED is 60% 
faster than GREEDY

izati
on | 
Jun

e 



CCOMPARISON WITH OTHER SCHEMES

Our techniques give much Our techniques give much 
better compression



COST BREAKUP (CNR DATASET)COST BREAKUP (CNR DATASET)
80% cost of representation 
is due to correctionsis due to corrections

27 | 
Gra
ph 

Sum
mar
izatiizati
on | 
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e 



APX REPRESENTATIONAPX-REPRESENTATION

Cost reduces linearly 
as є is increased;

28 | 
Gra

as є is increased;
With є=.1, 10% cost 
reduction over R

ph 
Sum
mar
izatiizati
on | 
Jun

e 



CONCLUSIONS

MDL-based representation R(S,C) for graphs
Compact summary S: highlights trendsp y g g
Corrections C: reconstructs graph together with S
Extend to approximate representation with bounded 
error
Our techniques, GREEDY, RANDOMIZED give up to 
40% cost reduction40% cost reduction

Future directionsFuture directions
Hardness of finding minimum-cost representation
Running graph algorithms (approximately) directly Running graph algorithms (approximately) directly 
on the compressed structure: apx-shortest path with 
bounded error on S?
Extend to labeled/weighted edges



ON COMPRESSING SOCIAL NETWORKS

Flavio Chierichetti, University of Rome
Ravi Kumar  Yahoo! ResearchRavi Kumar, Yahoo! Research
Silvio Lattanzi, University of Rome
Michael Mitzenmacher, Harvard
Alessandro Panconesi, University of Rome
Prabhakar Raghavan, Yahoo! Research



BEHAVIOURAL GRAPHS
R h t d

Web graphs
Host graphs

Research trends
oEmpirical analysis: examining 
properties of real-world graphsg p

Social networks
Collaboration networks

p p g p
oModeling: finding good models 
for behavioural graphs

Sensor networks
Biological networks

There has been a
tendency to lumpg

…
y p

together behavioural
graphs arising from a

i t  f t tvariety of contexts



PROPERTIES OF BEHAVIOURAL GRAPHSPROPERTIES OF BEHAVIOURAL GRAPHS

Power law degree distribution
Heavy tail

Clustering
High clustering coefficient

Communities and dense subgraphs
Abundance; locally dense, globally 
sparse; spectrum 

Connectivity
Exhibit a “bow-tie” structure; low 
diameter; small world phenomenon: diameter; small-world phenomenon: 
Any two vertices are connected by a 
short path. Two vertices having a 
common neighbor are more likely to 
be neighbors.



A REMARKABLE EMPIRICAL FACT

Snapshots of the web graph 
can be compressed using p g
less then 3 bits per edge

Boldi, Vigna WWW 2004
Improved to ˜2 bits using 
another data mining 
inspired compression 
technique

B h  Ch ll ill WSDM Buehrer, Chellapilla WSDM 
2008

More recent improvementsMore recent improvements
Boldi, Santinin, Vigna WAW 
2009



ARE SOCIAL NETWORKS COMPRESSIBLE?
Review of BV compression
A different compression mechanism that works A different compression mechanism that works 
better for social networks
A heuristicA heuristic
its performance
and a formalizationand a formalization
Why study this question?

Efficient storageEfficient storage
Serve adjacency queries efficiently in-memory
Archival purposes – multiple snapshots

Obtain insights
Compression has to utilize special structure of the network
Study the randomness in such networksStudy the randomness in such networks



ADJACENCY TABLE REPRESENTATION

Each row corresponds to a node u in the graph
Entries in a row are sorted integers  representing Entries in a row are sorted integers, representing 
the neighborhood of u, i.e., edges (u, v)

1: 1  2  4  8  16  32  641: 1, 2, 4, 8, 16, 32, 64
2: 1, 4, 9, 16, 25, 36, 49, 64
3: 1  2  3  5  8  13  21  34  55  89  1443: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144
4: 1, 4, 8, 16, 25, 36, 49, 64

C   dj  i  f tCan answer adjacency queries fast
Expensive (better than storing a list of edges)



BOLDI-VIGNA (BV): MAIN IDEAS

Similar neighborhoods: The neighborhood of a 
web page can be expressed in terms of other web web page can be expressed in terms of other web 
pages with similar neighborhoods

Rows in adjacency table have similar entriesRows in adjacency table have similar entries
Possible to choose to prototype row

Locality: Most edges are intra-host and hence Locality: Most edges are intra-host and hence 
local

Small integers can represent edge destination wrt Small integers can represent edge destination wrt 
source

Gap encoding: Instead of storing destination of Gap encoding: Instead of storing destination of 
each edge, store the difference from the previous 
entry in the same rowentry in the same row



FINDING SIMILAR NEIGHBORHOODS

Canonical ordering: Sort URLs lexicographically, 
treating them as strings

This gives an identifier for each URL
Source and destination of edges are likely to get 
nearby IDsnearby IDs

Templated webpages
Many edges are intra-host or intra-sitey g



GAP ENCODINGS

Given a sorted list of integers x, y, z, …, 
represent them by x, y-x, z-y, …represent them by x, y x, z y, …
Compress each integer using a code

γ code: x is represented by concatenation of unary γ code: x is represented by concatenation of unary 
representation of           (length of x in bits) followed 
by binary representation of 

⎣ ⎦xlg
⎣ ⎦xx lg2−y y p

Number of bits =
(see slide 12, 
h // i d i i i i / l b/ b h df)

x
⎣ ⎦xlg21+

http://vigna.dsi.unimi.it/algoweb/webgraph.pdf)
δ code: …
I f i  h i  b d                bi⎣ ⎦l1Information theoretic bound:               bits
ζ code: Works well for integers from a power law 
B ldi Vig DCC 2004

⎣ ⎦xlg1+

Boldi Vigna DCC 2004



BV COMPRESSION

Each node has a unique ID from 
the canonical orderingg
Let w = copying window parameter
To encode a node vTo encode a node v

Check if out-neighbors of v are 
similar to any of w-1 previous nodes 
in the ordering
If yes, let u be the prototype: use lg w 
bits to encode the gap from v to u + bits to encode the gap from v to u + 
difference between out-neighbors of u 
and v
If no, write lg w zeros and encode 
out-neighbors of v explicitly

U   di   t  f thiUse gap encoding on top of this



MAIN ADVANTAGES OF BV
Depends only on locality in a canonical ordering

Lexicographic ordering works well for web graphLexicographic ordering works well for web graph
Adjacency queries can be answered very 
efficientlyefficiently

To fetch out-neighbors, trace back the chain of 
prototypes until a list whose encoding beings with lg prototypes until a list whose encoding beings with lg 
w zeros is obtained (no-prototype case)
This chain is typically short in practice (since yp y p (
similarity is mostly intra-host)
Can also explicitly limit the length of the chain 
during encoding

Easy to implement and a one-pass algorithm



BACKLINKS (BL) COMPRESSION

Social networks are highly reciprocal, despite 
being directedbeing directed

If A is a friend of B, then it is likely B is also A’s 
friend

(u, v) is reciprocal if (v, u) also exists
reciprocal(u) = set of v’s such that (u, v) is reciprocal(u)  set of v s such that (u, v) is 
reciprocal
How to exploit reciprocity in compression?How to exploit reciprocity in compression?

Can avoid storing reciprocal edges twice
Just the reciprocity “bit” is sufficientJust the reciprocity bit  is sufficient



BACKLINKS COMPRESSION (CONTD)
Given a canonical ordering of nodes and copying 
window wwindow w
To encode a node v

Base information: encode out degree of v minus 1 (if self Base information: encode out-degree of v minus 1 (if self 
loop) minus #reciprocal(v) + “self-loop” bit
Try to choose a prototype u as in BV within a window wTry to choose a prototype u as in BV within a window w
If yes, encode the difference between out-neighbors of u and 
non-reciprocal out-neighbors of vp g

Encode the gap between u and v
Specify which out-neighbors of u are present in v
For the rest of out-neighbors of v, encode them as gaps

Encode the reciprocal out-neighbors of v
For each out-neighbor v’ of v and v’ > v, store if v’    reciprocal(v) or 
not; discard the edge (v’, v)

∈



CANONICAL ORDERINGS

BV and BL compressions depend just on 
obtaining a canonical ordering of nodesobtaining a canonical ordering of nodes

This canonical ordering should exploit neighborhood 
similarity and edge localityy g y

Question: how to obtain a good canonical 
ordering?ordering?

Unlike the web page case, it is unclear if social 
networks have a natural canonical orderingg

Caveat: BV/BL is only one genre of compression 
schemescheme

Lack of good canonical ordering does not mean graph 
is incompressiblep



SOME CANONICAL ORDERINGS INSOME CANONICAL ORDERINGS IN
BEHAVIORAL GRAPHS

Random order
Natural orderNatural order

Time of joining in a social network
Lexicographic order of URLsLexicographic order of URLs
Crawl order

G h t l dGraph traversal orders
BFS and DFS

Geographic location: order by zip codes
Produces a bucket order

Ties can be broken using more than one order



PERFORMANCE OF SIMPLE ORDERINGS



SHINGLE ORDERING HEURISTIC

Obtain a canonical ordering by bringing nodes 
with similar neighborhoods close togetherwith similar neighborhoods close together
Fingerprint neighborhood of each node and order 
the nodes according to the fingerprintthe nodes according to the fingerprint

If fingerprint can capture neighborhood similarity 
and edge locality, then it will produce good and edge locality, then it will produce good 
compression via BV/BL, provided the graph has 
amenable

Use Jaccard coefficient to measure similarity 
between nodes



A FINGERPRINT FOR JACCARD
Fi i t t   t lFingerprint to measure set overlap

Shingles have since seen wide usage to estimate the similarity of 
web pages using a particular feature extraction scheme based on 

  f     “overlapping windows of terms (motivating the name “shingles”)

The probability that the smallest element of A and B is the 
same, where smallest is defined by the permutation     , is 
exactly the similarity of the two sets according to the Jaccard

π
exactly the similarity of the two sets according to the Jaccard
coefficient.

Min-wise independent permutations suffice
Broder  Charikar  Frieze  Mitzenmacher STOC 1998Broder, Charikar, Frieze, Mitzenmacher STOC 1998
Hash functions work well in practice



SHINGLE ORDERING HEURISTIC (CONTD)
Fingerprint of a node

Order the nodes by their fingerprint
T  d  i h l  f l i  i hb   Two nodes with lot of overlapping neighbors are 
likely to have same shingle

D bl  hi l  d  b k ti  ithi  hi l  Double shingle order: break ties within shingle 
order using a second shingle



PERFORMANCE OF SHINGLE ORDERING



FLICKR: COMPRESSIBILITY OVER TIME



A PROPERTY OF SHINGLE ORDERING

Theorem. Using shingle ordering, a constant 
fraction of edges will be “copied” in graphs fraction of edges will be copied  in graphs 
generated by preferential attachment/copying 
modelso e s
Preferential attachment model: Rich get richer –
a new node links to an existing node with a new node links to an existing node with 
probability proportional to its degree
Shows that shingle ordering helps BV/BL style Shows that shingle ordering helps BV/BL-style 
compressions in stylized graph models



GAP DISTRIBUTION



WHO IS THE CULPRIT



COMPRESSION-FRIENDLY ORDERINGS

In BV/BL, canonical order is all that matters
Problem  Given a graph  find the canonical Problem. Given a graph, find the canonical 
ordering that will produce the best compression 
in BV/BLin BV/BL

The ordering should capture locality and similarity
The ordering must help BV/BL style compressionsThe ordering must help BV/BL-style compressions

We propose two formulations of this problem



MLOGA FORMULATION

MLogA. Find an ordering p of nodes such that

is minimized
Minimize sum of encoding gaps of edges
Without lg, this is min linear arrangement (MLinA)
MLinA is well-studied ((log n) log log n) 
approximable, …
MLinA and MLogA are very different problems

Theorem. MLogA is NP-hard
Proof using the inapproximability of MaxCutProof using the inapproximability of MaxCut



MLOGGAPA FORMULATION

MLogGapA. For an ordering p, let        = cost of 
compressing the out-neighbors of u under 

)(ufπ

πcompressing the out neighbors of u under 
If                    are out-neighbors ordered wrt     , 
u0 = u

π
π

u0 = u

Find an ordering      of nodes to minimizeπFind an ordering      of nodes to minimize
Minimize encoding gaps of neighbors of a node

π

MLogGapA and MLogA are very different 
problems

Theorem. MLinGapA is NP-hard
Conjecture. MLogGapA is NP-hard



SUMMARY

Social networks appear to be not very compressible
Host graphs are equally challenging

These two graphs are very unlike the web graph, 
which is highly compressiblewhich is highly compressible

Future directionsFuture directions
Can we compress social networks better? Boldi, Santini, 
Vigna 2009
Is there a lower bound on incompressibility? Our analysis Is there a lower bound on incompressibility? Our analysis 
applies only to BV-style compressions
Algorithmic questions: Hardness of MLogGapA, Good 
approximation algorithmsapproximation algorithms
Modeling: Compressibility of existing graph models, More 
nuanced models for the compressible web Chierichetti, 
Kumar  Lattanzi  Mitzenmacher  Panconesi  Raghavan FOCS Kumar, Lattanzi, Mitzenmacher, Panconesi, Raghavan FOCS 
2009
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