
SEG5010 presentation

GRAPH COMPRESSION AND
SUMMARIZATION
Wei Zhang
Dept. of Information Engineering
The Chinese University of Hong Kong

Most of the slides are borrowed from the authors’
original presentation.original presentation.

http://www.cs.umd.edu/~saket/pubs/sigmod2008.ppt
http://videolectures net/kdd09 kumar ocsn/http://videolectures.net/kdd09_kumar_ocsn/

GRAPH SUMMARIZATION WITH BOUNDEDGRAPH SUMMARIZATION WITH BOUNDED
ERROR

Saket Navlakha (UMCP)
Rajeev Rastogi (Yahoo! Labs India)Rajeev Rastogi (Yahoo! Labs, India)
Nisheeth Shrivastava (Bell Labs India)

LARGE GRAPHS
F

D

E
yahoo.com

20.20.2.2

cnn.com

Many interactions can be represented as
graphs

Webgraphs: search engine etc

C

D
A B

10.1.1.1 GWebgraphs: search engine, etc.
Netflow graphs (which IPs talk to each other):
traffic patterns, security, worm attacks
Social (friendship) networks:

jokes.comNetflow

(p)
mine user communities, viral marketing
Email exchanges: security. virus spread,
spam detection
Market basket data: customer profiles targeted Market basket data: customer profiles, targeted
advertizing

Need to compress understand

Social Networks

emailNeed to compress, understand
Webgraph ~ 50 billion edges;
social networks ~ few million, growing
quicklyquickly
Compression reduces size to one-tenth
(webgraphs)

OUR APPROACH

Graph Compression (reference encoding)
Not applicable to all graphs: use urls node labels for compressionNot applicable to all graphs: use urls, node labels for compression
Resulting structure is hard to visualize/interpret

Graph Clustering
Nice summary works for generic graphsNice summary, works for generic graphs
No compression: needs the same memory to store the graph itself

Our MDL based representation R = (S C)Our MDL-based representation R = (S,C)
S is a high-level summary graph: compact, highlights dominant trends, easy
to visualize
C is a set of edge corrections: help in reconstructing the graphC is a set of edge corrections: help in reconstructing the graph
Compression based on MDL principle: minimize cost of S+C
information-theoretic approach; parameter less; applicable to any graph
Novel Approximate Representation: reconstructs graph with bounded error pp p g p
(є); results in better compression

HOW DO WE COMPRESS?
d e f g

Compression possible (S)
Many nodes with similar

a b c

Many nodes with similar
neighborhoods

Communities in social networks; link-
i i b

SummaryX = {d,e,f,g}
copying in webpages

Collapse such nodes into
supernodes (clusters) Y = {a,b,c}supernodes (clusters)
and the edges into superedges

Bipartite subgraph to two supernodes
d dand a superedge

Clique to supernode with a “self-edge”

Cost = 14 edges

HOW DO WE COMPRESS? h
j

i
d e f g

Compression possible (S)
Many nodes with similar neighborhoods

C

ja b c

Communities in social networks; link-copying in
webpages

Collapse such nodes into supernodes (clusters) and the
edges into superedges

SummaryX = {d,e,f,g}g p g
Bipartite subgraph to two supernodes and a
superedge
Clique to supernode with a “self-edge” Y = {a,b,c}

h
i

i

Need to correct mistakes (C)
Most superedges are not complete

N d d ’t h t i hb f i d Nodes don’t have exact same neighbors: friends
in social networks

Remember edge-corrections
Edges not present in superedges (ve corrections)

+(a,h)
(i)

Correction
s Cost = 5

(1 superedge + Edges not present in superedges (-ve corrections)
Extra edges not counted in superedges (+ve
corrections)

+(c,i)
+(c,j)
-(a,d)

(1 superedge
4 corrections)

Minimize overall storage cost = S+C
(,)

REPRESENTATION STRUCTURE R=(S C)REPRESENTATION STRUCTURE R=(S,C)
X = {d,e,f,g}

Summary S(VS, ES)
Each supernode v represents a set of nodes Av
E h d () t

Y = {a,b,c}

h

j
i

Each superedge (u,v) represents
all pair of edges πuv = Au x Av

Corrections C: {(a,b); a and b are nodes of
C = {+(a,h), +(c,i), +(c,j), -(a,d)}

G}
Supernodes are key, superedges/corrections
easyeasy

Auv actual edges of G between Au and Av
Cost with (u,v) = 1 + |πuv – Euv|
C t ith t () |E | d e f gCost without (u,v) = |Euv|
Choose the minimum, decides whether edge (u,v)
is in S

h

j
i

f g

a b c ja b c

REPRESENTATION STRUCTURE R=(S C)REPRESENTATION STRUCTURE R=(S,C)
X = {d,e,f,g}

Summary S(VS, ES)
Each supernode v represents a set of nodes Av
Each superedge (u,v) represents Y = {a,b,c}

h

j
i

p g (,) p
all pair of edges πuv = Au x Av

Corrections C: {(a,b); a and b are nodes of G}
Supernodes are key superedges/corrections

C = {+(a,h), +(c,i), +(c,j), -(a,d)}

Supernodes are key, superedges/corrections
easy

Auv actual edges of G between Au and Av
Cost with (u,v) = 1 + |π – E |Cost with (u,v) 1 + |πuv Euv|
Cost without (u,v) = |Euv|
Choose the minimum, decides whether edge (u,v) is in
S d e f g

Reconstructing the graph from R
For all superedges (u,v) in S, insert all pair of edges

h

j
i

f g

a b cπuv
For all +ve corrections +(a,b), insert edge (a,b)
For all -ve corrections -(a,b), delete edge (a,b)

ja b c

REPRESENTATION STRUCTURE R=(S C)REPRESENTATION STRUCTURE R=(S,C)
X = {d,e,f,g}

Summary S(VS, ES)
Each supernode v represents a set of nodes Av
Each superedge (u v) represents

Y = {a,b,c}

h

j
i

Each superedge (u,v) represents
all pair of edges πuv = Au x Av

Corrections C: {(a,b); a and b are nodes of G}
Supernodes are key superedges/corrections

C = {+(a,h), +(c,i), +(c,j), -(a,d)}

Supernodes are key, superedges/corrections
easy

Auv actual edges of G between Au and Av
Cost with (u v) = 1 + |π E |Cost with (u,v) = 1 + |πuv – Euv|
Cost without (u,v) = |Euv|
Choose the minimum, decides whether edge (u,v) is
in S d e f gin S

Reconstructing the graph from R
For all superedges (u v) in S insert all pair of edges

h

j
i

f g

a b cFor all superedges (u,v) in S, insert all pair of edges
πuv
For all +ve corrections +(a,b), insert edge (a,b)
For all -ve corrections -(a,b), delete edge (a,b)

ja b c

REPRESENTATION STRUCTURE R=(S C)REPRESENTATION STRUCTURE R=(S,C)
X = {d,e,f,g}

Summary S(VS, ES)
Each supernode v represents a set of nodes Av
Each superedge (u,v) represents Y = {a,b,c}

h

j
i

p g (,) p
all pair of edges πuv = Au x Av

Corrections C: {(a,b); a and b are nodes of G}
Supernodes are key superedges/corrections

C = {+(a,h), +(c,i), +(c,j), -(a,d)}

Supernodes are key, superedges/corrections
easy

Auv actual edges of G between Au and Av
Cost with (u,v) = 1 + |π – E |Cost with (u,v) 1 + |πuv Euv|
Cost without (u,v) = |Euv|
Choose the minimum, decides whether edge (u,v) is in
S d e f g

Reconstructing the graph from R
For all superedges (u,v) in S, insert all pair of edges

h

j
i

f g

a b cπuv
For all +ve corrections +(a,b), insert edge (a,b)
For all -ve corrections -(a,b), delete edge (a,b)

ja b c

APPROXIMATE REPRESENTATION RЄ
 { b}

X = {d,e,f,g}

Approximate representation
Recreating the input graph exactly is not always
necessary C = {-(a,d), -(a,f)}

Y = {a,b}

necessary
Reasonable approximation enough: to compute
communities, anomalous traffic patterns, etc.
Use approximation leeway to get further cost reduction

{ (,), (,f)}

d e f g
Generic Neighbor Query

Given node v, find its neighbors Nv in G
Apx-nbr set N’v estimates Nv with є-accuracy

d e f g

a b

G

p v v y
Bounded error: error(v) = |N’v - Nv| + |Nv - N’v| < є
|Nv|
Number of neighbors added or deleted is at most є-
fraction of the true neighbors

a b

For є=.5, we can remove
one correction of afraction of the true neighbors

Intuition for computing Rє
If correction (a,d) is deleted, it adds error for both a
and d

one correction of a

d e f gand d
From exact representation R for G, remove (maximum)
corrections s.t. є-error guarantees still hold

d e f g

a ba b

CCOMPARISON WITH EXISTING TECHNIQUES

Webgraph compression [Adler-DCC-01]
Use nodes sorted by urls: not applicable to other graphs

d e f g

Use nodes sorted by urls: not applicable to other graphs
More focus on bitwise compression: represent sequence of
neighbors (ids) using smallest bits

Cli t i i

a b c

Clique stripping [Feder-pods-99]
Collapses edges of complete bi-partite subgraph into single
cluster

d e f gOnly compresses very large, complete bi-cliques
Representing webgraphs [Raghavan-icde-03]

Represent webgraphs as SNodes, Sedges

d e f g

Represent webgraphs as SNodes, Sedges
Use urls of nodes for compression (not applicable for other
graphs)
No concept of approximate representation

a b c

No concept of approximate representation

OUTLINE

Compressed graph
MDL representation R=(S C); є-representationMDL representation R (S,C); є-representation

Computing R
GREEDY RANDOMIZEDGREEDY, RANDOMIZED

Computing Rє
APX MDL APX GREEDYAPX-MDL, APX-GREEDY

Experimental results
Conclusions and future work

GREEDY
Cost of merging supernodes u and v into
single supernode w

Recall: cost of a superedge (u,x): p g (,)
c(u,x) = min{|πvx – Avx|+1, |Avx|}

cu = sum of costs of all its edges = Σx c(u,x)
s(u,v) = (cu + cv – cw)/(cu + cv)

u v

(,) (u v w) (u v)

Main idea: recursive bottom-up merging of
supernodessupernodes

If s(u,v) > 0, merging u and v reduces the cost of
reduction
N li th t bi t d hi h

w

Normalize the cost: remove bias towards high
degree nodes
Making supernodes is the key: superedges and
corrections can be computed later

cu = 5; cv =4
cw = 6 (3 edges, 3 corrections
s(u v) = 3/9corrections can be computed later s(u,v) = 3/9

Cost reduction: 11 to 6

GREEDY
Recall: s(u v) = (c + c c)/(c + c) a

bc

dRecall: s(u,v) = (cu + cv – cw)/(cu + cv)
GREEDY algorithm

Start with S=G

d

ef
gh

At every step, pick the pair with max s(.)
value, merge them
If no pair has positive s(.) value, stop

g

C = {+(h,d),+(a,e)}

b c bc bc
a

c
d

e

a d

e

a d

e

fg

h
fg

h fgh
C = {+(h,d)}

s(b,c)=.5
[cb = 2; cc=2; cbc=2]

{ (,)}

s(e,f)=1/3
[ce = 2; cf=1; cef=2]

s(g,h)=3/7
[cg = 3; ch=4; cgh=4]

[e ; f ; ef]

RANDOMIZED
GREEDY is slow

Need to find the pair with (globally) max s() valueNeed to find the pair with (globally) max s(.) value
Need to process all pair of nodes at a distance of 2-
hopsops
Every merge changes costs of all pairs containing Nw

Main idea: light weight randomized procedure
Instead of choosing the globally best pairInstead of choosing the globally best pair,
Choose (randomly) a node u
Merge the best pair containing uMerge the best pair containing u

b

RANDOMIZED a
c

d

e

Randomized algorithm
U fi i h d t U=V

e

fg

h

Unfinished set U=VG
At every step, randomly pick a node u
from U

g
Picked e; s(e,f)=3/5
[ce = 3; cf=2; cef=3]from U

Find the node v with max s(u,v) value
If s(u v) > 0 then merge u and v into w bIf s(u,v) > 0, then merge u and v into w,
put w in U
Else remove u from U

a
b c

d
Else remove u from U
Repeat till U is not empty

ef
h

efg
C = {+(a,e)}

OUTLINE

Compressed graph
MDL representation R=(S C); є-representationMDL representation R (S,C); є-representation

Computing R
GREEDY RANDOMIZEDGREEDY, RANDOMIZED

Computing Rє
APX MDL APX GREEDYAPX-MDL, APX-GREEDY

Experimental results
Conclusions and future work

COMPUTING APPROX REPRESENTATION S

Reducing size of corrections
Correction graph H: For every (+ve or –ve) correction (a,b) in C,
add edge (a,b) to Hadd edge (a,b) to H
Removing (a,b) reduces size of C, but adds error of 1 to a and b
Recall bounded error: error(v) = |N’v - Nv| + |Nv - N’v| < є |Nv|
Implies in H we can remove up to b = є |N | edges incident on v (b)

C
Implies in H, we can remove up to bv = є |Nv| edges incident on v
Maximum cost reduction: remove subset M of EH of max size s. t.
M has at most bv edges incident on v

+(a,b)
+(.)
-(.)

Same as the b-matching problem
Find the matching M\subset EG s.t. at most bv edges incident on v
are in M

()

are in M
For all bv = 1, traditional matching problem
Solvable in time O(mn2) [Gabow-STOC-83] (for graph with n
nodes and m edges) +(.)

Cє
nodes and m edges) (.)

-(.)

COMPUTING APPROX REPRESENTATION S

Reducing size of summary
Removing superedge (a,b) implies bulk removal of g p g (,) p
all pair edges πuv
But, each node in Au and Av has different b value
Does not map to a clean matching-type problem

A d h
Sє

A greedy approach
Pick superedges by increasing |πuv| value
Delete (u v) if that doesn’t violate є bound for Delete (u,v) if that doesn t violate є-bound for
nodes in AuUAv
If there is correction (a,b) for πuv in C, we cannot +(.)

Cє(,) uv ,
remove (u,v); since removing (u,v) violates error
bound for a or b

(.)
-(.)

APXMDL S
(b)
C

Compute the R(S,C) for G
Find Cє

+(a,b)
+(.)
-(.)Find Cє

Compute H, with VH=C
Find maximum b-matching M for H; Cє=C-

()

g ; є
M

Find Sє
Pick superedges (u,v) in S having no
correction in Cє
in increasing |π | value Cє

Sє
in increasing |πuv| value
Remove (u,v) if that doesn’t violate є-bound
for any node in Au U Av

+(.)
-(.)

є

y u v

Axp-representation Rє=(Cє, Sє)

OUTLINE

Compressed graph
MDL representation R=(S C); є-representationMDL representation R (S,C); є-representation

Computing R
GREEDY RANDOMIZEDGREEDY, RANDOMIZED

Computing Rє
APX MDL APX GREEDYAPX-MDL, APX-GREEDY

Experimental results
Conclusions and future work

EXPERIMENTAL SET-UP

Algorithms to compare
Our techniques GREEDY, RANDOMIZED, APXMDL q , ,
REF: reference encoding used for web-graph
compression
(di bl d bit l l di t h i)(we disabled bit-level encoding techniques)
GRAC: graph clustering algorithm
(make supernodes for clusters returned)(make supernodes for clusters returned)

Datasets
CNR: web-graph datasetCNR: web graph dataset
Routeview: autonomous systems topology of the
internet
Wordnet: English words, edges between related
words (synonym, similar, etc.)
F b k i l t kiFacebook: social networking

COST REDUCTION (CNR DATASET)COST REDUCTION (CNR DATASET)
Reduces the cost down to 40%

Cost of GREEDY 20%
lower than RANDOMIZED

25 |
Gra
ph

Sum
mar
izati

RANDOMIZED is 60%
faster than GREEDY

izati
on |
Jun

e

CCOMPARISON WITH OTHER SCHEMES

Our techniques give much Our techniques give much
better compression

COST BREAKUP (CNR DATASET)COST BREAKUP (CNR DATASET)
80% cost of representation
is due to correctionsis due to corrections

27 |
Gra
ph

Sum
mar
izatiizati
on |
Jun

e

APX REPRESENTATIONAPX-REPRESENTATION

Cost reduces linearly
as є is increased;

28 |
Gra

as є is increased;
With є=.1, 10% cost
reduction over R

ph
Sum
mar
izatiizati
on |
Jun

e

CONCLUSIONS

MDL-based representation R(S,C) for graphs
Compact summary S: highlights trendsp y g g
Corrections C: reconstructs graph together with S
Extend to approximate representation with bounded
error
Our techniques, GREEDY, RANDOMIZED give up to
40% cost reduction40% cost reduction

Future directionsFuture directions
Hardness of finding minimum-cost representation
Running graph algorithms (approximately) directly Running graph algorithms (approximately) directly
on the compressed structure: apx-shortest path with
bounded error on S?
Extend to labeled/weighted edges

ON COMPRESSING SOCIAL NETWORKS

Flavio Chierichetti, University of Rome
Ravi Kumar Yahoo! ResearchRavi Kumar, Yahoo! Research
Silvio Lattanzi, University of Rome
Michael Mitzenmacher, Harvard
Alessandro Panconesi, University of Rome
Prabhakar Raghavan, Yahoo! Research

BEHAVIOURAL GRAPHS
R h t d

Web graphs
Host graphs

Research trends
oEmpirical analysis: examining
properties of real-world graphsg p

Social networks
Collaboration networks

p p g p
oModeling: finding good models
for behavioural graphs

Sensor networks
Biological networks

There has been a
tendency to lumpg

…
y p

together behavioural
graphs arising from a

i t f t tvariety of contexts

PROPERTIES OF BEHAVIOURAL GRAPHSPROPERTIES OF BEHAVIOURAL GRAPHS

Power law degree distribution
Heavy tail

Clustering
High clustering coefficient

Communities and dense subgraphs
Abundance; locally dense, globally
sparse; spectrum

Connectivity
Exhibit a “bow-tie” structure; low
diameter; small world phenomenon: diameter; small-world phenomenon:
Any two vertices are connected by a
short path. Two vertices having a
common neighbor are more likely to
be neighbors.

A REMARKABLE EMPIRICAL FACT

Snapshots of the web graph
can be compressed using p g
less then 3 bits per edge

Boldi, Vigna WWW 2004
Improved to ˜2 bits using
another data mining
inspired compression
technique

B h Ch ll ill WSDM Buehrer, Chellapilla WSDM
2008

More recent improvementsMore recent improvements
Boldi, Santinin, Vigna WAW
2009

ARE SOCIAL NETWORKS COMPRESSIBLE?
Review of BV compression
A different compression mechanism that works A different compression mechanism that works
better for social networks
A heuristicA heuristic
its performance
and a formalizationand a formalization
Why study this question?

Efficient storageEfficient storage
Serve adjacency queries efficiently in-memory
Archival purposes – multiple snapshots

Obtain insights
Compression has to utilize special structure of the network
Study the randomness in such networksStudy the randomness in such networks

ADJACENCY TABLE REPRESENTATION

Each row corresponds to a node u in the graph
Entries in a row are sorted integers representing Entries in a row are sorted integers, representing
the neighborhood of u, i.e., edges (u, v)

1: 1 2 4 8 16 32 641: 1, 2, 4, 8, 16, 32, 64
2: 1, 4, 9, 16, 25, 36, 49, 64
3: 1 2 3 5 8 13 21 34 55 89 1443: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144
4: 1, 4, 8, 16, 25, 36, 49, 64

C dj i f tCan answer adjacency queries fast
Expensive (better than storing a list of edges)

BOLDI-VIGNA (BV): MAIN IDEAS

Similar neighborhoods: The neighborhood of a
web page can be expressed in terms of other web web page can be expressed in terms of other web
pages with similar neighborhoods

Rows in adjacency table have similar entriesRows in adjacency table have similar entries
Possible to choose to prototype row

Locality: Most edges are intra-host and hence Locality: Most edges are intra-host and hence
local

Small integers can represent edge destination wrt Small integers can represent edge destination wrt
source

Gap encoding: Instead of storing destination of Gap encoding: Instead of storing destination of
each edge, store the difference from the previous
entry in the same rowentry in the same row

FINDING SIMILAR NEIGHBORHOODS

Canonical ordering: Sort URLs lexicographically,
treating them as strings

This gives an identifier for each URL
Source and destination of edges are likely to get
nearby IDsnearby IDs

Templated webpages
Many edges are intra-host or intra-sitey g

GAP ENCODINGS

Given a sorted list of integers x, y, z, …,
represent them by x, y-x, z-y, …represent them by x, y x, z y, …
Compress each integer using a code

γ code: x is represented by concatenation of unary γ code: x is represented by concatenation of unary
representation of (length of x in bits) followed
by binary representation of

⎣ ⎦xlg
⎣ ⎦xx lg2−y y p

Number of bits =
(see slide 12,
h // i d i i i i / l b/ b h df)

x
⎣ ⎦xlg21+

http://vigna.dsi.unimi.it/algoweb/webgraph.pdf)
δ code: …
I f i h i b d bi⎣ ⎦l1Information theoretic bound: bits
ζ code: Works well for integers from a power law
B ldi Vig DCC 2004

⎣ ⎦xlg1+

Boldi Vigna DCC 2004

BV COMPRESSION

Each node has a unique ID from
the canonical orderingg
Let w = copying window parameter
To encode a node vTo encode a node v

Check if out-neighbors of v are
similar to any of w-1 previous nodes
in the ordering
If yes, let u be the prototype: use lg w
bits to encode the gap from v to u + bits to encode the gap from v to u +
difference between out-neighbors of u
and v
If no, write lg w zeros and encode
out-neighbors of v explicitly

U di t f thiUse gap encoding on top of this

MAIN ADVANTAGES OF BV
Depends only on locality in a canonical ordering

Lexicographic ordering works well for web graphLexicographic ordering works well for web graph
Adjacency queries can be answered very
efficientlyefficiently

To fetch out-neighbors, trace back the chain of
prototypes until a list whose encoding beings with lg prototypes until a list whose encoding beings with lg
w zeros is obtained (no-prototype case)
This chain is typically short in practice (since yp y p (
similarity is mostly intra-host)
Can also explicitly limit the length of the chain
during encoding

Easy to implement and a one-pass algorithm

BACKLINKS (BL) COMPRESSION

Social networks are highly reciprocal, despite
being directedbeing directed

If A is a friend of B, then it is likely B is also A’s
friend

(u, v) is reciprocal if (v, u) also exists
reciprocal(u) = set of v’s such that (u, v) is reciprocal(u) set of v s such that (u, v) is
reciprocal
How to exploit reciprocity in compression?How to exploit reciprocity in compression?

Can avoid storing reciprocal edges twice
Just the reciprocity “bit” is sufficientJust the reciprocity bit is sufficient

BACKLINKS COMPRESSION (CONTD)
Given a canonical ordering of nodes and copying
window wwindow w
To encode a node v

Base information: encode out degree of v minus 1 (if self Base information: encode out-degree of v minus 1 (if self
loop) minus #reciprocal(v) + “self-loop” bit
Try to choose a prototype u as in BV within a window wTry to choose a prototype u as in BV within a window w
If yes, encode the difference between out-neighbors of u and
non-reciprocal out-neighbors of vp g

Encode the gap between u and v
Specify which out-neighbors of u are present in v
For the rest of out-neighbors of v, encode them as gaps

Encode the reciprocal out-neighbors of v
For each out-neighbor v’ of v and v’ > v, store if v’ reciprocal(v) or
not; discard the edge (v’, v)

∈

CANONICAL ORDERINGS

BV and BL compressions depend just on
obtaining a canonical ordering of nodesobtaining a canonical ordering of nodes

This canonical ordering should exploit neighborhood
similarity and edge localityy g y

Question: how to obtain a good canonical
ordering?ordering?

Unlike the web page case, it is unclear if social
networks have a natural canonical orderingg

Caveat: BV/BL is only one genre of compression
schemescheme

Lack of good canonical ordering does not mean graph
is incompressiblep

SOME CANONICAL ORDERINGS INSOME CANONICAL ORDERINGS IN
BEHAVIORAL GRAPHS

Random order
Natural orderNatural order

Time of joining in a social network
Lexicographic order of URLsLexicographic order of URLs
Crawl order

G h t l dGraph traversal orders
BFS and DFS

Geographic location: order by zip codes
Produces a bucket order

Ties can be broken using more than one order

PERFORMANCE OF SIMPLE ORDERINGS

SHINGLE ORDERING HEURISTIC

Obtain a canonical ordering by bringing nodes
with similar neighborhoods close togetherwith similar neighborhoods close together
Fingerprint neighborhood of each node and order
the nodes according to the fingerprintthe nodes according to the fingerprint

If fingerprint can capture neighborhood similarity
and edge locality, then it will produce good and edge locality, then it will produce good
compression via BV/BL, provided the graph has
amenable

Use Jaccard coefficient to measure similarity
between nodes

A FINGERPRINT FOR JACCARD
Fi i t t t lFingerprint to measure set overlap

Shingles have since seen wide usage to estimate the similarity of
web pages using a particular feature extraction scheme based on

 f “overlapping windows of terms (motivating the name “shingles”)

The probability that the smallest element of A and B is the
same, where smallest is defined by the permutation , is
exactly the similarity of the two sets according to the Jaccard

π
exactly the similarity of the two sets according to the Jaccard
coefficient.

Min-wise independent permutations suffice
Broder Charikar Frieze Mitzenmacher STOC 1998Broder, Charikar, Frieze, Mitzenmacher STOC 1998
Hash functions work well in practice

SHINGLE ORDERING HEURISTIC (CONTD)
Fingerprint of a node

Order the nodes by their fingerprint
T d i h l f l i i hb Two nodes with lot of overlapping neighbors are
likely to have same shingle

D bl hi l d b k ti ithi hi l Double shingle order: break ties within shingle
order using a second shingle

PERFORMANCE OF SHINGLE ORDERING

FLICKR: COMPRESSIBILITY OVER TIME

A PROPERTY OF SHINGLE ORDERING

Theorem. Using shingle ordering, a constant
fraction of edges will be “copied” in graphs fraction of edges will be copied in graphs
generated by preferential attachment/copying
modelso e s
Preferential attachment model: Rich get richer –
a new node links to an existing node with a new node links to an existing node with
probability proportional to its degree
Shows that shingle ordering helps BV/BL style Shows that shingle ordering helps BV/BL-style
compressions in stylized graph models

GAP DISTRIBUTION

WHO IS THE CULPRIT

COMPRESSION-FRIENDLY ORDERINGS

In BV/BL, canonical order is all that matters
Problem Given a graph find the canonical Problem. Given a graph, find the canonical
ordering that will produce the best compression
in BV/BLin BV/BL

The ordering should capture locality and similarity
The ordering must help BV/BL style compressionsThe ordering must help BV/BL-style compressions

We propose two formulations of this problem

MLOGA FORMULATION

MLogA. Find an ordering p of nodes such that

is minimized
Minimize sum of encoding gaps of edges
Without lg, this is min linear arrangement (MLinA)
MLinA is well-studied ((log n) log log n)
approximable, …
MLinA and MLogA are very different problems

Theorem. MLogA is NP-hard
Proof using the inapproximability of MaxCutProof using the inapproximability of MaxCut

MLOGGAPA FORMULATION

MLogGapA. For an ordering p, let = cost of
compressing the out-neighbors of u under

)(ufπ

πcompressing the out neighbors of u under
If are out-neighbors ordered wrt ,
u0 = u

π
π

u0 = u

Find an ordering of nodes to minimizeπFind an ordering of nodes to minimize
Minimize encoding gaps of neighbors of a node

π

MLogGapA and MLogA are very different
problems

Theorem. MLinGapA is NP-hard
Conjecture. MLogGapA is NP-hard

SUMMARY

Social networks appear to be not very compressible
Host graphs are equally challenging

These two graphs are very unlike the web graph,
which is highly compressiblewhich is highly compressible

Future directionsFuture directions
Can we compress social networks better? Boldi, Santini,
Vigna 2009
Is there a lower bound on incompressibility? Our analysis Is there a lower bound on incompressibility? Our analysis
applies only to BV-style compressions
Algorithmic questions: Hardness of MLogGapA, Good
approximation algorithmsapproximation algorithms
Modeling: Compressibility of existing graph models, More
nuanced models for the compressible web Chierichetti,
Kumar Lattanzi Mitzenmacher Panconesi Raghavan FOCS Kumar, Lattanzi, Mitzenmacher, Panconesi, Raghavan FOCS
2009

REFERENCES

Navlakha, S., Rastogi, R., and Shrivastava, N.
Graph summarization with bounded error. In Graph summarization with bounded error. In
Proc. of the ACM SIGMOD, 2008.
Chierichetti F Kumar R Lattanzi S and Chierichetti, F., Kumar, R., Lattanzi, S., and
Mitzenmacher, M., Panconesi, A. and Raghavan,
P On compressing social networks In Proc of P. On compressing social networks. In Proc. of
the 15th ACM SIGKDD, 2009.
P Boldi and S Vigna The webgraph framework P. Boldi and S. Vigna. The webgraph framework
I: Compression techniques. In Proc. 13th WWW,
pages 595–602 2004pages 595 602, 2004.

THE END

Thank YouThank You

