Stochastic Approximation Schemes with

Decision Dependent Data

Hoi-To Wai

Department of Systems Engineering & Engineering Management,
The Chinese University of Hong Kong (CUHK), Hong Kong

April 28, 2023
Seminar @ Universidad Rey Juan Carlos de Madrid

1/48



Motivation

We are living in a highly
dynamical world ...

» Huge amount of data
generated in real time
and may be reacting to
decision.

— dynamical data —
challenging for ML.

Do we have to modify our
ML algorithms? Any
theoretical insights?

L #

Annual Size of the Global Datasphere 17528
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Stochastic Approximation (SA) Scheme
Agent . ¢ \ Data
(Learner) Sample source

» Many engineering/ML problems can be reduced to:
find 6* suchthat h(6*)=0
Examples: to solve ming V/(0), take h(-) := VV(.).
» When h(8) is unknown, SA! (commonly used as SGD) is a remedy:
0:11=0r — Y41 H(O:; Xet1), with  H(0:; Xiei1) = h(6:)

where X, is the data drawn - common assumption: i.i.d. data.
> Fact: (+ appropriate step size) 8; — @ such that h(8) = 0.

1[Robbins and Monro, 1951] H. Robbins, S. Monro. A stochastic approximation method.

The Annals of Mathematical Statistics, 1951.
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SA with Decision-Dependent Data

Decision —<
Agent 4 Data
(Learner) - . source
Sample

» What if data X; ;1 is not i.i.d., and depends on 6,7
SA: 0141 =0; — Y 1H(O: Xip1).

> Data source may be ‘organic’ and react to the agent’s decision. (e.g.,
when they represent real user)
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SA with Decision-Dependent Data

» What if data X;,; is not i.i.d., and depends on 6,7
SA: 0i1 =06, — Vt+1H(9t? Xt+1)-
» Example 1. in reinforcement learning (RL),
X: = (S, Ar) — state/action, 0, — policy.

A policy describes conditional probability for selecting A;.
» Online policy gradient [Baxter and Bartlett, 2001] —

= A= S — 0 — Aipr = Seh1— -
t t t t+1 t+1

SA step  Use Policy (jlc. Reward
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SA with Decision-Dependent Data

» What if data X;,; is not i.i.d., and depends on 6,7
SA: 0141 =0: — 7 1H(O: Xip1).
> Example 2. (Performative Prediction) data may react to your decision,
0; — classifier/prediction model, X;i1 ~ D(0;) — observed outcome

such as in loan application, spam email classification, etc.

» Greedy Deployment [Perdomo et al., 2020]:

N (— — Xes1 — -
t t t+1

SA step  Adopt/deploy the decision
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SA with Decision-Dependent Data

» What if data X;,; is not i.i.d., and depends on 6,7
SA: 0141 =0 — v 1 H(O; Xiy1).
» Example 3: in Actor-Critic algorithm,
X; — intermediate policy evaluation (critic), 6; — policy (actor)
» Actor-critic Algorithm [Konda and Tsitsiklis, 1999]:

_>Xt — 0t — Xt+l_>"'

SA Step / ‘Actor’ update ‘Critic’ update

requires two timescales update to ‘stabilize’ the critic.
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SA with Decision-Dependent Data: Challenges

Key Q: When will SA with decision-dependent data converge to some

meaningful point (e.g., h(6) = 0)? How fast?

Challenges —
> The drift term is biased, i.e., E[H(0s; X¢41)|Fe| # h(6:).
» If X171 is (too) sensitive to O;, the SA process may not converge.

This Talk —
» Recent results on convergence to stationary or stable solution with
decision dependent data SA.

» Applications to online policy gradient, performative prediction,
two-timescale SA, etc.
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Goal of This Talk

» General Convergence for Biased SA?

» Highlight on techniques for analyzing with non-i.i.d. samples.

> Applications of Biased SA

» Design and analysis of Online Policy Gradient.
> Modeling stochastic algorithm for performative prediction via SA® (relies
on an extension of general convergence to strongly convex functions).

> Extension to Coupled SA for Bilevel Optimization*

> Bi-level optimization where lower level gives decision-dependent data.

2[Karimi et al., 2019] B. Karimi B. Miasojedow, E. Moulines, H.-T., “Non-asymptotic
Analysis of Biased Stochastic Approximation Scheme”, in COLT 2019.

3[Li and Wai, 2022] Q. Li, H.-T., “State Dependent Performative Prediction with
Stochastic Approximation”, in AISTATS 2022.

4[Hong et al., 2023] M. Hong, H.-T., Z. Wang, Z. Yang, “A two-timescale framework for

bilevel optimization: Complexity analysis & application to actor-critic”, SIOPT, 2023.
8/48



Roadmap

1. General Convergence of (Biased) SA
2. Applications of Biased SA
3. Extension: Two-timescale SA

4. Conclusions and Perspectives
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Roadmap

1. General Convergence of (Biased) SA
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Biased SA Scheme

Consider:
0i1 =0, — ’Yt+1H(9t; Xt+1)- (1)

» {X;}:>1 is not i.i.d. and form a decision-dependent Markov chain:

E[H(0¢; Xe11)|Fe] = Po, H(0:; X:) = [ H(64; x) Py, (Xe, dx)

where Py : X x X — R is Markov kernel with a unique stationary
distribution 7g,, and the mean field h(@) = [ H(8; x)mg(dx).
This Part: We analyze the SA scheme with the mean field
h(0) = VV(8) (= SGD) for tackling:
mingeRd V(0) (2)

(In the paper) Analysis when h(0) # VV(0) is available = the ‘beyond’
gradient setting.
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Biased SA Scheme

Consider:
0:11=0;:— ’)/t+1H(9t; Xt+1)- (1)

Prior Works —

» Asymptotic Analysis: studied with h(@) = VV/(0) in [Kushner and Yin,
2003], similar biased SA setting in [Tadi¢ and Doucet, 2017].

» Non-asymptotic Analysis:

> Analysis for (projected) SA with convex optimization [Atchadé et al.,
2017, Doan, 2022].

» Sun et al. [2018] and Duchi et al. [2012] assumed h(0) = VV/(0) &
decision-independent Markov chain.

» Bhandari et al. [2018] studied a similar setting but focuses on linear SA
with convex Lyapunov function.

> Recent works [Chen et al., 2020, Mou et al., 2020, Durmus et al.,
2021a,b, 2022, Chen et al., 2022b] provided tight bounds for linear SA.
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Assumptions

» For simplicity, we assume that h(@) = VV/(0) (the paper presents a
more general case for non-gradient algorithms).

(A1) The Lyapunov function V is L-smooth,
[VV(0)—VV(e)|<L|6-6| Vo,6.

» Requires smooth Lyapunov function, V() is possibly non-convex.

(A2) It holds that supgcra ex [[H(0; x) — h(8)|| < o

Remark: (A2) requires noise is uniformly bounded for all x € X.
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Assumptions (on the Markov Chain)

(A3) There exists a bounded measurable function H: RY x X — RY sit.

Ho(x) — PgHg(x) = H(0;x) — h(B), ¥ 8 € RY, x € X,

and  supyex [|PgHo(x) — PorFlor (x)]| < LB)116 — 0], ¥ (6.6").

> ’:Ig(.) exists if MC Py is uniformly geometric ergodic [Douc et al., 2018].

» Consequence: implies the error decomposition

H(0t; Xt+1) - h(Ht) = ’:’OI(XtJrl) - Pet "'A’Ot(XtJrl)
= o, (Xez1) — Pe, Ho,(X:) + Pet'q@f(xt) — P, Ho, (Xe11)

Martingale with conditional 0-mean
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Main Results

Theorem
Let AI-A3 hold. Suppose that the step sizes satisfy
Vot1 < Yy Yo < @Vnt1s Yo — Ynrt < @75 11 < 0.5(L+ Ch)_l )
fora,a’ > 0 and all t > 0, then
(VO,t + CO,t + (0'2L + Cw)zlt(:o A/134-1)
ZZ:o Yk+1

E[IVV(6)]?] < 2

)

where Cy, C,, Co¢, Vo,¢ are O(1) constants.

» Stopping Criterion: fix any t > 1 and is a discrete
random variable with (see [Ghadimi and Lan, 2013])

B(T =0) = (Sigver1) vesr -

> 1f 7 = (2L(1+ G)vE)™, then E[|VV/(87)[] = O(log /).
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Proof: From L-smoothness of V, set H(0;; X;+1) = h(0;) + e:11, we have
V(0k+1) - V(Qk) S
——
telescoping sum — repeated terms are cancelled

2
L
=1 (VV(8k) [ h(6k)) + W%l\lh(ak) + el =i (VV(6k) | exsn)

i !
~ —O(Vk+1]/h(0k)||?) < controlled by biasedness good if summable!

Idea — there exists Hp(-) such that ewi1 = Ho, (Xks1) — Po, Ao, (X&)
(Poisson equation), consequently,
> ko Ykt <V V(64 | Ao, (Xk41) — Po, Ho, (Xk+1)> = A+ A+ As+ Ay + As
Martingale — A1 = >0 _1 Yk41 <VV(0k) | I:ng(XkH) — ng ’:ng (Xk)>
Smoothness — Ay = >} _; Vkt1 <VV(9k) | ng F/gk (Xk) — Pek_1H9k71(Xk)>
Smoothness — Az = X7_y ki1 (VV(8k) = VV(6x-1) | Pg, Ao, (X))
Step size — A = X0y (i1 — ) (VV(6K) | Pg, , Flo,,(Xk))

Finite number — As = 7, <VV(60) \ Flgo(xl)> — Vi1 <VV(0n) | Penﬁgn(xn+1)>
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Roadmap

2. Applications of Biased SA
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Policy Optimization: Average Reward Maximization

» Goal: Find a policy 8 (that governs the conditional prob. of taking
action &’ when in state s’) to maximize an average reward:

J(0) =3 ics..eavo(s, ) R(s, a)

where vg(s, a) is invariant distribution under 6 < difficult!.
» What is the gradient of J(6) w.r.t. 67

VJ(G) = IimTHOO ]Eg [ R(ST7 AT) Z,T:Bl AV |Og ng(AT,,'; 57—,,')] .

> Use a biased estimate of VJ(8). Let A € [0,1), consider the
approximation [Baxter and Bartlett, 2001]:

T-1
fim V7J(6) := lim R(St,Ar) ; N Vlog Mg (Ar_i; ST_1).

This Part: Design and analyze online policy gradient method via
designing a Markov chain that converges to the limit.
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Online Policy Gradient (PG)

Online policy gradient [Baxter and Bartlett, 2001, Tadi¢ and Doucet, 2017]:
Gt+l = >\Gt -+ V |Og I_Ign(At+1; St+1) , (23)
011 = 0r + V4161 R(Se41, Aeta) - (2b)
> Let the joint state be X; = (S, As, Gr) €S x A x R9. Eq. (2b) is SA
with the drift term:
H(0¢; Xes1) = Gey1 R(St41, Aes1)

» {X;}:>1 forms a Markov chain and

~

h(8) = Jim B ny. sl (VrJ(6)].

> (A1)-(A3) can be verified under (PG1) exponential family (or soft-max)
policy, bounded reward, etc.
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Convergence Analysis

Corollary

Under PG1. Set v; = (2c1L(1 + Cy)V/t)~™L. For any t € N, the algorithm
(2) finds a policy 61 with

E[IVI(O7)I2] = O((1 = A2 + c(A) log t/V2), 3)

where c()\) = O(m)z) & expectation taken w.r.t. T, (As, St).

» Variance-bias trade-off with A € (0,1): A — 1 reduces the bias, but
increases the variance in static term as c(\) = O((1 — \)~2).
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Performative Prediction (PP)

>

vV vVVvYyyYy

Decisions

Predictions are used to support -
- Predictions World
decisions and may alter the ‘

distribution of future observations. Data

Empirical Risk Minimization (ERM): static world with i.i.d. data.
But decision (classifier) can cause distribution shift in the world.

Example: bank loan, spam filtering, healthcare systems, ...

Performative Prediction (PP)5%: capture the shift in
decision-dependent data distribution

mein Ez.p[¢(6; 2)] — mein Ez.pe) [4(0; 2)] .

ERM PP

5[Perdomo et al., 2020] J. Perdomo, T. Zrnic, C. Mendler-Dunner, M. Hardt.
Performative prediction. ICML 2020.
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Two Solution Concepts for PP

Performative Optimal Solution (PO):
6PC € argmingegy Ezp(o) [6(8; Z)].
> Difficult - non-convexity, unknown D(+), etc.

> Remedy: estimate VL£(0) [lzzo et al., 2021, Miller
et al., 2021] — X needs to know D(-)...

Performative Stable Solution (PS):

67> € argming ., Ezop(ers) [((0; Z)] -

» In general 875 = PO Fixed point of
repeated risk minimization (RRM)

S 0% «— argming_p, Ez.p(e) [E(é; Z)].

~Population > Algorithms based on RRM: [Perdomo et al.,
2020, Mendler-Diinner et al., 2020] — v no
extra knowledge on £(0)
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Greedy Deployment Scheme

» Recall the performative stable solution:

Ops = arg minIEZND( )[6(0/, Z)] 0= EZND(GPS)[Vé(gPS; Z)]

6’cRd

Ops

(provided that @ps exists).

Stochastic algorithm? greedy deployment scheme:

Agent : 0:11 = 0; — V11 VU(Os; Zr1 1) < SA scheme,
Population :  Zy11 ~ D(6;).

> Mean field: h(0) = Ez.pg)[V(0; Z)] = Ops is the SA’s fixed point.

» Fact: /(; Z) is strongly-convex + D(0) is ‘insensitive’ to 6, then®

E[]|6: — 0ps|*] = O(1/1).

6[Mendler—D'L]nner et al., 2020] C. Mendler-Dunner, et al.. Stochastic optimization for
performative prediction. NeurlPS 2020.
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State-dependent Performative Prediction

> [ssue: Greedy deployment in Mendler-Diinner et al. [2020]:

Agent . 0t+1 = ek — %HVE(G,_L; Zt+1),
Population :  Z;41 ~ D(0;) < immediate adaptation

» Example: Loan applicants may take months to build up credit history to
adapt to changes in classifier of bank.

> But both agent and population are possibly slow adapters’. = fully
state dependent performative prediction.

This Part: Greedy deployment comes naturally as SA with
decision-dependent distribution. Is it stable? How to model it?

"Brown et al. [2022] has similar setting but w/o sampling at learner.
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State-dependent SA for PP

» Idea: models agents’ adaptation via a controlled Markov Chain.
» Py :Z x Z — Ry = Markov kernel w/ stationary dist. D(6).

State-dependent Performative Prediction with SA

Population :  Z;11 ~ Pg,(Z;,-) (4 allows slow adaptation)
Agent: 0t+1 = 01— - ’yH_lVf(@t; Zt+]_) & dep|oys 0t+1- (4)

> Example: population runs SGD to adapt to z ~ D(8):

Zt+1 = Zt + OZVZU(Zt, 01—, Ct+1)’ +~— U= Utlllty fct.

Observation: Agent’s updates (4) is biased SA with
H(Btr Xt+1) = Vf(@t, Zt+1)
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lllustration

Target O

Deploy classifier 6,
—_—

B I rl ] Bl Return distribution D (6,) P//’

Learner @ Wdrla/
~memoty
§ SN

Deploy classifier 6 “,/ . o g
Return distribution D(Gl) ' . a
' E /’/ &
Learner o =
World a
@ memorjy
A Deploy classifier@pg / . .
................ ——
ujuie D Dg MR cturn distribution D (0ps) ® Q .
oot Ufel) g o ™0
B/
Learner -
World
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Assumptions

(PP1). We assume that 4(0; Z) is pi-strongly convex, L-smooth, and the
distribution D(B) satisfies e—sensitivity (W1 denotes Wasserstein-1 distance)

WA(D(6), D(9)) < |6 — &', ¥ 6,6" € R,

> PP1 is sensitivity w.r.t. D(0) to 6 [Mendler-Diinner et al., 2020].
> Strategic population with a linear utility function, Z ~ D(0) if

Z=2y+¢0, Zy~ Dy - base/intrinsic distribution
(PP2). o-perturbation with sampled gradient
sup,ez [[V(6:2) — VI (0:0ps)|| <o (1+ 6 — Ops]).

> PP2 allows V{(8;z) = O(1 + ||@ — Ops||) - compatible with strongly
convex loss.
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Convergence of SA for Performative Prediction

Theorem
Under PP1-PP2, Py satisfies A3 and ¢(+; Z) is u-strongly convex. Let

o . . .
€ < T, hon-increasing step sizes

Y1 q Ye(p—Le) < min p—Le p—Le min{(u—ALe)/3,3Zp} 1
Yo — + 4 v e s 212 0 2C; 7 Cy43Lp(u—Le) ' 6Lp J°

For any k > 1, there exists C where it holds

E[]16: — 8ps 2] < TTi_y (1 — %45 ) 160 — Ops|2+ 1

Fluctuation

Transient

» Convergence needs € < £/L (similar to [Mendler-Diinner et al., 2020]) 4 Step
size constrained by mixing time of MC.

» Oscillation of stochastic gradient o, mixing time of MC L appear in
fluctuation term C.

> Extensions: training with NN / non-convex ¢(-) [Mehrnaz Mofakhami,
2023, Zhao, 2022], performative RL [Mandal et al., 2022].
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Extension: Multi-agent Performative Prediction

» Decentralized learning uses cooperative agents to solve the learning
problem®. Example: training from clinical data.

min ZEZ~D 0;,2)} », @

6;cRd n

s.t. 8; = 0_,', v (I,j) € E.

> Benefits of consensus: single agent case needs € < u/L vs multi agent
case: €ug < p/L.
» Improved robustness to sensitive local distribution shifts

» The corresponding PS solution @ps can be found using a slight
modification to decentralized SGD.

8[Li et al., 2022] Q. Li, C.-Y. Yau, H.-T.. Multi-agent performative prediction with
greedy deployment and consensus seeking agents. In NeurlPS, 2022.
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Extension: Performative Prediction Game

Setting®: Multiplex network game [Gémez-Gardenes et al., 2012] extension of
PP with n agents, each agent i interacts with a local population D;(-).

G'=(V,EB")

. Agent
-==GP = (v, EP) Population
> Agent network G*: agent / decision depends on its neighbors.
> Population network GF: D;(+) react to decisions 8; and neighbors.

» Networks affect the equilibrium solution = graph learning.

9X. Wang, C.-Y. Yau, H.-T.. Network Effects on Performative Prediction Games. in
ICML 2023 (preprint: available soon).
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Roadmap

3. Extension: Two-timescale SA
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Bilevel Optimization

» Many problems can be described as bilevel optimization:

min () = £y ()

st. y*(x) € arg min g(x,y),
yER%

(Bi)

> Upper-level = Jeader / decision maker, lower-level = follower.

> Related to mathematical program with equilibrium constraint (MPEC)
Luo et al. [1996], stackelberg game Stackelberg [1952].

» Applications: meta learning, policy optimization, etc..

This Part: f, g are stochastic — f(x,y) = E¢p[f(x,y,£)].

= Consider tackling upper level by SA: samples y*(x) are
decision-dependent: there are more structure than previous part.
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Motivation: Policy Optimization via Actor Critic

> Consider tabular policy given by 7 : S x A — R, with |S],|A| < cc.
» Let pg be init. distribution, the ~y-discounted reward!? of 7 is:

]Ew[QW(S’ A)] = ESNPO [<Q7r(57 ) | 7T(|5)>] y
With Q7(S,A) = Ex[ S0 7 R(St, Al So = S, Ao = A

> Note Q7(S, A) is y-discounted reward (Q-function) given init. (S, A).
> With fixed 7, Q™(S, A) can be evaluated by solving Bellman equation;

or through linear approximation Q™ (S, A) = (0*(7) | ¢(S, A)).

A Bilevel Optimization problem:
wexg}é\r}lxwz(ﬂ) = —(Q+(m), Moo (Actor)

st. 0%(m) € areg fl@in Q- R— 7P”Qg||’2”®ﬁ. (Critic)
€

101n Part 11, we have considered average reward with paramterized policy.
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Tackling the Bilevel Problem (Bi)

» Recall the bi-level optimization problem:

min  {(x) := f(x,y*(x))

min  (x) <= XEXCRT .
xEXCR% (x) sit. y*(x) € arg min g(x,y),
yER®

> The gradient of ¢(x) is:

Vil(x) = Vif (x,y%) = V2,80, y*) [V g(x, y )V, f(x, y*)

Stationary Condition: (Bi) can be tackled by finding (x*, y*) s.t.
F(x,y)=0, G(x,y)=V,g(x,y)=0

where  F(x,y) = Vif(x,y) — V3,8(x,y)[V3,&(x, )] 'V, f(x,y)

33/48



Finding Fixed Points with Stochastic Samples

» We only have stochastic samples and the problems are coupled.

» Let &1 denotes the random ‘seed’ at iteration k, and F(-; &k+1),
G(+; €k+1) denote the stochastic samples of F, G, respectively.

» If x is fixed and under suitable conditions, the recursion

k—o0

Vi1 = Yk + BeG (X, yki €kr1) — ¥ (x) s.t. G(x,y*(x)) = 0.
» Furthermore, the recursion
* k—aqo * * * *
X1 = Xk + o F (X, Y™ (xk); Ek+1) =3 Xt st F(x*,y*(x*)) = 0.

» If one could run the two recursions = fixed point, but the yj recursion
requires x to be fixed; and xx recursion requires y*(xx).

Suggesting a double-loop algorithm? e.g., [Ghadimi and Wang, 2018].

34/48



Two Timescale Stochastic Approximation (TTSA)

> Consider a single-loop, two timescale algorithm [Borkar, 1997]:

X1 = X + o F (Xie, Vi Ekt1)
Yir1 = Yk + B G(Xk; Vi Ek+1)

» We require that
. Qg
lim — =0

x-update is at slow timescale; while y-update is at fast timescale.

> Intuition: when updating yj, as ax < Sk, then xi is almost static;
when updating xi, the used y,x have almost converged to y*(x).
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TTSA for Tackling (Bi): The Algorithm

TTSA Algorithm for (Bi)

Follow the recursion:
Xe41 = Xk — ouhy [hf ~ F(x*,y")] (TTSA-Bi)
Yk+1 = Yk — ﬁkvyg(xkayk; Ck+1)

P> x; update uses decision-dependent data via y, driven by xx_1.
> Two timescale step sizes to balance upper and lower level updates.
» Challenge: easy to estimate G(-) = V, g(-), but F(-) is non-trivial since
F(va):va(va)_v)%yg(va) [vf/yg(xv}/)]71 V,Vf(xvy)
————

can't replace by Viyg(x-, v ¢)

Biased estimate is possible.
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This Work

Characterize the rate of convergence for TTSA when:
> the inner objective g(x, y) is strongly convex in y, and
> the outer objective ¢(x) is smooth, convex, strongly convex.

£(x)  CONSTRAINT STEP SIZE (ak, Bk) RATE (OUTER) RATE (INNER)
sC X CR% O(k™1), O(k=2/3) O(K~2/3) O(K—2/3)
WC X CR% O(K—3/5), O(K—2/%) O(K~2/5) O(K~2/5)

Prior Works — many and
» Linear TTSA = solving quadratic upper/lower level

» Dalal et al. [2018, 2019] obtained h.p. bounds with a projection step.
» Finite-time Analysis of Bilevel Stochastic Optimization

» [Couellan and Wang, 2016, Ghadimi and Wang, 2018] — double loop SA
& recently [Yang et al., 2021, Chen et al., 2022a, Guo and Yang, 2021].

» constrained bilevel problem [Xiao et al., 2022], relax strong convexity
[Chen et al., 2023].
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Why two-timescale?

» In the upper-level update,
X1 = Xk — Ozkhl; < note h¥ ~ F(x,y) # V/(x)
> We recall that ||F(x, y) — VE(x)|| = O(lly — y*(x)|]).
» Need oy < coﬁi/2 to balance the errors, leading to the step sizes
strongly convex £(x): oy = k7L, B = k=2/3

weakly convex £(x): ay < K735 B < K™2/5

» The convergence rate is limited by the ‘faster’ timescale!.
> For 1-level problem, even naive SGD achieves E[AK] = O(1/K/?).

[Kaledin et al., 2020] M. Kaledin et al. Finite time analysis of linear two-timescale

stochastic approximation with markovian noise. COLT 2020.
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Main Results (Weakly Convex /()

Theorem

Under TTI1, TT2, suppose that iy € R. Set K ~ U{O, .. — 1} and
= K=3/5, B < K—2/>. For sufficiently large K > 1, it ho/ds

K%

BV S [2(8+ ) + ngo]
g

)

A 2 o

Elly* -y (<P S [+ % + Lk

,LLg lug L

where A® depends on the initialization, the inequality is up to constants
not depending on k (exact expressions can be found in the paper)

> Consequence: we get E[AX] = O(1/K?/®), E[AK] = O(1/K?/®).
> Note: AX is a stationarity measure for x* related to Moreau envelope.

> Actor-critic requires slightly different algorithm than (TTSA-Bi) thru
exploiting structure; but similar analysis applies.

» Single-timescale algo.? [Khanduri et al., 2021, Chen et al., 2022a].
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Agenda

4. Conclusions and Perspectives
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Summary
We have studied variants of SA with decision dependent data:

SA: 011 =0 — ’Yt+1H(0t; Xt+1)7
where X; 1 is not i.i.d., and depends on 6, (via a controlled MC).

» General SA with possibly non-gradient H(8; X):
= convergence to stationary point E[||h(07)|?] = O(log T/V/T).
= application to online policy gradient.
» Performative Prediction through SA:
= modelling stateful population through controlled MC.
= convergence to PS solution E[||; — 6ps||?] = O(1/t).

» Bilevel optimization via TTSA:
= utilizes two timescales for coupled SAs & application to actor-critic.
= convergence rates to stationary solution.

Take-away Point: SA with data-dependent distribution is
everywhere. Don't panic when your application has it.
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Perspectives
SA with decision dependent data:
SA: 0i1=0: — 71 1H(O: Xii1),
where X;;1 is not i.i.d., and depends on 8, via a controlled MC.

Theory: also see our recent overview [Dieuleveut et al., 2023],

» Current results require ‘strong’ assumptions on MC which usually makes
sense for finite-state space only, see [Durmus et al., 2021b].

> Strong convergence, e.g., with high probability [Durmus et al., 2021a].
> Avoid saddle point in non-convex problems? [Lee et al., 2019]

Applications/Algorithmic:
> Decentralized & federated learning; see [Wai, 2020].

» Beyond reinforcement learning & performative prediction — Langevin
Monte-carlo [De Bortoli et al., 2021], inducing equilibrium thru TTSA
and pricing [Liu et al., 2022], etc.
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Most importantly, thanks to ...

e \
Belhal Karimi Blazej Miasojedow Eric Moulines
(Baidu Research) (U of Warsaw) (Ecole Polytechnique)

— -
-'m'

\ﬁ
i
Qiang Li Chung-Yiu Yau Mingyi Hong  Zhuoran Yang  Zhaoran Wang
(CUHK) (CUHK) (UMN) (Yale) (Northwesthern)

Thank you! Questions?

For more info: http://wwwl.se.cuhk.edu.hk/~htwai/
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